

FCC Test Report

Page: 1/68

Application No.: DNT230690R0808-1529

Applicant: Shenzhen Shengren Electronic Technology Co., Ltd.

Address of No. 1 South China Avenue, Hehua Community, Pinghu Street, Longgang

Applicant: District, Shenzhen, China

EUT Description: Projector

Model No.: P7 Pro

FCC ID: 2BDHA-P7PRO

Power Supply: DC 24V/2.5A From Adapter Input AC 230V/50Hz

Trade Mark: N/A

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2023/11/13

Date of Test: 2023/11/13 to 2023/12/25

Date of Issue: 2023/12/25

Test Result : PASS *

Note:All models are just name differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

Prepared By: Name Line (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: Wick few (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of

Report No.: DNT230690R0808-1529

Date: Dec 25, 2023

Page: 2/68

receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Report No.: DNT230690R0808-1529

Date: Dec 25, 2023

Page: 3/68

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Dec.25, 2023	Valid	Original Report

General Description of EUT

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	9-9	Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	PASS

Note:Note:

1. "N/A" denotes test is not applicable in this test report.

Report No.: DNT230690R0808-1529

Date: Dec 25, 2023

Page: 5 / 68

Contents

1	Test Su	ummary		<u></u>	 	4
2	Genera	al Information			 	6
	2.1	Test Location			 	6
	2.2	General Description of EUT			 	7
	2.3	Channel List			 	9
	2.4	Test Environment and Mode			 	10
	2.5	Power Setting of Test Software			 	11
	2.6	Description of Support Units			 	11
	2.7	Test Facility				11
	2.8	Measurement Uncertainty (95% confidence levels, k=2	2)	<u></u>	 	12
	2.9	Equipment List			 	13
	2.10	Assistant equipment used for test				14
3	Test res	sults and Measurement Data		<u></u>	 	15
	3.1	Antenna Requirement		<u>A</u>	 	15
	3.2	20dB Emission Bandwidth				16
	3.3	Conducted Output Power		<u></u>	 	17
	3.4	Carrier Frequencies Separationy			 	18
	3.5	Dwell Time				
	3.6	Hopping Channel Number			 	20
	3.7	Band-edge for RF Conducted Emissions				
	3.8	RF Conducted Spurious Emissions				
	3.9	Radiated Spurious Emissions				
	3.10	Restricted bands around fundamental frequency			 	31
	3.11	AC Power Line Conducted Emissions				
4	Append	xik			 	37
		dix A: 20dB Emission Bandwidth				
	Append	lix B: Maximum conducted output power			 	42
		lix C: Carrier frequency separation				
	Append	dix D: Dwell Time			 	48
		lix F: Number of hopping channels				
		lix F: Band edge measurements				
		dix F: Conducted Spurious Emission				

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 6 / 68

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

2.2 General Description of EUT

EUT Description:	Projector				
Manufacturer:	Shenzhen Shengren Electronic Technology Co., Ltd.				
Address of Manufacturer:	No. 1 South China Avenue, Hehua Community, Pinghu Street, Longgang District, Shenzhen, China				
Model No.:	P7 Pro				
	P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P30,P31,P32,P33,P34,P35,P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P46,P47,P48,P49,P50,P51,P52,P53,P54,P55,P56,P57,P58,P59,P60,P61,P62,P63,P64,P65,P66,P67,P68,P69,P70,P71,P72,P73,P74,P75,P76,P77,P78,P79,P80,P81,P82,P83,P84,P85,P86,P87,P88,P89,P90,P91,P92,P93,				
	P94,P95,P96,P97,P98,P99,P1 Pro,P2 Pro,P3 Pro,P4 Pro,P5 Pro, P6 Pro,P7 Pro,P8 Pro,P9 Pro,P10 Pro,P11 Pro,P12 Pro,P13 Pro,				
	P14 Pro,P15 Pro,P16 Pro,P18,Pro, P19 Pro,P20 Pro,P21 Pro, P22				
Addition Model(s):	Pro,P23 Pro,P24 Pro,P25 Pro,P26 Pro,P27 Pro,P28 Pro,P29 Pro, P30				
	Pro,P31 Pro,P32 Pro,P33 Pro,P34 Pro,P35 Pro,P36 Pro,P37 Pro, P38				
	Pro,P39 Pro,P40 Pro,P41 Pro,P42 Pro,P43 Pro,P44 Pro,P45 Pro, P46				
	Pro,P47 Pro,P48 Pro,P49 Pro,P50 Pro,P51 Pro,P52 Pro,P53 Pro, P54				
	Pro,P55 Pro,P56 Pro,P57 Pro,P58 Pro,P59 Pro,P60 Pro,P61 Pro, P62				
	Pro,P63 Pro,P64 Pro,P65 Pro,P66 Pro,P67 Pro,P68 Pro,P69 Pro, P70				
	Pro,P71 Pro,P72 Pro,P73 Pro,P74 Pro,P75 Pro,P76 Pro,P77 Pro, P78				
	Pro,P79 Pro,P80 Pro,P81 Pro,P82 Pro,P83 Pro,P84 Pro,P85 Pro, P8				
	Pro,P87 Pro,P88 Pro,P89 Pro,P90 Pro,P91 Pro,P92 Pro,P93 Pro, P94				
	Pro,P95 Pro,P96 Pro,P97 Pro,P98 Pro,P99 Pro				
Chip Type:	AIC8800D				
Serial number:	SP2301103012				
Power Supply:	DC 24V/2.5A From Adapter Input AC 100-240V,50/60Hz				
Trade Mark:	N/A				
Hardware Version:	V1.0				
Software Version:	V1.0				
Operation Frequency:	2402 MHz to 2480 MHz				
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)				
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK				
Sample Type:	☐ Portable Device, ☐ Module, ☒ Mobile Device				
Antenna Type:	☐ External, ☑ Integrated				
Antenna Ports:					
Antenna Gain*:	☑ Provided by applicant0dBi				
RF Cable*:	⊠ Provided by applicant				
THE ORDING.	Dongguan DN Testing Co., Ltd.				

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China Web: www.dn-testing.com Tel:+86-769-88087383 E-mail: service@dn-testing.com

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 8 / 68

0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz);

1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*All models are just name differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23 🔨	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32 🔨	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
_16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 10 / 68

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 11 / 68

2.5 Power Setting of Test Software

Software Name		rf_test	<i>A</i> . <i>A</i> .
Frequency(MHz)	2402	2441	2480
GFSK Setting	7	7	7
π/4-DQPSK Setting	7	7	7

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1_	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7		9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
	0.000	± 4.8dB (Below 1GHz)
0	Dadieted Essissies	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 13 / 68

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24	
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24	
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24	
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	< NA ■	
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24	

	Test Equipment for Conducted Emission										
Description	Description Manufacturer Model Serial Number Cal Date Due Date										
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23						
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23						
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23						

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 14 / 68

1031 L	quipment for				-/
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 15 / 68

3 Test results and Measurement Data

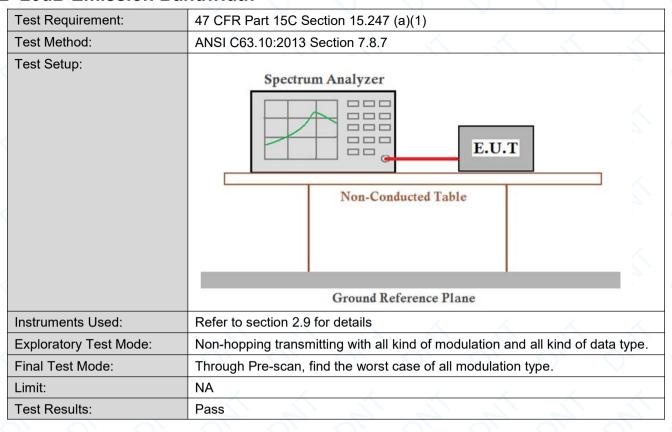
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

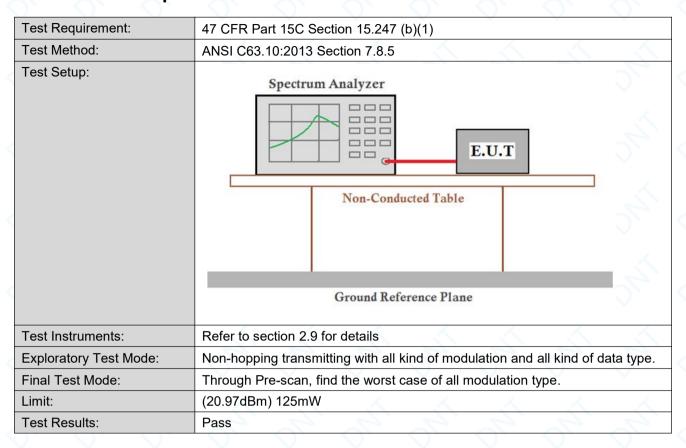
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 16 / 68

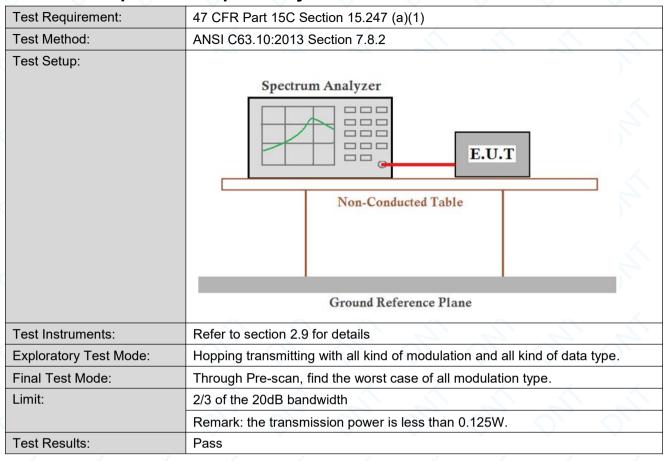
3.2 20dB Emission Bandwidth



The detailed test data see: Appendix A

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 17 / 68

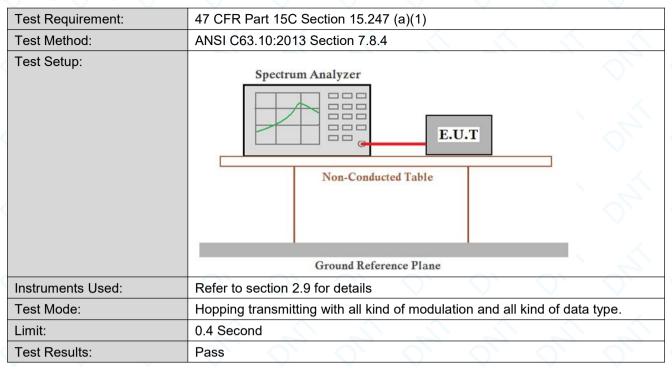
3.3 Conducted Output Power



The detailed test data see: Appendix B

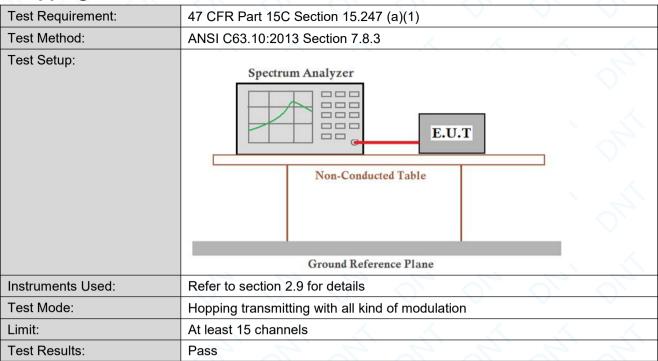
Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 18 / 68

3.4 Carrier Frequencies Separationy



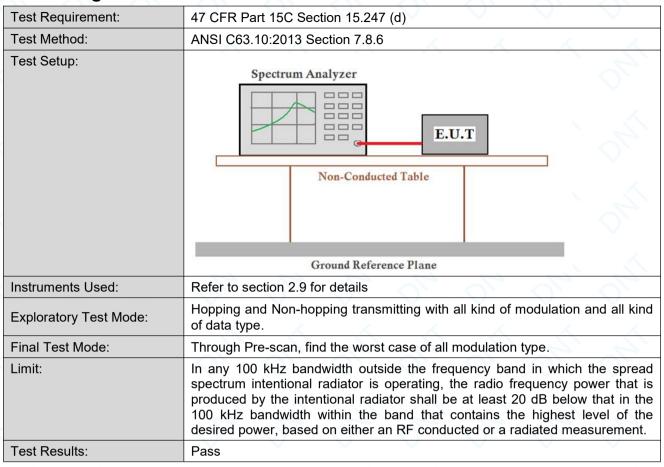
The detailed test data see: Appendix C

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 19 / 68


3.5 Dwell Time

The detailed test data see: Appendix D

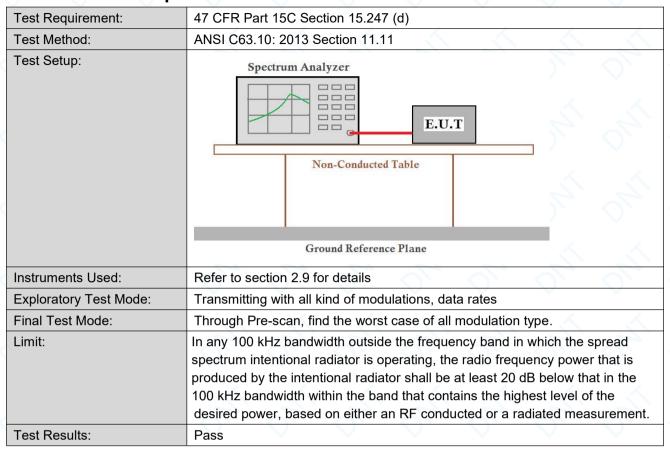
3.6 Hopping Channel Number



The detailed test data see: Appendix E

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 21 / 68

3.7 Band-edge for RF Conducted Emissions



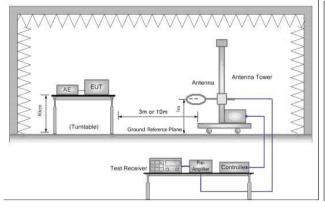
The detailed test data see: Appendix F

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 22 / 68

3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 23 / 68


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05		
Test Method:	ANSI C63.10: 2013 Sect	tion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	(DC<0.98) Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)		<u> </u>	300
	0.490MHz-1.705MHz	24000/F(kHz)	<u> </u>	- 1	30
	1.705MHz-30MHz	30	V - 1	- V	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lin	nit

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 24 / 68

Test Setup:

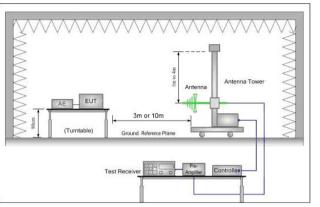


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

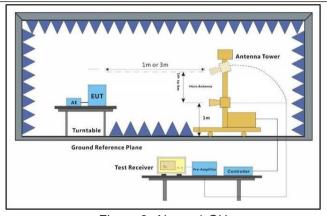


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

Final Test Mode:

Instruments Used:

Test Results:

Test Configuration: Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz VBW ≥ 3 MHz • Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz • VBW = 10 Hz, when duty cycle is no less than 98 percent. • VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. **Exploratory Test Mode:** Transmitting with all kind of modulations, data rates.

Transmitting mode.

Pass

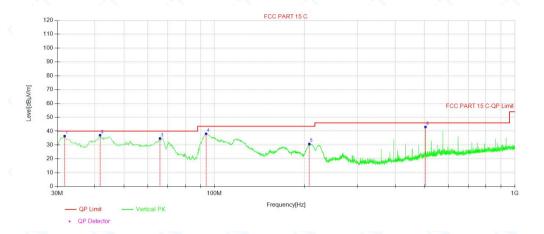
Pretest the EUT at Transmitting mode.

Refer to section 2.9 for details

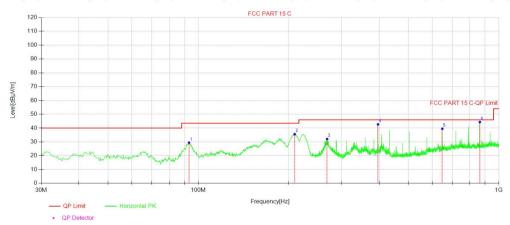
Date: Dec 25, 2023

Through Pre-scan, find the 3DH5 of data type is the worst case of All modulation

Page: 25 / 68



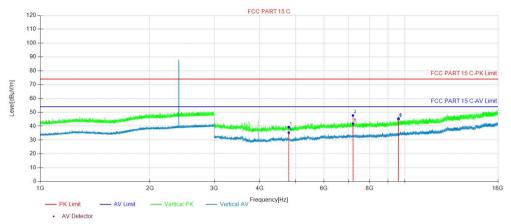
Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 26 / 68

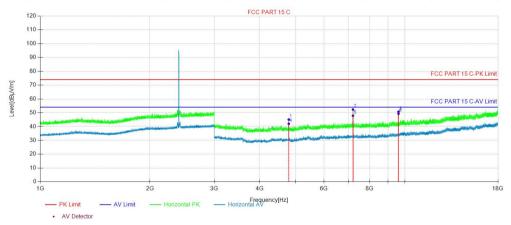

Test data

For 30-1000MHz

Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
4	1	31.74	46.26	-9.78	36.48	40.00	3.52	100	52	QP
	2	41.64	45.63	-8.56	37.07	40.00	2.93	100	154	QP
	3	65.89	44.22	-9.44	34.78	40.00	5.22	100	86	QP
	4	93.83	51.65	-13.52	38.13	43.50	5.37	100	304	QP
5	5	206.96	42.00	-11.19	30.81	43.50	12.69	100	42	QP
	6	504.03	44.92	-1.87	43.05	46.00	2.95	100	255	QP

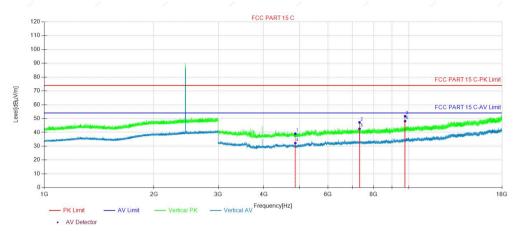

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	93.06	43.04	-13.60	29.44	43.50	14.06	100	342	Peak
2	209.09	46.73	-11.15	35.58	43.50	7.92	100	323	Peak
3	268.08	40.26	-8.18	32.08	46.00	13.92	100	309	Peak
4	395.95	47.08	-4.38	42.70	46.00	3.30	100	218	Peak
5	648.01	38.07	1.44	39.51	46.00	6.49	100	356	Peak
6	863.97	39.74	4.63	44.37	46.00	1.63	100	51	Peak

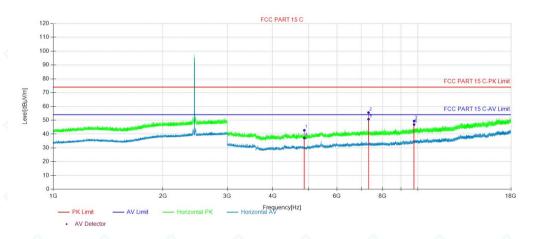

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 27 / 68

For above 1GHz 3DH5 2402MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4804	40.43	-1.10	39.33	74.00	34.67	150	149	Peak
2	7206	45.35	2.39	47.74	74.00	26.26	150	161	Peak
3	9608	39.82	5.23	45.05	74.00	28.95	150	125	Peak
4	4804	36.43	-1.10	35.33	54.00	18.67	150	161	AV
5	7206	39.44	2.39	41.83	54.00	12.17	150	346	AV
6	9608	40.30	5.23	45.53	54.00	8.47	150	125	AV

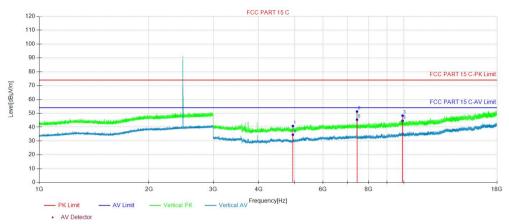

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
4	1	4804	46.21	-1.10	45.11	74.00	28.89	150	102	Peak
	2	7206	49.95	2.39	52.34	74.00	21.66	150	30	Peak
	3	9608	45.53	5.23	50.76	74.00	23.24	150	72	Peak
	4	4804	43.13	-1.10	42.03	54.00	11.97	150	30	AV
4	5	7206	45.45	2.39	47.84	54.00	6.16	150	166	AV
	6	9608	44.04	5.23	49.27	54.00	4.73	150	72	AV

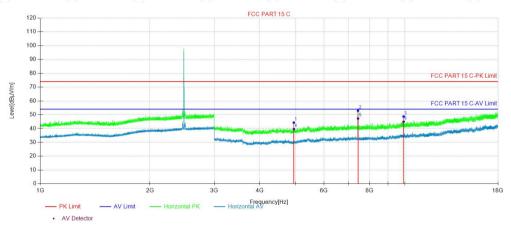

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 28 / 68

3DH5 2441MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4882.59	40.72	-1.72	39.00	74.00	35.00	150	194	Peak
2	7323.21	44.74	2.47	47.21	74.00	26.79	150	163	Peak
3	9763.83	45.29	6.41	51.70	74.00	22.30	150	152	Peak
4	4882.59	33.96	-1.72	32.24	54.00	21.76	150	194	AV
5	7323.96	40.13	2.47	42.60	54.00	11.40	150	163	AV
6	9764.58	41.70	6.42	48.12	54.00	5.88	150	143	AV


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	44.47	-1.73	42.74	74.00	31.26	150	218	Peak
2	7323.21	53.09	2.47	55.56	74.00	18.44	150	29	Peak
3	9763.83	43.02	6.41	49.43	74.00	24.57	150	133	Peak
4	4882.59	38.81	-1.72	37.09	54.00	16.91	150	91	AV
5	7323.96	48.29	2.47	50.76	54.00	3.24	150	29	AV
6	9764.58	40.47	6.42	46.89	54.00	7.11	150	133	AV


Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 29 / 68

3DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4960.59	42.59	-1.75	40.84	74.00	33.16	150	223	Peak
2	7440.22	48.55	2.73	51.28	74.00	22.72	150	150	Peak
3	9919.84	42.14	6.20	48.34	74.00	25.66	150	150	Peak
4	4960.59	36.29	-1.75	34.54	54.00	19.46	150	298	AV
5	7440.97	42.69	2.72	45.41	54.00	8.59	150	150	AV
6	9920.59	38.45	6.19	44.64	54.00	9.36	150	140	AV

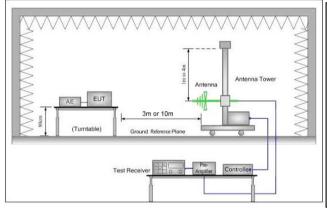
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4959.84	46.06	-1.76	44.30	74.00	29.70	150	127	Peak
	2	7439.47	50.17	2.74	52.91	74.00	21.09	150	74	Peak
	3	9919.84	42.53	6.20	48.73	74.00	25.27	150	53	Peak
	4	4960.59	41.38	-1.75	39.63	54.00	14.37	150	117	AV
V	5	7440.22	44.51	2.73	47.24	54.00	6.76	150	64	AV
	6	9920.59	38.79	6.19	44.98	54.00	9.02	150	53	AV

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 30 / 68

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)


- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, 3DH5 is the worst case, only the worst case was reported.

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 31 / 68

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12								
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)									
Limit:	Frequency	Limit (dBuV/m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak							
	88MHz-216MHz	43.5	Quasi-peak							
	216MHz-960MHz	46.0	Quasi-peak							
	960MHz-1GHz	54.0	Quasi-peak							
	Ab 4011-	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Test Setup:										

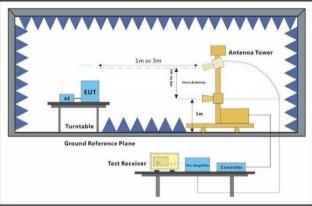
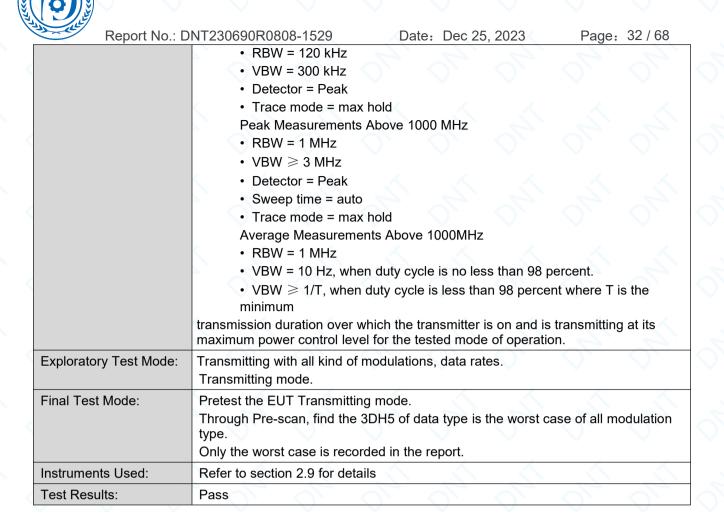


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

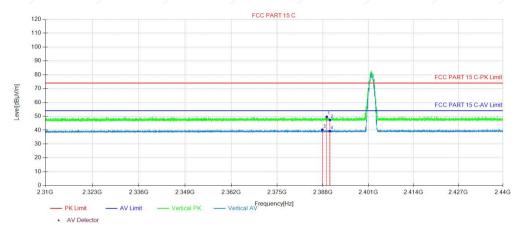

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

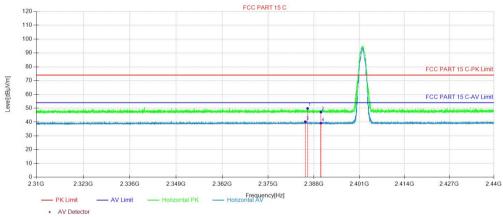
Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.


Report No.: DNT230690R0808-1529
Test Date

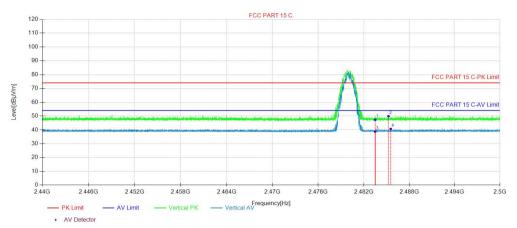
Date: Dec 25, 2023


Page: 33 / 68

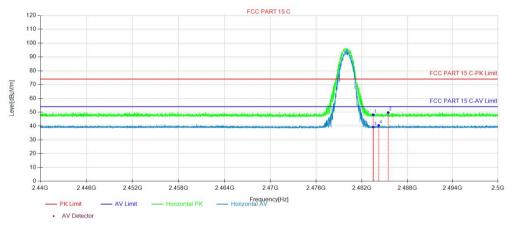
3DH5 2402MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2389.11	48.23	1.37	49.60	74.00	24.40	150	89	Peak
2	2390.01	46.02	1.37	47.39	74.00	26.61	150	255	Peak
3	2387.86	38.95	1.37	40.32	54.00	13.68	150	335	AV
4	2390.01	37.94	1.37	39.31	54.00	14.69	150	306	AV


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2386.21	48.48	1.37	49.85	74.00	24.15	150	64	Peak
2	2390.01	45.83	1.37	47.20	74.00	26.80	150	99	Peak
3	2385.56	38.90	1.37	40.27	54.00	13.73	150	123	AV
4	2390.01	37.88	1.37	39.25	54.00	14.75	150	92	AV

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 34 / 68


3DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	45.44	1.86	47.30	74.00	26.70	150	358	Peak
2	2485.25	48.00	1.86	49.86	74.00	24.14	150	144	Peak
3	2483.50	36.85	1.86	38.71	54.00	15.29	150	283	AV
4	2485.55	38.83	1.86	40.69	54.00	13.31	150	122	AV

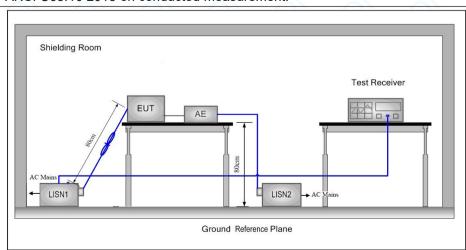
Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	46.30	1.86	48.16	74.00	25.84	150	261	Peak
2	2485.47	47.92	1.86	49.78	74.00	24.22	150	349	Peak
3	2483.50	37.44	1.86	39.30	54.00	14.70	150	91	AV
4	2484.22	38.61	1.86	40.47	54.00	13.53	150	32	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)



Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 35 / 68

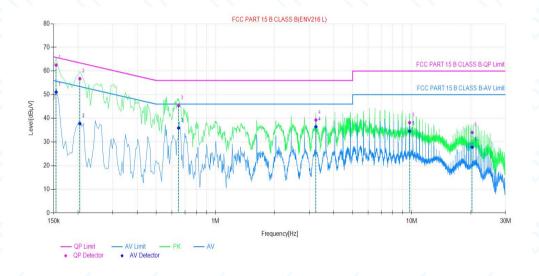
3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz	V V						
Limit:	Francisco (MIII-)	Limit (dB	BuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the loga	arithm of the frequency.	0, 0,					
Test Procedure:	room. 2) The EUT was connect Impedance Stabilization I impedance. The power of a second LISN 2, which we plane in the same way as multiple socket outlet stripsingle LISN provided the 3) The tabletop EUT was ground reference plane. Applaced on the horizontal of the EUT shall be 0.4 meterical ground reference reference plane. The LIS unit under test and bonder mounted on top of the ground the EUT and associated in order to find the maximum associated in order to find the maximum associated in second connection.	ed with a vertical ground reference of the vertical ground reference plane was bonded to the horical N 1 was placed 0.8 m from the ed to a ground reference plane. This distorts of the LISN 1 and the EUT. equipment was at least 0.8 m num emission, the relative posinterface cables must be changed.	gh a LISN 1 (Line Ω/50μH + 5Ω linear EUT were connected to erence measured. A e power cables to a ceeded. able 0.8m above the ement, the EUT was ence plane. The rear rence plane. The izontal ground e boundary of the e for LISNs stance was All other units of from the LISN 2. sitions of					

Test Setup:

Report No.: [

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 36 / 68


Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case
Instruments Used:	Refer to section 2.9 for details
Test Results:	N/A

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dΒμV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
1	0.15	9.90	55.3	65.20	65.75	0.55	40.52	50.42	55.75	5.33
2	0.20	9.93	49.29	59.22	63.45	4.23	24.23	34.16	53.45	19.29
3	0.64	9.79	36.02	45.81	56.00	10.19	27.06	36.85	46.00	9.15
4	3.25	9.74	29.73	39.47	56.00	16.53	27.04	36.78	46.00	9.22
5	9.74	9.86	29.49	39.35	60.00	20.65	25.57	35.43	50.00	14.57
6	20.71	10.13	24.67	34.80	60.00	25.20	17.37	27.50	50.00	22.50

Neutral Line:

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 37 / 68

FCC PART 15 B CLASS B(ENV216 N) FCC PART 15 B CLASS B-QP Limit FCC PART 15 B CLASS B-AV Limi

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
1	0.15	9.79	53.18	62.97	66.00	3.03	40.68	50.47	56.00	5.53
2	0.56	9.76	35.75	45.51	56.00	10.49	22.42	32.18	46.00	13.82
3	1.35	9.72	30.62	40.34	56.00	15.66	20.39	30.11	46.00	15.89
4	2.42	9.82	31.82	41.64	56.00	14.36	24.72	34.54	46.00	11.46
5	6.08	9.98	34.42	44.40	60.00	15.60	27.82	37.80	50.00	12.20
6	17.00	9.99	24.33	34.32	60.00	25.68	16.65	26.64	50.00	23.36

Remark:

1. The 3DH5 is the worse case.

QP Detector

- 2. The following Quasi-Peak and Average measurements were performed on the EUT:
- 3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 38 / 68

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result

1 00t Itobait								
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict	
		2402	0.951	2401.526	2402.477			
DH5	Ant1	2441	1.011	2440.463	2441.474	/		
		2480	1.026	2479.472	2480.498			
		2402	1.314	2401.325	2402.639			
2DH5	Ant1	5 Ant1	2441	1.317	2440.322	2441.639	V	
		2480	1.290	2479.349	2480.639			
/		2402	1.308	2401.325	2402.633	/		
3DH5	Ant1	2441	1.332	2440.313	2441.645			
		2480	1.266	2479.358	2480.624			

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 39 / 68

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 40 / 68

2DH5 Ant1 2441

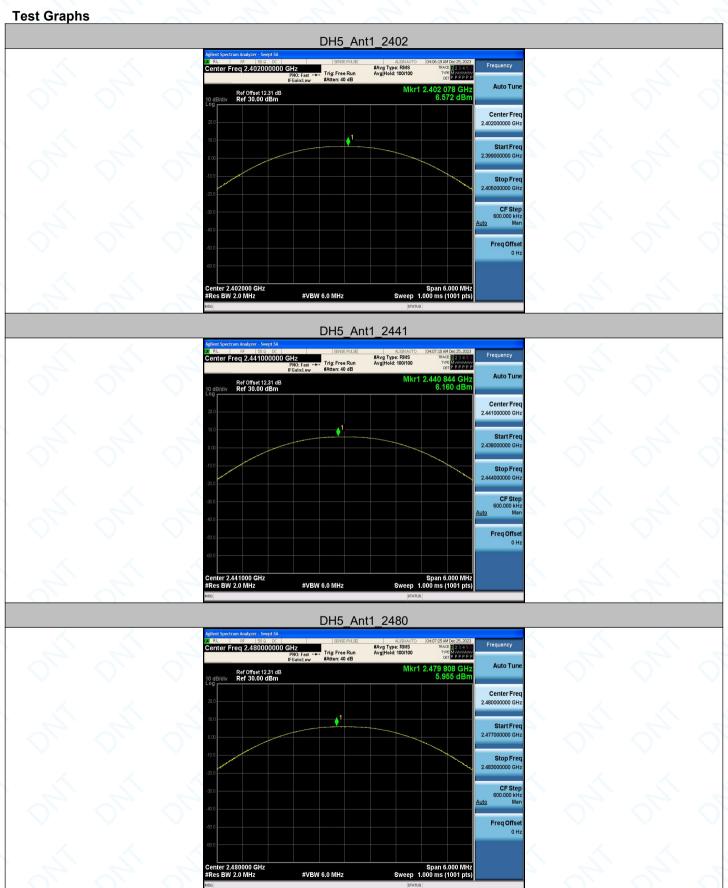
2DH5_Ant1_2480

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 41 / 68

3DH5 Ant1 2441

3DH5_Ant1_2480

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 42 / 68


Appendix B: Maximum conducted output power

Test Result

rest Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	6.57	≤20.97	PASS
DH5	Ant1	2441	6.16	≤20.97	PASS
		2480	5.96	≤20.97	PASS
		2402	6.52	≤20.97	PASS
2DH5	Ant1	2441	6.19	≤20.97	PASS
		2480	5.89	≤20.97	PASS
		2402	6.83	≤20.97	PASS
3DH5	Ant1	2441	6.3	≤20.97	PASS
		2480	6.07	≤20.97	PASS

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 43 / 68

Report No.: DNT230690R0808-1529 Date: Dec 25, 2023 Page: 44 / 68

2DH5 Ant1 2441

2DH5_Ant1_2480

