

Project No.: ZHT-240410012E Page 1 of 42

Report Number	:: ZHT-240410012E
Date of Test	: Apr. 10, 2024 to Apr. 22, 2024
Date of issue	:: Apr. 22, 2024
Test Result	: PASS
Testing Laboratory	: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	[:] Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Commun Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	:: Shenzhen Vident Technology Co., Ltd
Address	: No. 42, HanTang 2nd Road, BaoAn Community, YuanShan Stree LongGang District, Shenzhen
Manufacturer's name	: Shenzhen Vident Technology Co., Ltd
Address	
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	:: KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Non-standard test method	
	is been tested by ZHT, and the test results show that the equipment und the FCC requirements. And it is applicable only to the tested sample
	ced except in full, without the written approval of ZHT, this document ma ersonal only, and shall be noted in the revision of the document.
Product name	: iSmart-Automotive Diagnostic System
Trademark	: Vident,SKANTZ
Model/Type reference	: DIAGVCI, OnePad
Model Difference	: DIAGVCI is tested model, other models are derivative models .TI models are identical in circuit, Only the model name and color dif So the test data of DIAGVCI can represent the remaining models
Ratings	

Table of Contents

Page

1. VERSION	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	
3.2 DESCRIPTION OF TEST MODES	9
3.3 TEST SETUP CONFIGURATION	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION Limits	-
4.1.2 TEST PROCEDURE	
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS	
4.2.2 TEST PROCEDURE	
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	
4.2.4 TEST SETUP	
5.1 TEST REQUIREMENT:	23
5.2 TEST PROCEDURE	
5.3 DEVIATION FROM TEST STANDARD 5.4 TEST SETUP	-
5.5 EUT OPERATING CONDITIONS	
5.6 TEST RESULT	
6.POWER SPECTRAL DENSITY TEST	
6.1 APPLIED PROCEDURES / LIMIT	
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM STANDARD	
6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS	
6.6 TEST RESULTS	

Table of Contents

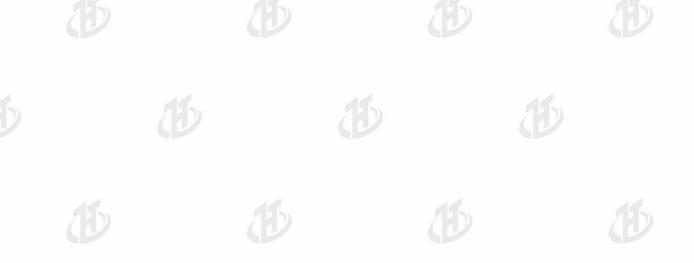
7. CHANNEL BANDWIDTH	29
7.1 APPLIED PROCEDURES / LIMIT	
7.2 TEST PROCEDURE	
7.3 DEVIATION FROM STANDARD	
7.4 TEST SETUP	29
7.5 EUT OPERATION CONDITIONS	
7.6 TEST RESULTS	
8.PEAK OUTPUT POWER TEST	
8.1 APPLIED PROCEDURES / LIMIT	
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	
8.4 TEST SETUP	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	
9.1 APPLICABLE STANDARD	35
9.2 TEST PROCEDURE	35
9.3 DEVIATION FROM STANDARD	35
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	35
10.ANTENNA REQUIREMENT	41
11. TEST SETUP PHOTOS	42
12. EUT CONSTRUCTIONAL DETAILS	

1. VERSION

		AC	
Report No.	Version	Description	Approved
ZHT-240410012E	Rev.01	Initial issue of report	Apr. 22, 2024

 15	 _ 115.	-		

2. SUMMARY OF TEST RESULTS


Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS	C		
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1) " N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🌐 http://www.zht-lab.cn

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	iSmart-Automotive Diagnostic	System		
Test Model No.:	DIAGVCI	15		15
Hardware Version:	V4.1			
Software Version:	V4.62			
Sample(s) Status:	Engineer sample		15	
Operation Frequency:	2402MHz~2480MHz		C	
Channel Numbers:	40			
Channel Separation:	2MHz			
Modulation Type:	GFSK	\mathbf{D}		D
Antenna Type:	Copper tube antenna			
Antenna gain:	0dBi			

🖂 admin@zht-lab.cn 🤇 0755-27782934

http://www.zht-lab.cn

	115					125	
Operatio	n Frequency	each of ch	annel 🔇 🕬				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Remark nomina	I rated supply vol	Keep the EUT i pattery during the ltage, and found t just shows that co	that the worst ca	ltage was tuned	d from 85% to 1	
3.3 TEST SET			Ð		Ð	ð
AC Mains	E-2 (AE)	E-1 (EUT)				

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E1	iSmart-Automotive Diagnostic System	Shenzhen Vident Technology Co., Ltd	DIAGVCI	OnePad	EUT
E2	AC/DC ADAPTER	Shenzhen Mingxin Power Technologies Co.,Ltd.	MX24Z1-1202000	/	AE

Item	Shielded Type	Ferrite Core	Length	Note	

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

adiation	rest equipment				
ltem	Equipment	Manufacturer	Model	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
2	Loop antenna	EMCI	LAP600	May 12, 2023	May 11, 2024
3	Amplifier	Schwarzbeck	BBV 9743 B	May 12, 2023	May 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	May 12, 2023	May 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	May 17, 2023	May 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 17, 2023	May 16, 2024
7	Horn Antenna	A.H.SYSTEMS	SAS574	May 12, 2023	May 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	May 12, 2023	May 11, 2024
9	Spectrum Analyzer	R&S	FSV40	May 12, 2023	May 11, 2024
10	966 Anechoic Chamber	EMToni	9m6m6m	May 12, 2023	May 11, 2024
11	Spectrum Analyzer	KEYSIGHT	N9020A	May 12, 2023	May 11, 2024
12	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	May 12, 2023	May 11, 2024
13	Single Generator	Agilent	N5182A	May 12, 2023	May 11, 2024
14	Power Sensor	MWRFtest	MW100-RFCB	May 12, 2023	May 11, 2024
15	Audio analyzer	R&S	UPL	May 12, 2023	May 11, 2024
16	Single Generator	R&S	SMB100A	May 12, 2023	May 11, 2024
17	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024

1 0755-27782934

Project No.: ZHT-240410012E

Page 11 of 42

Conduction Test equipment

Equipment	Manufacturer	Model	Last Cal.	Next Cal.	
Receiver	R&S	ESCI	May 12, 2023	May 11, 2024	
LISN	R&S	ENV216	May 12, 2023	May 11, 2024	
ISN CAT 6	Schwarzbeck	NTFM 8158	May 12, 2023	May 11, 2024	
ISN CAT 5	Schwarzbeck	CAT5 8158	May 12, 2023	May 11, 2024	
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 12, 2023	May 11, 2024	
Current Transformer Clamp	Schwarzbeck	SW 9605	May 12, 2023	May 11, 2024	
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024	

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

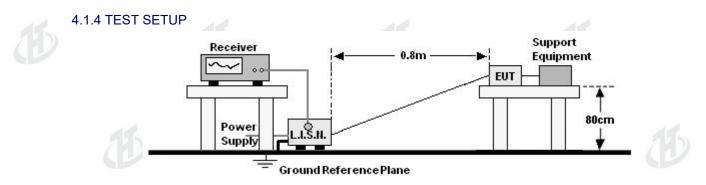
Test Requirement:	FCC Part15 C Section 15.207	
Test Method:	ANSI C63.10:2013	
Test Frequency Rang	e: 150KHz to 30MHz	
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto	

4.1.1 POWER LINE CONDUCTED EMISSION Limits

			1	
	Limit (Standard		
FREQUENCY (MHz)	QP	AVG	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC]

Note:

(1) *Decreases with the logarithm of the frequency.

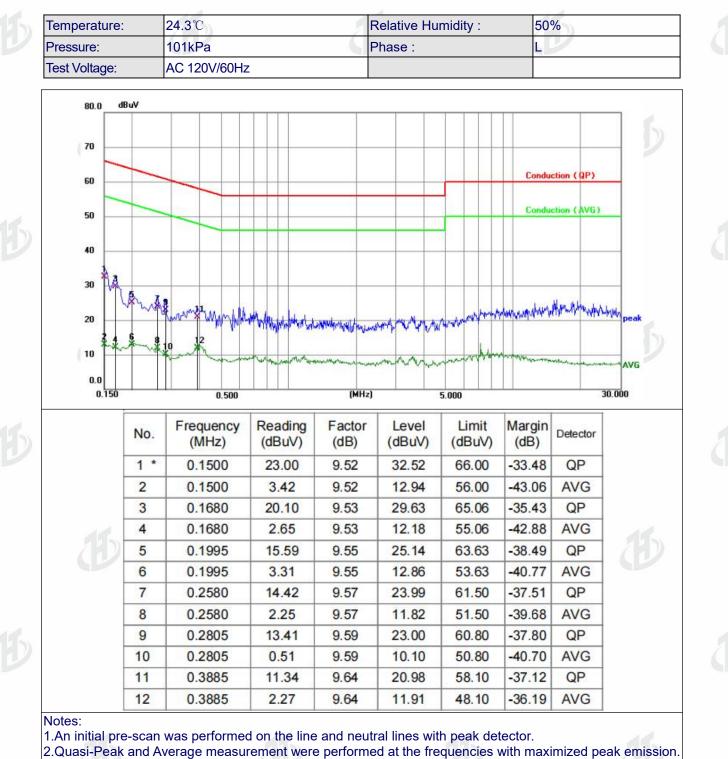

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

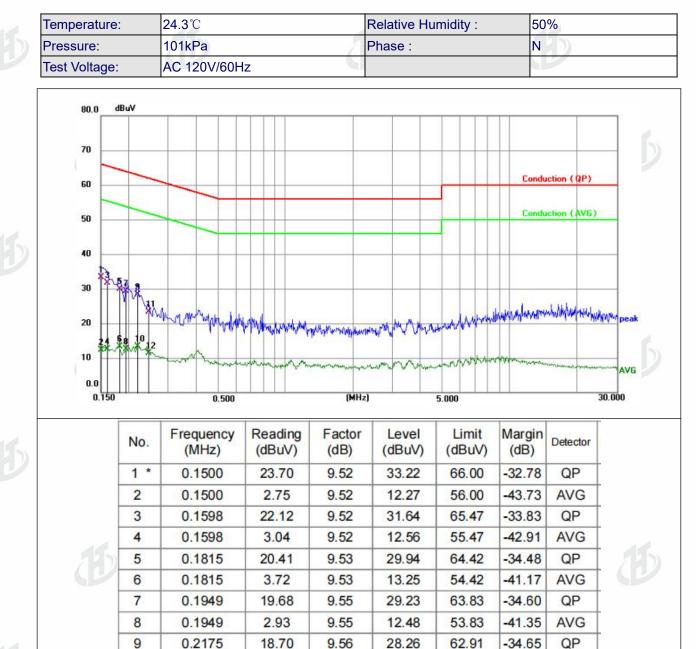
4.1.3 DEVIATION FROM TEST STANDARD No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


4.1.6 TEST RESULTS

Project No.: ZHT-240410012E Page 15 of 42


- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case Low Channel: 2402MHz.

Project No.: ZHT-240410012E Page 16 of 42

D

Notes:

10

11

12

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

3.76

13.74

1.64

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 3.Mesurement Level = Reading level + Correct Factor

9.56

9.57

9.57

13.32

23.31

11.21

52.91

61.94

51.94

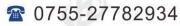
-39.59

-38.63

-40.73

AVG

QP


AVG

4. The test data shows only the worst case Low Channel: 2402 MHz.

0.2175

0.2445

0.2445

4.2 RADIATED EMISSION MEASUREMENT

ñ.,			15		15	
	Test Requirement:	FCC Part15 C Section 15.209				
	Test Method:	ANSI C63.10:2013				
	Test Frequency Range:	9kHz to 25GHz				
	Test site:	Measurement Dista	D		Ð	
	Receiver setup:	Frequency	Detector	RBW	VBW	Value
		9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
2		150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
		30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
			Peak	1MHz	3MHz	Peak
		Above 1GHz	Peak	1MHz	10Hz	Average
	7					

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	
NL - C			

Notes:

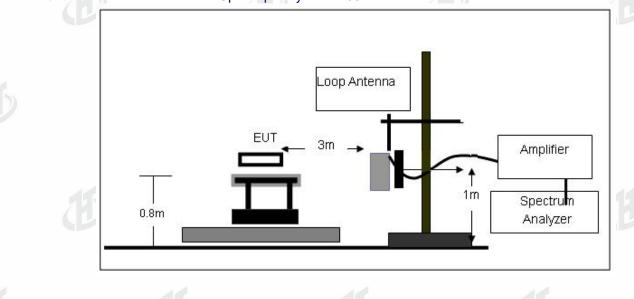
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Project No.: ZHT-240410012E Page 18 of 42

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

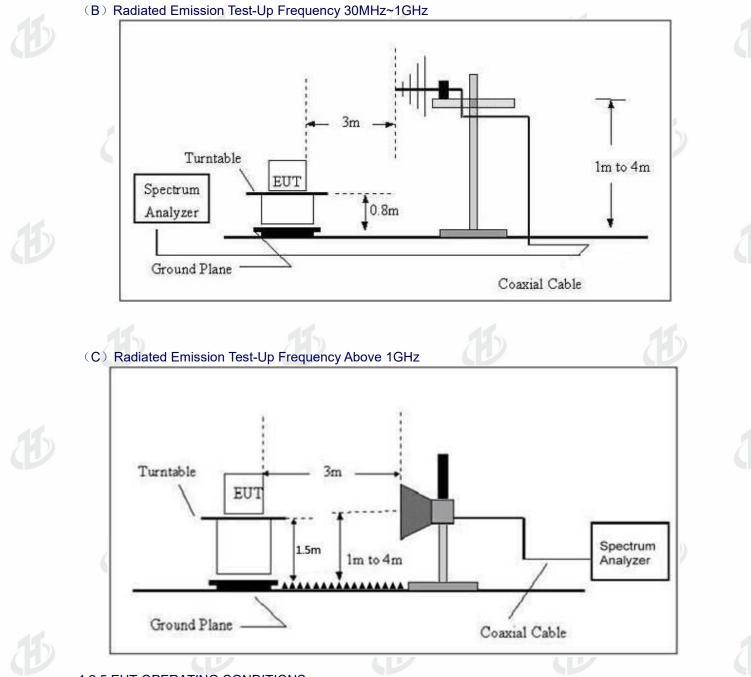
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.


The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

15

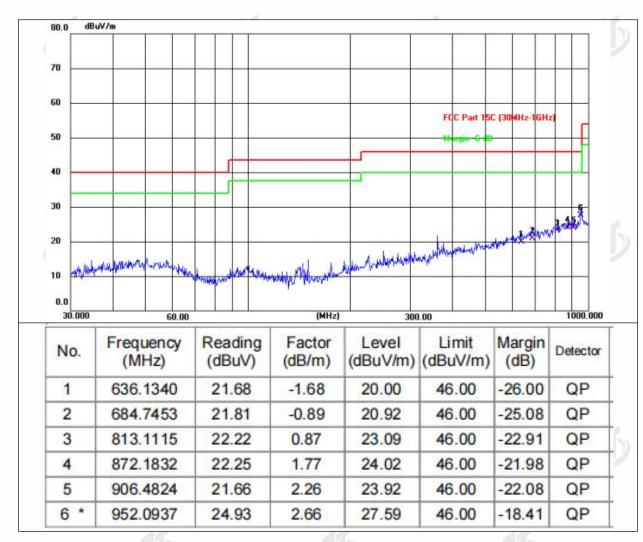
Project No.: ZHT-240410012E Page 19 of 42

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

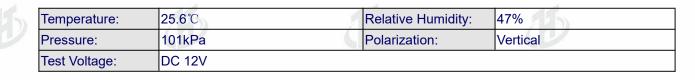


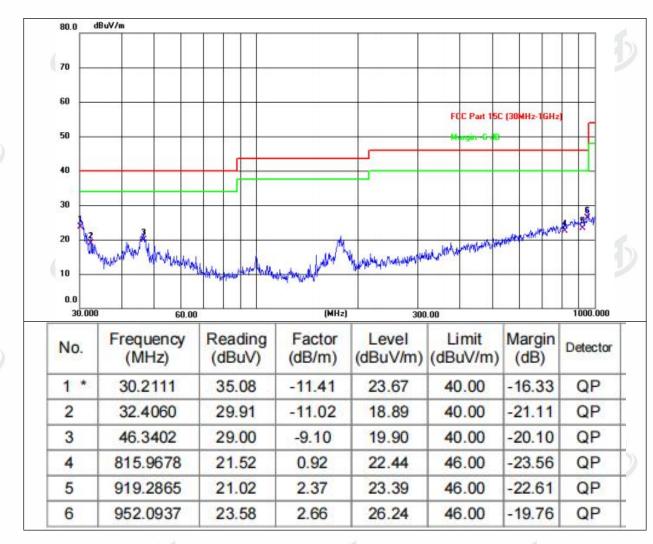
Between 30MHz – 1GHz

Temperature:	25.6℃	Relative Humidity:	47%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 12V		

B

Ð


Ð



Æ

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	1	GHz~25GHz	15		(GFSK		t)	
	Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
					Low Cha	nnel:2402M	Hz			
	V	4804	59.3	30.55	5.77	24.66	59.18	74	-14.82	Pk
	V	4804	41.06	30.55	5.77	24.66	40.94	54	-13.06	AV
	V	7206	56.58	30.33	6.32	24.55	57.12	74	-16.88	Pk
	V	7206	41.87	30.33	6.32	24.55	42.41	54	-11.59	AV
	Н	4804	59.4	30.55	5.77	24.66	59.28	74	-14.72	Pk
	Н	4804	42.12	30.55	5.77	24.66	42	54	-12	AV
) Н	7206	56.91	30.33	6.32	24.55	57.45	74	-16.55	Pk
	Н	7206	41.62	30.33	6.32	24.55	42.16	54	-11.84	AV
				N	liddle Cha	annel:2441	MHz			
	V	4882	55.56	30.55	5.77	24.66	55.44	74	-18.56	Pk
	V	4882	41.79	30.55	5.77	24.66	41.67	54	-12.33	AV
	V	7323	59.77	30.33	6.32	24.55	60.31	74	-13.69	Pk
	V	7323	42.5	30.33	6.32	24.55	43.04	54	-10.96	AV
	Н	4882	59.87	30.55	5.77	24.66	59.75	74	-14.25	Pk
	Н	4882	41.53	30.55	5.77	24.66	41.41	54	-12.59	AV
	Н	7323	56.82	30.33	6.32	24.55	57.36	74	-16.64	Pk
	Н	7323	41.71	30.33	6.32	24.55	42.25	54	-11.75	AV
				I	High Cha	nnel:2480M	lHz			
11	V	4960	59.24	30.55	5.77	24.66	59.12	74	-14.88	Pk
	V	4960	41.39	30.55	5.77	24.66	41.27	54	-12.73	AV
	V	7440	56.68	30.33	6.32	24.55	57.22	74	-16.78	Pk
	V	7440	41.66	30.33	6.32	24.55	42.2	54	-11.8	AV
	Н	4960	58.74	30.55	5.77	24.66	58.62	74	-15.38	Pk
	Н	4960	44.5	30.55	5.77	24.66	44.38	54	-9.62	AV
	Н	7440	58.35	30.33	6.32	24.55	58.89	74	-15.11	Pk
	Н	7440	41.42	30.33	6.32	24.55	41.96	54	-12.04	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

🖂 admin@zht-lab.cn

0755-27782934

5.RADIATED Band EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:		(D)			ワ	
Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement	Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above	Peak	1MHz	3MHz	Peak	
	1GHz	Average	1MHz	3MHz	Average	

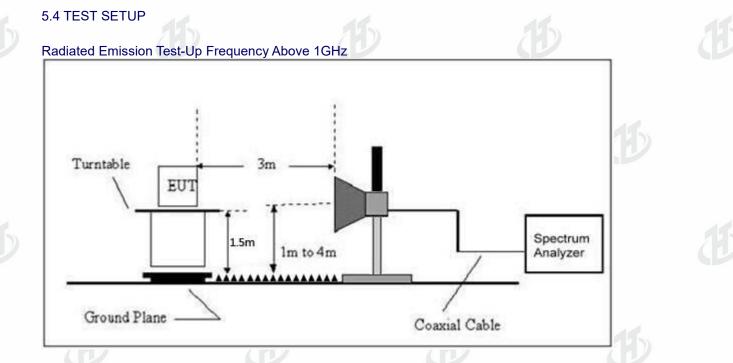
LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE	P	
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE


Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:
- Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
- 5.3 DEVIATION FROM TEST STANDARD No deviation

🖂 admin@zht-lab.cn 🚺 🌐 http://www.zht-lab.cn

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

115	1		Matan	Due	Ochla	A	Fusianian	<u> </u>	Manai	Deter	_
	Polar	Frequenc v	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission level	Limit (dBuV	Margi n	Detec tor	Result
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
		•	•	Low	Channe	el: 2402MHz	7				
	H	2390.00	61.12	30.22	4.85	23.98	59.73	74.00	-14.27	PK	PASS
	H	2390.00	47.38	30.22	4.85	23.98	45.99	54.00	-8.01	AV	PASS
	H	2400.00	59.12	30.22	4.85	23.98	57.73	74.00	-16.27	PK	PASS
	Н	2400.00	46.35	30.22	4.85	23.98	44.96	54.00	-9.04	AV	PASS
	V	2390.00	60.44	30.22	4.85	23.98	59.05	74.00	-14.95	PK	PASS
	V	2390.00	47.38	30.22	4.85	23.98	45.99	54.00	-8.01	AV	PASS
	V	2400.00	62.40	30.22	4.85	23.98	61.01	74.00	-12.99	PK	PASS
GFSK	V	2400.00	46.28	30.22	4.85	23.98	44.89	54.00	-9.11	AV	PASS
GFSK	High Channel: 2480MHz								1		
	Н	2483.50	62.21	30.22	4.85	23.98	60.82	74.00	-13.18	PK	PASS
	Н	2483.50	48.90	30.22	4.85	23.98	47.51	54.00	-6.49	AV	PASS
	Н	2500.00	62.11	30.22	4.85	23.98	60.72	74.00	-13.28	PK	PASS
	Н	2500.00	46.02	30.22	4.85	23.98	44.63	54.00	-9.37	AV	PASS
	V	2483.50	60.62	30.22	4.85	23.98	59.23	74.00	-14.77	PK	PASS
	V	2483.50	48.71	30.22	4.85	23.98	47.32	54.00	-6.68	AV	PASS
	V	2500.00	59.76	30.22	4.85	23.98	58.37	74.00	-15.63	PK	PASS
	V	2500.00	46.02	30.22	4.85	23.98	44.63	54.00	-9.37	AV	PASS

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

http://www.zht-lab.cn 🖂 admin@zht-lab.cn **2** 0755-27782934

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02			

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS			

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation. 6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

🖂 admin@zht-lab.cn

2 0755-27782934

🛛 🌐 http://www.zht-lab.cn

6.6 TEST RESU	TS				
Temperature :	25.6 ℃	Re	elative Humidity :	51%	
Test Mode :	GFSK	Те	est Voltage :	DC 12V	
			46.		
	Frequency	Power Spectral Density (dBm/3kHz)	Limit (8dBm/3kHz)	Result	
	2402 MHz	-18.45	8	PASS	
	2440 MHz	-17.81	8	PASS	
	2480 MHz	-17.6	8	PASS	
	Spectrum Analyzer - Swept SA	Test Graph D NVNT BLE 1M 24	s 102MHz Ant1		B
Center	RF 50 Ω AC Freq 2.402000000 GHz Program	SENSE:INT NO: Wide ↔ Trig: Free Run Gain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	04:50:08 PM Apr 15, 2024 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N	6
10 dB/div Log	Ref Offset 2.03 dB Ref 20.00 dBm	v.	Mk	r1 2.401 959 050 GH: -18.451 dBn	
10.0					
0.00					-
-10.0					11
-30.0		he Albert Line de . R. s. Alberts	an manager of the M	manan	B
-40.0					-
-60.0					
-60.0					
Center	2.4020000 GHz			Span 975.0 kH	z
#Res BI	W 3.0 kHz	#VBW 10 kHz	STATUS	weep 102.9 ms (1001 pts	
B	6	5	B		B

7. CHANNEL BANDWIDTH

() /	
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM	1
	ANALYZER	10

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

🖂 admin@zht-lab.cn

2 0755-27782934

🖉 🌐 http://www.zht-lab.cn

7.6 TEST RESULTS

		y	
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK	Test Voltage :	DC 12V

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result		
Lowest	0.65				
Middle	0.653	>= 500	Pass		
Highest	0.648				

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range	Result			
Coulon		Link	(MHz)				
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS			

8.2 TEST PROCEDURE

- a. 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
 - Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
 Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.3 DEVIATION FROM STANDARD

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1 0755-27782934

8.6 TEST RESULTS

		y	
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK	Test Voltage :	DC 12V

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	-2.45			
Middle	Middle -1.84		Pass	
Highest	-1.66			

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

http://www.zht-lab.cn

🕗 🌐 http://www.zht-lab.cn

10.ANTENNA REQUIREMENT

St	andard requirer	nent:	FCC Part15	C Section 15.2	03 /247(b)(4)		
An be int us 15 (4) dir dir be dir	.203 requirement intentional radiation used with the de entional radiator, e of a standard at .247(b) (4) requir) The conducted of ectional gains that ectional gain great low the stated value ectional gain of the JT Antenna:	tor shall be desig vice. The use o the manufacturer ntenna jack or ele ement: putput power limit at do not exceed ater than 6 dBi ar lues in paragraph	f a permanently a r may design the ectrical connector t specified in para 6 dBi. Except as e used, the condu- ns (b)(1), (b)(2), a	attached antenna unit so that a bro is prohibited. graph (b) of this shown in paragra ucted output pow	or of an antenna ken antenna can section is based o ph (c) of this sect er from the intent	that uses a unique be replaced by the on the use of ant tion, if transmittin ional radiator sha	ue coupling to the ne user, but the ennas with g antennas of all be reduced
	e antenna is Cop	per tube antenna	a, the best case g	ain of the antenn	as is 0dBi, refere	nce to the appen	dix II for details

ZHO	E DNGHAN				Project No.: ZH	T-240410012E Page 42 of 42	
		PHOTO to the appendix					Ð
		to the appendix	II for details.	B			
			**** EN	****			
							B
			_ 115.			.45.	