

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 1 of 255

TEST REPORT

Application No.: KSCR2408001587AT **FCC ID:** 2BDGO-HSFTOOL2

Name of Testing Laboratory

preparing the Report:

Compliance Certification Services (Kunshan) Inc.

Address of Testing Laboratory

preparing the Report:

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan

City, Jiangsu, China.

Applicant: CARVE VIET NAM TECHNOLOGY COMPANY LIMITED

Address of Applicant: No. 5 VSIP II, No. 7 Street, Vietnam- Singapore Industrial park II, Hoa

Phu Ward, Thu Dau Mot City, Binh Duong Province, Vietnam

Manufacturer: CARVE VIET NAM TECHNOLOGY COMPANY LIMITED

Address of Manufacturer: No. 5 VSIP II, No. 7 Street, Vietnam- Singapore Industrial park II, Hoa

Phu Ward, Thu Dau Mot City, Binh Duong Province, Vietnam

Equipment Under Test (EUT):

EUT Name: Pocket Thermal Camera

Model No.: P2W

Standard(s): 47 CFR Part 15, Subpart E 15.407

Date of Receipt: 2024-08-21

Date of Test: 2024-10-15 to 2024-10-23

Date of Issue: 2024-10-25

Test Result: Pass*

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 2 of 255

Revision Record				
Version Description Date Remark				
00	Original	2024-10-25	/	

Authorized for issue by:		
Tested By	Ceril Lin	
	Eric_Liu/Project Engineer	
Approved By	Terry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 3 of 255

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15,	N/A	47 CFR Part 15, Subpart C 15.203	Pass	
Transmission in the Absence of Data	Subpart E 15.407	N/A	47 CFR Part 15, Subpart E 15.407 (c)	Pass	

Item	Standard	Method	Requirement	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)		ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207 & Subpart E 15.407 b(9)	Pass
Maximum Conducted output power		KDB 789033 D02 II E	47 CFR Part 15, Subpart E 15.407 (a)	Pass
Radiated Emissions (Below 1GHz)		KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)	Pass
Radiated Emissions (Above 1GHz)		KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)	Pass
Channel Move Time		KDB 905462 D02 Section 7.8.3	KDB 905462 D02 Section 5.1	Pass
Duty Cycle		KDB 789033 D02 II B 1	KDB 789033 D02 II B 1	Pass
99% Bandwidth		KDB 789033 D02 II D	N/A	Pass
26dB Emission bandwidth		KDB 789033 D02 II C 1	47 CFR Part 15, Subpart E 15.407 (a)	Pass
Minimum 6 dB bandwidth (5.725- 5.85 GHz band)		KDB 789033 D02 II C 2	47 CFR Part 15, Subpart E 15.407 (e)	Pass
Peak Power spectrum density		KDB 789033 D02 II F	47 CFR Part 15, Subpart E 15.407 (a)	Pass
Frequency Stability		ANSI C63.10 (2013) Section 6.8	47 CFR Part 15, Subpart E 15.407 (g)	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 4 of 255

3 Contents

		P	'age
1	COV	ER PAGE	1
2	Test	Summary	3
3	### Contents ### C		
4	Gene	eral Information	5
	4.2		
	_		
		·	
_	_		
5	Equi	pment List	9
6	Radi	o Spectrum Technical Requirement	10
	6.1	Antenna Requirement	10
	6.2	Transmission in the Absence of Data	11
7	Radi	o Spectrum Matter Test Results	12
	7.1	Conducted Emissions at AC Power Line (150kHz-30MHz)	12
	7.9		
	7.10		
		· · · · · · · · · · · · · · · · · · ·	
	7.12	Frequency Stability	138
8	Test	Setup Photo	139
9	EUT	Constructional Details (EUT Photos)	139
1	0 Appe	endix	140
•	o whh	/IMIA	14V

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 5 of 255

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 5V by Battery
	Model: HM-3821DC
	Rated Voltage: 3.85V
	Rated Capacity: 2100mAh/8.085Wh
Operation Frequency/Number of channels (20MHz):	U-NII-1: 5180-5240MHz (4 Channels); U-NII-2A: 5260-5320MHz (4 Channels); U-NII-2C: 5500-5700MHz (11 Channels); U-NII-3: 5745-5825MHz (5 Channels)
Operation Frequency/Number of channels/(40MHz):	U-NII-1: 5190-5230MHz (2 Channels); U-NII-2A: 5270-5310MHz (2 Channels); U-NII-2C: 5510-5670MHz (5 Channels); U-NII-3: 5755-5795MHz (2 Channels)
Operation Frequency/Number of channels (80MHz):	U-NII-1: 5210MHz (1 Channel); U-NII-2A: 5290MHz (1 Channels); U-NII-2C: 5530-5610MHz (2 Channels); U-NII-3: 5775MHz (1 Channel)
Modulation Type:	802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Channel Spacing:	802.11a/n/ac 20: 20MHz; 802.11n/ac40: 40MHz; 802.11ac80: 80MHz
DFS Function:	Slave without Radar detection
TPC Function:	Without TPC function
Antenna Type:	FPC Antenna
Antenna Gain:	Band1: -0.40dBi, Band2: 1.55dBi, Band3: 2.54dBi, Band4: 2.51dBi

4.2 Power level setting using in test

Channel	802.11a	802.	11ac(VHT20)
36	16	17	
40	16		17
48	16		17
52	16		16
60	16		16
64	15		16
100	13		14
116	13		13
140	15	15	
149	15	15	
157	16	16	
165	16		17
Channel	802.11ac40(VHT40)	Channel	802.11ac(VHT80)
38	13	42	11
46	16	58 11	
54	16	106	13
62	13	122	13
102	13	155	15

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 6 of 255

110	13	
134	14	
151	15	
159	16	

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
AC Adapter	DVE	DSA-12G-12FEU	/
Notebook	LENOVO	K27	EB24537645

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 7 of 255

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	8.4 x 10 ⁻⁸		
2	Timeout	2s		
3	Duty Cycle	0.37%		
4	Occupied Bandwidth	3%		
5	RF Conducted Power	0.6dB		
6	RF Power Density	2.9dB		
7	Conducted Spurious Emissions	0.75dB		
8	RF Radiated Power	5.2dB (Below 1GHz)		
0	KF Kadiated Fower	5.9dB (Above 1GHz)		
		4.2dB (Below 30MHz)		
9	Padiated Churique Emission Test	4.5dB (30MHz-1GHz)		
9	Radiated Spurious Emission Test —	5.1dB (1GHz-18GHz)		
		5.4dB (Above 18GHz)		
10	Temperature Test	1°C		
11	Humidity Test	3%		
12	Supply Voltages	1.5%		
13	Time 3%			
Noto: T	ha magaurament uncertainty represents an	avanded upportainty avaraged at		

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 8 of 255

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

- 1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).
- 2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).
- 3. Sample source: sent by customer.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 9 of 255

5 Equipment List

Item	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
Conducted I	Emission at Mains Terminal	s		•		
1	EMI Test Receive	R&S	ESCI	KS301101	01/15/2024	01/14/2025
2	LISN	R&S	ENV216	KS301197	01/15/2024	01/14/2025
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/15/2024	01/14/2025
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	01/15/2024	01/14/2025
5	CE test Cable	Thermax	/	CZ301102	01/15/2024	01/14/2025
6	Test Software	ESE	E3_V 6.111221a	/	N.C.R	N.C.R
RF Conduct	ed Test					
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/01/2024	07/31/2025
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/01/2024	07/31/2025
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2024	01/14/2025
4	Signal Generator	R&S	SMBV100B	KSEM032	03/19/2024	03/18/2025
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/02/2024	08/01/2025
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/01/2024	07/31/2025
7	Signal Generator	Agilent	E8257C	KS301066	08/06/2024	08/05/2025
8	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/01/2024	07/31/2025
9	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/19/2024	03/18/2025
10	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/12/2024	08/11/2025
11	Switcher	TST	FY562	KUS2001M001-4	01/15/2024	01/14/2025
12	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	01/15/2024	01/14/2025
13	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/26/2024	08/25/2025
14	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/19/2024	03/18/2025
15	Software	BST	TST-PASS	/	NCR	NCR
RF Radiated	Test		<u> </u>			
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/06/2024	08/05/2025
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/19/2024	03/18/2025
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E006	03/19/2024	03/18/2025
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	03/23/2024	08/22/2026
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	04/07/2023	04/06/2025
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/14/2025
11	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/12/2024	08/11/2025
12	RE Test Cable	REBES MICROWAVE	/	CZ301097	08/12/2024	08/11/2025
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/21/2024	03/20/2025
14	Software	Faratronic	EZ_EMC-v 3A1	/	NCR	NCR
15	Software	ESE	E3_V 6.111221a	/	NCR	NCR

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 10 of 255

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is FPC Antenna and no consideration of replacement. The best case gain of the Antenna is: Band1: -0.40dBi, Band2: 1.55dBi, Band3: 2.54dBi, Band4: 2.51dBi.

Antenna location: Refer to internal photo.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 11 of 255

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart E 15.407 (c)

6.2.2 Conclusion

Conclusion

Standard Requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

EUT Details:

WIFI chip support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 12 of 255

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 & Subpart E 15.407 b(9)

Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Frequency of emission(MHz)	Conducted limit(dB μ V)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30 60 50				
*Decreases with the logarithm of the frequency.				

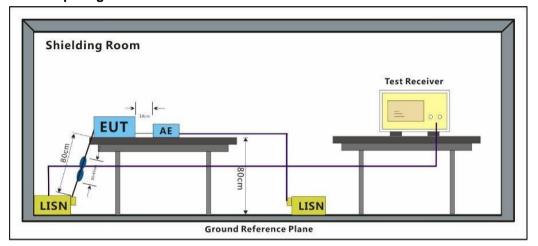
7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.1.2 Test Mode Description

7.1.2 Test N	7.1.2 Test Mode Description					
Pre-scan / Final test	Mode Code	Description				
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Pre-scan	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Pre-scan	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Pre-scan	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

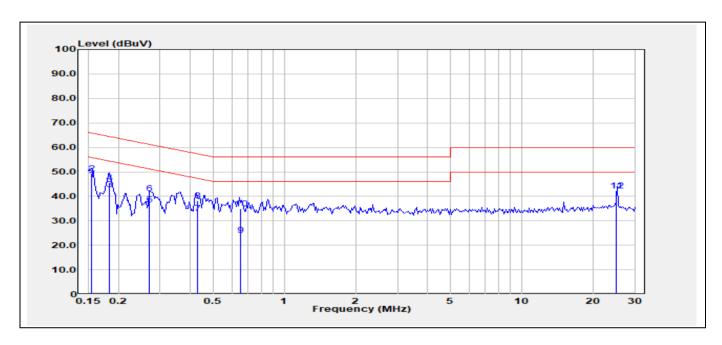
Page: 13 of 255

7.1.3 Test Setup Diagram

7.1.4 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: Level=Read Level+ Cable Loss+ LISN Factor



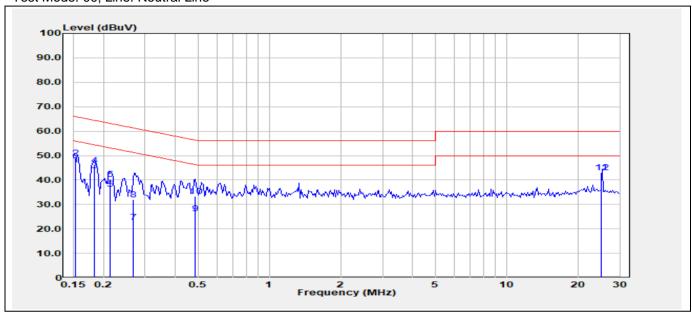
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 14 of 255

Test Mode: 00; Line: Live line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1534	26.71	20.24	46.95	55.81	-8.86	Average
2	0.1534	29.19	20.24	49.43	65.81	-16.38	QP
3	0.1836	22.71	20.11	42.82	54.32	-11.50	Average
4	0.1836	25.34	20.11	45.45	64.32	-18.87	QP
5	0.2689	16.61	20.07	36.68	51.15	-14.47	Average
6	0.2689	21.00	20.07	41.07	61.15	-20.08	QP
7	0.4295	12.96	20.05	33.01	47.26	-14.25	Average
8	0.4295	18.23	20.05	38.28	57.26	-18.98	QP
9	0.6519	4.43	19.82	24.25	46.00	-21.75	Average
10	0.6519	15.04	19.82	34.86	56.00	-21.14	QP
11	25.0720	22.51	19.77	42.28	50.00	-7.72	Average
12	25.0720	22.61	19.77	42.38	60.00	-17.62	QP



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 15 of 255

Test Mode: 00; Line: Neutral Line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1530	26.27	20.18	46.45	55.84	-9.39	Average
2	0.1530	28.79	20.18	48.97	65.84	-16.87	QP
3	0.1832	23.89	20.14	44.03	54.34	-10.31	Average
4	0.1832	25.83	20.14	45.97	64.34	-18.37	QP
5	0.2133	16.13	20.11	36.24	53.08	-16.84	Average
6	0.2133	20.17	20.11	40.28	63.08	-22.80	QP
7	0.2670	2.54	20.09	22.63	51.21	-28.58	Average
8	0.2670	11.98	20.09	32.07	61.21	-29.14	QP
9	0.4852	6.40	19.96	26.36	46.25	-19.89	Average
10	0.4852	13.34	19.96	33.30	56.25	-22.95	QP
11	25.0720	23.24	19.81	43.05	50.00	-6.95	Average
12	25.0720	23.33	19.81	43.14	60.00	-16.86	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 16 of 255

7.2 Maximum Conducted output power

Test Requirement 47 CFR Part 15, Subpart E 15.407 (a)

Test Method: KDB 789033 D02 II E

Limit:

Frequen	cy band(MHz)	Limit		
5150-	E2E0	≤1W(30dBm) for master device		
5150-	5250	≤250mW(24dBm) for client device		
5250-	5350	≤250mW(24dBm) or 11dBm+10logB*		
5470-	5725	≤250mW(24dBm) or 11dBm+10logB*		
5725-	5850	≤1W(30dBm)		
Remark:	* Where B is the	e 26dB emission bandwidth in MHz.		
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.			

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

1.2.2 TESLIV	7.2.2 Test Mode Description				
Pre-scan / Final test	Mode Code	Description			
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			

CCSEM-TRF-001 Rev. 02 Sep 01, 2023 Report No.: KSCR240800158703

Page: 17 of 255

7.2.3 Test Setup Diagram

7.2.4 Measurement Procedure and Data

Note: Since the verify power the same operating range bandwidth and smaller power can be covered by the higher power.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 18 of 255

7.3 Radiated Emissions (Below 1GHz)

Test Requirement 47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)

Test Method: KDB 789033 D02 II G

Measurement Distance: 3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
960-1000	500	3

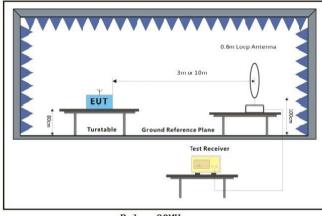
7.3.1 E.U.T. Operation

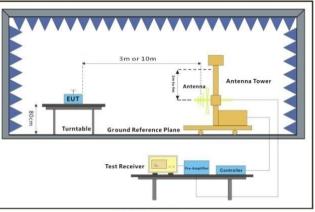
Operating Environment:

Temperature: 23.3 °C Humidity: 45.2 % RH Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

7.3.2 Test IV	7.3.2 Test Mode Description				
Pre-scan / Final test	Mode Code	Description			
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Pre-scan	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Pre-scan	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Pre-scan	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			




CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 19 of 255

7.3.3 Test Setup Diagram

Below 30MHz

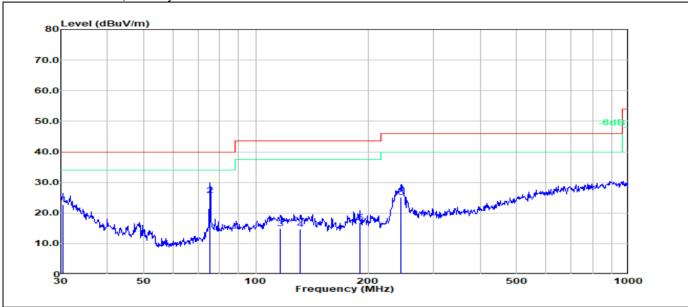
30MHz-1GHz

7.3.4 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.
- 3. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

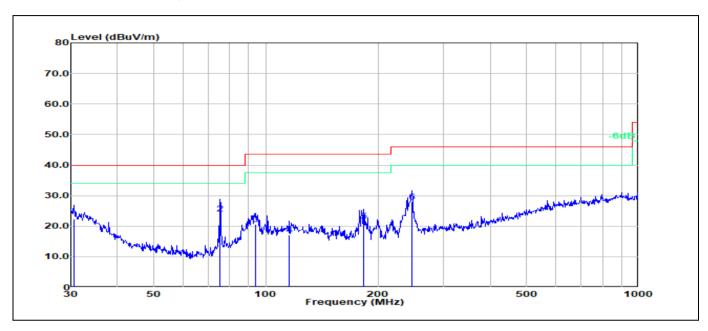


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 20 of 255

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.4240	3.61	19.08	22.69	40.00	-17.31	100	360	QP
2	75.4460	16.51	9.20	25.71	40.00	-14.29	100	332	QP
3	116.1320	1.62	13.41	15.03	43.50	-28.47	100	357	QP
4	131.7580	0.13	14.51	14.64	43.50	-28.86	100	106	QP
5	189.7390	5.01	11.81	16.82	43.50	-26.68	100	313	QP
6	245.0900	11.43	13.68	25.11	46.00	-20.89	100	0	QP



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 21 of 255

Test Mode: 00; Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.5310	3.37	19.00	22.37	40.00	-17.63	100	360	QP
2	75.4460	14.96	9.20	24.16	40.00	-15.84	100	283	QP
3	93.7680	8.36	12.19	20.55	43.50	-22.95	100	151	QP
4	115.3210	3.29	13.75	17.04	43.50	-26.46	100	356	QP
5	183.2010	9.08	12.50	21.58	43.50	-21.92	100	163	QP
6	246.8150	14.12	13.84	27.96	46.00	-18.04	100	330	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 22 of 255

7.4 Radiated Emissions (Above 1GHz)

Test Requirement 47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)

Test Method: KDB 789033 D02 II G

Measurement Distance: 3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
Above 1GHz	500	3

- *(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23.3 °C Humidity: 45.2 % RH Atmospheric Pressure: 1010 mbar

7.4.2 Test Mode Description

	7.4.2 Test mode besomption				
Pre-scan / Final test	Mode Code	Description			
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.			
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and			

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 23 of 255

		found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

Above 1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023 Report No.: KSCR240800158703

Page: 24 of 255

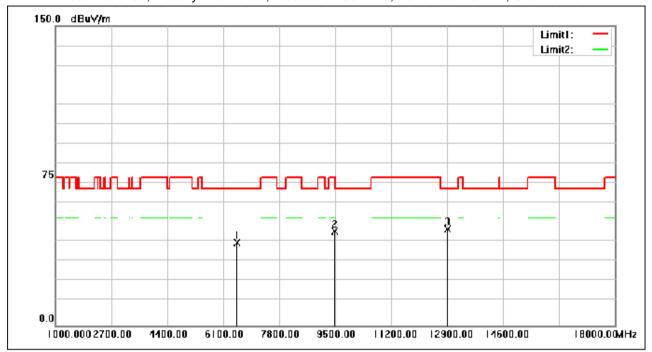
7.4.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 5. For devices with multiple operating modes, measurements on the middle channel is used to determine the worst-case mode(s). Only the worst case mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum) is recorded in the test report.



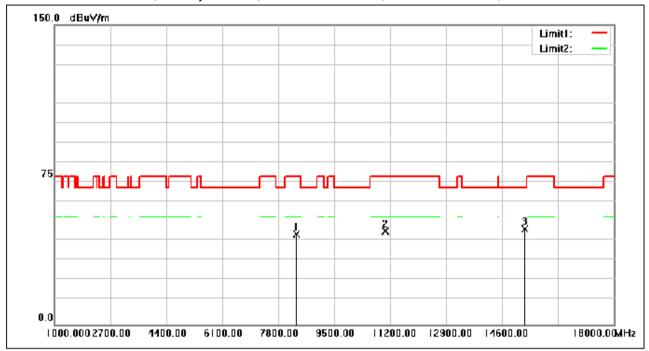
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 25 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6537.750	54.29	-13.03	41.26	68.30	-27.04	peak
2	9486.400	55.06	-7.98	47.08	74.00	-26.92	peak
3	12907.650	54.57	-6.30	48.27	68.30	-20.03	peak



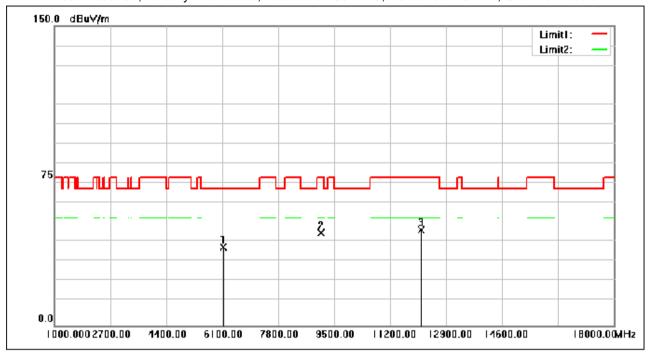
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 26 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	8377.150	55.02	-9.96	45.06	74.00	-28.94	peak
2	11058.050	53.38	-6.71	46.67	74.00	-27.33	peak
3	15298.700	52.59	-4.83	47.76	68.30	-20.54	peak



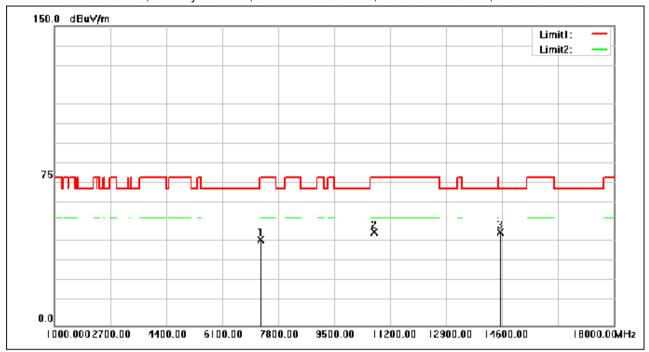
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 27 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6147.600	54.43	-15.07	39.36	68.30	-28.94	peak
2	9113.250	55.14	-8.68	46.46	74.00	-27.54	peak
3	12143.500	53.82	-5.95	47.87	74.00	-26.13	peak



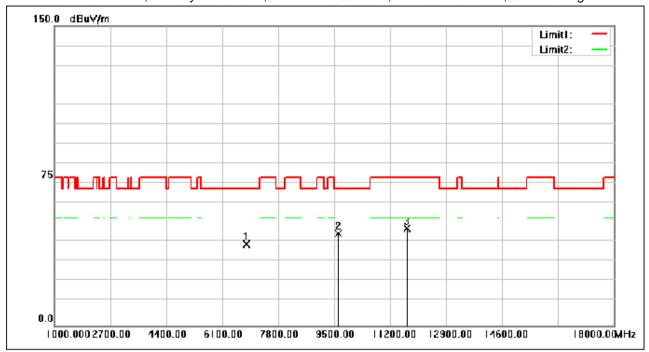
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 28 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7286.600	54.39	-11.44	42.95	74.00	-31.05	peak
2	10716.350	53.72	-6.92	46.80	74.00	-27.20	peak
3	14532.850	52.49	-5.89	46.60	68.30	-21.70	peak



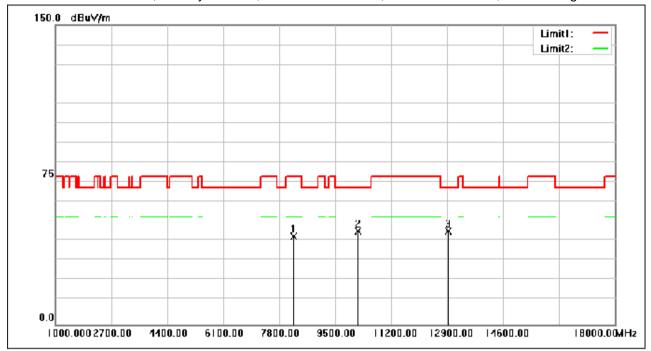
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 29 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6838.650	52.67	-11.85	40.82	68.30	-27.48	peak
2	9635.150	53.53	-7.70	45.83	68.30	-22.47	peak
3	11711.700	54.65	-6.19	48.46	74.00	-25.54	peak



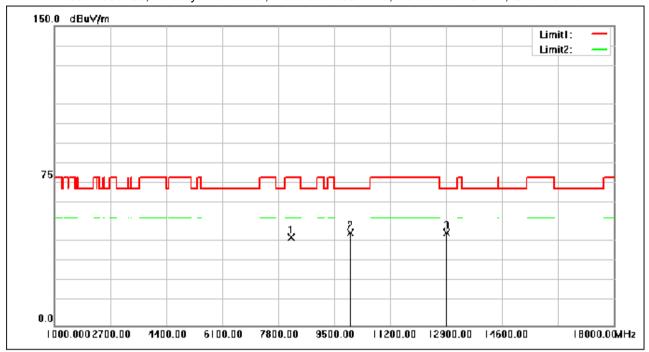
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 30 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	8246.250	54.24	-10.18	44.06	74.00	-29.94	peak
2	10194.450	54.00	-7.21	46.79	68.30	-21.51	peak
3	12945.050	53.11	-6.32	46.79	68.30	-21.51	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 31 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	8206.300	54.40	-10.24	44.16	74.00	-29.84	peak
2	9998.950	53.48	-7.33	46.15	68.30	-22.15	peak
3	12911.050	52.68	-6.30	46.38	68.30	-21.92	peak



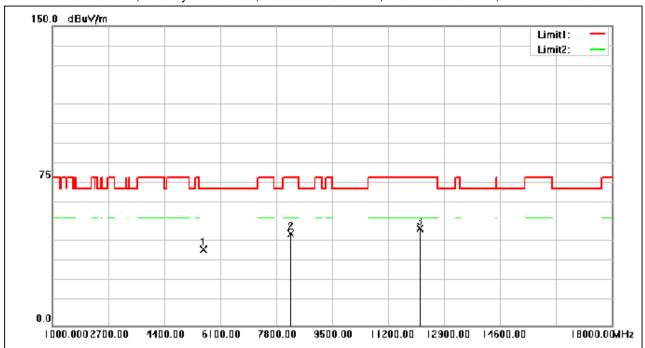
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 32 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6068.550	54.20	-15.45	38.75	68.30	-29.55	peak
2	8472.350	54.71	-9.80	44.91	74.00	-29.09	peak
3	11387.000	52.90	-6.45	46.45	74.00	-27.55	peak



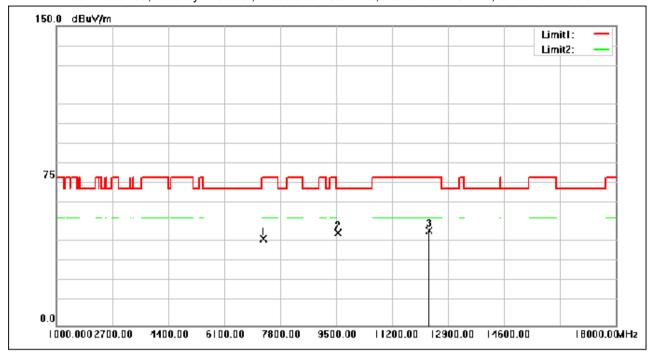
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 33 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5604.450	55.44	-17.42	38.02	68.30	-30.28	peak
2	8252.200	56.28	-10.16	46.12	74.00	-27.88	peak
3	12178.350	54.45	-5.97	48.48	74.00	-25.52	peak



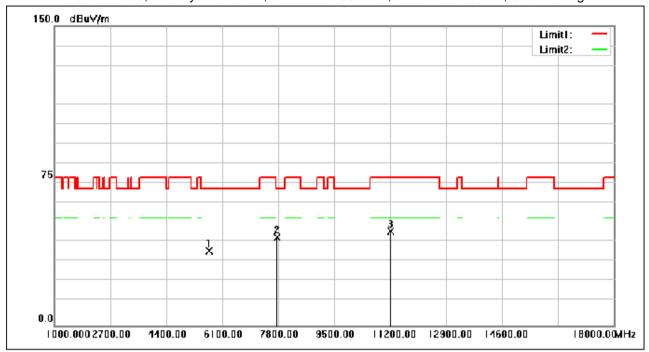
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 34 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7294.250	54.78	-11.44	43.34	74.00	-30.66	peak
2	9566.300	54.28	-7.83	46.45	68.30	-21.85	peak
3	12329.650	53.45	-6.03	47.42	74.00	-26.58	peak



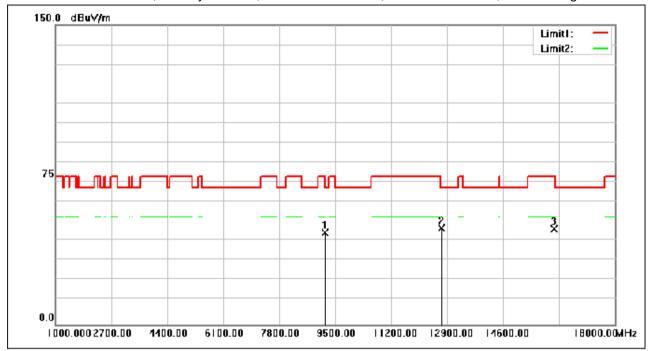
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 35 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5692.000	54.34	-17.05	37.29	68.30	-31.01	peak
2	7766.850	55.03	-10.90	44.13	68.30	-24.17	peak
3	11217.000	53.52	-6.58	46.94	74.00	-27.06	peak



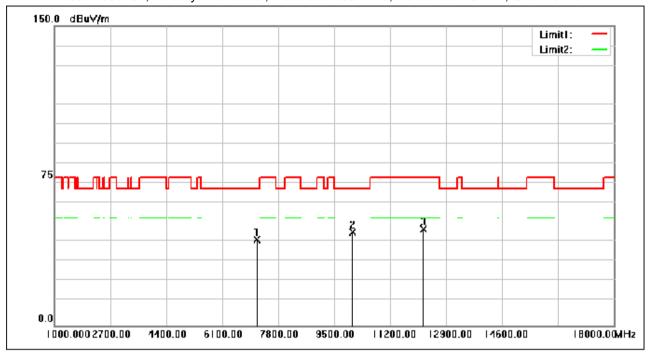
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 36 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	9207.600	54.35	-8.51	45.84	68.30	-22.46	peak
2	12736.800	54.38	-6.22	48.16	68.30	-20.14	peak
3	16163.150	51.73	-3.95	47.78	74.00	-26.22	peak



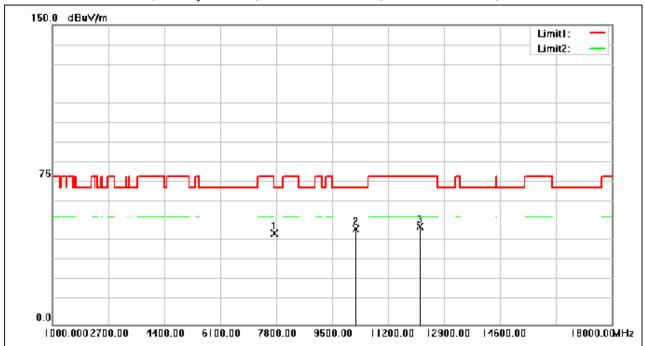
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 37 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7154.000	54.26	-11.50	42.76	68.30	-25.54	peak
2	10070.350	54.02	-7.29	46.73	68.30	-21.57	peak
3	12208.950	54.00	-5.98	48.02	74.00	-25.98	peak



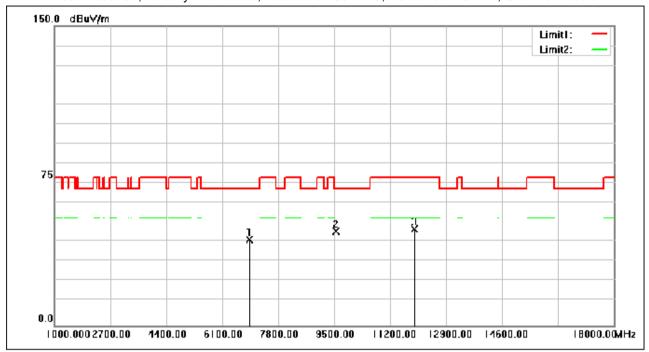
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 38 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7752.400	56.44	-10.93	45.51	68.30	-22.79	peak
2	10224.200	55.01	-7.20	47.81	68.30	-20.49	peak
3	12169.000	54.92	-5.97	48.95	74.00	-25.05	peak



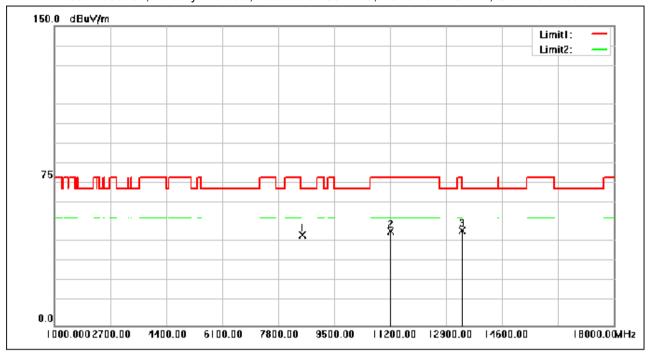
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 39 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6920.250	54.72	-11.71	43.01	68.30	-25.29	peak
2	9562.900	54.93	-7.84	47.09	68.30	-21.21	peak
3	11938.650	54.32	-5.99	48.33	74.00	-25.67	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 40 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	8533.550	54.72	-9.70	45.02	68.30	-23.28	peak
2	11224.650	53.76	-6.59	47.17	74.00	-26.83	peak
3	13406.600	53.94	-6.32	47.62	68.30	-20.68	peak



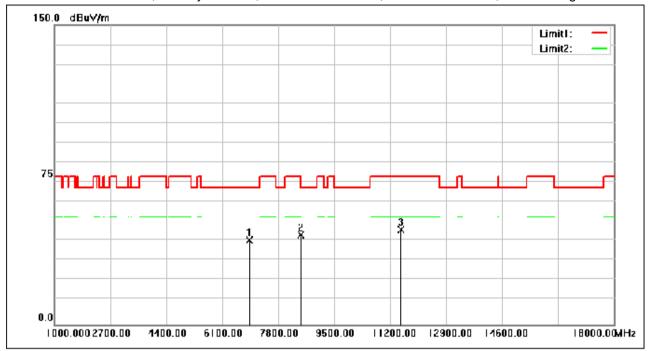
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 41 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7146.350	53.65	-11.50	42.15	68.30	-26.15	peak
2	9582.450	54.03	-7.80	46.23	68.30	-22.07	peak
3	12155.400	54.35	-5.96	48.39	74.00	-25.61	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 42 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6925.350	54.03	-11.69	42.34	68.30	-25.96	peak
2	8497.850	54.46	-9.76	44.70	74.00	-29.30	peak
3	11531.500	53.66	-6.34	47.32	74.00	-26.68	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 43 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7448.950	52.35	-11.33	41.02	74.00	-32.98	peak
2	11781.400	52.83	-6.13	46.70	74.00	-27.30	peak
3	15194.150	49.48	-4.92	44.56	68.30	-23.74	peak

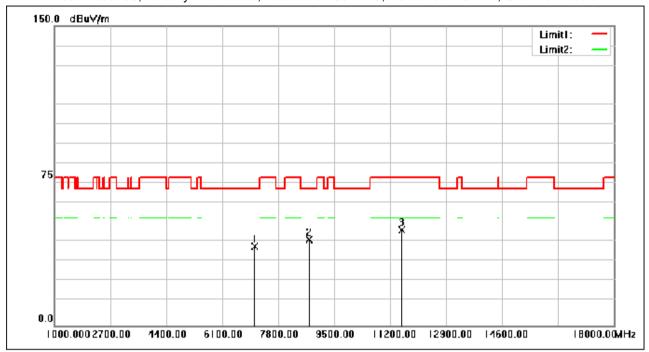
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 44 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6408.550	50.12	-13.70	36.42	68.30	-31.88	peak
2	8664.450	51.32	-9.48	41.84	68.30	-26.46	peak
3	11263.750	50.81	-6.55	44.26	74.00	-29.74	peak



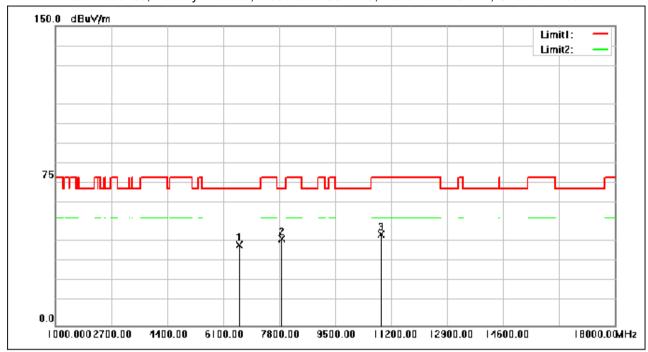
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 45 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7089.400	51.23	-11.53	39.70	68.30	-28.60	peak
2	8740.950	52.21	-9.36	42.85	68.30	-25.45	peak
3	11560.400	53.94	-6.31	47.63	74.00	-26.37	peak



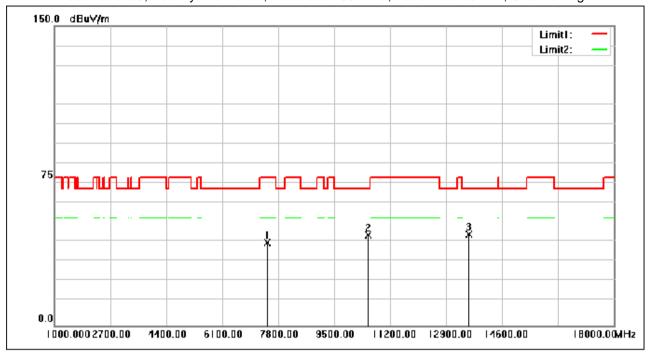
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 46 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	6605.750	52.93	-12.67	40.26	68.30	-28.04	peak
2	7893.500	54.03	-10.74	43.29	68.30	-25.01	peak
3	10898.250	52.42	-6.81	45.61	74.00	-28.39	peak



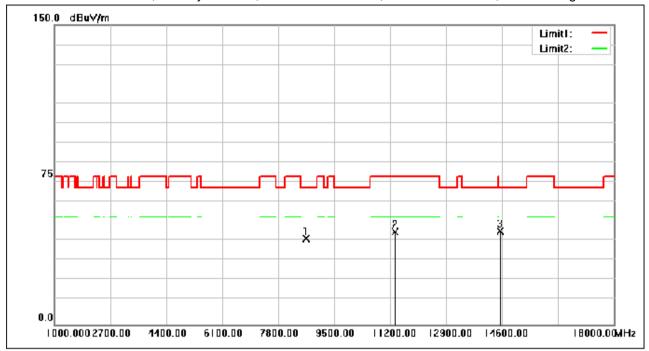
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 47 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	7488.050	52.78	-11.28	41.50	74.00	-32.50	peak
2	10553.150	52.05	-7.01	45.04	68.30	-23.26	peak
3	13610.600	51.94	-6.36	45.58	68.30	-22.72	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 48 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	8663.600	52.29	-9.48	42.81	68.30	-25.49	peak
2	11353.850	52.67	-6.48	46.19	74.00	-27.81	peak
3	14549.000	52.44	-5.86	46.58	68.30	-21.72	peak

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 49 of 255

7.5 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)

Test Method: KDB 789033 D02 II G

Measurement Distance: 3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

^{*(1)} For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

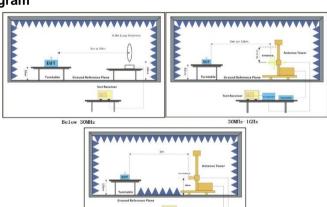
7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23.3 °C Humidity: 45.2 % RH Atmospheric Pressure: 1010 mbar

7.5.2 Test Mode Description

Pre-scan /	Mode	Description	
Final test	Code	Description	


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 50 of 255

Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.

7.5.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Page: 51 of 255

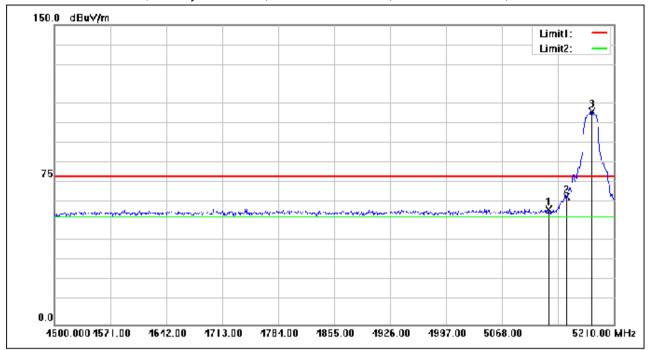
Report No.: KSCR240800158703

7.5.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor



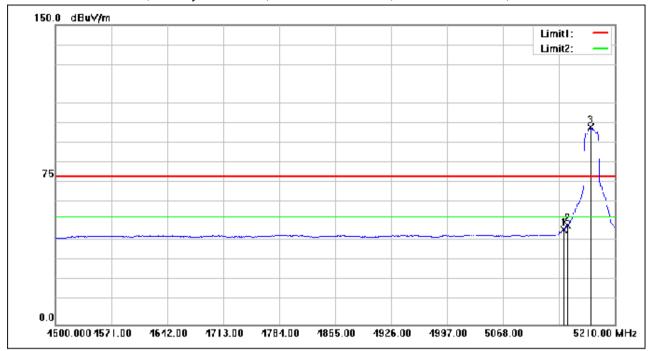
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 52 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5126.930	75.76	-18.25	57.51	74.00	-16.49	peak
2	5150.000	82.16	-18.21	63.95	74.00	-10.05	peak
3	5182.310	125.00	-18.17	106.83	74.00	32.83	peak



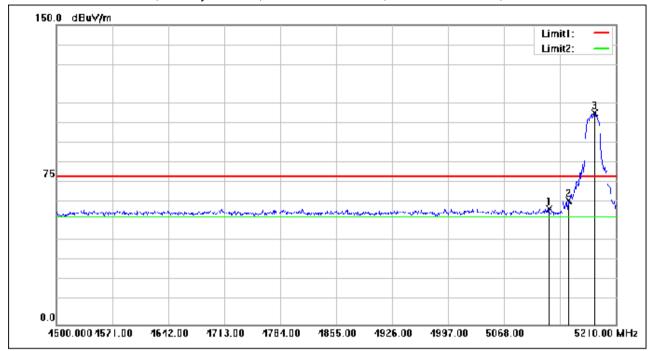
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 53 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.390	65.52	-18.22	47.30	54.00	-6.70	AVG
2	5150.000	68.06	-18.21	49.85	54.00	-4.15	AVG
3	5179.470	116.87	-18.17	98.70	54.00	44.70	AVG



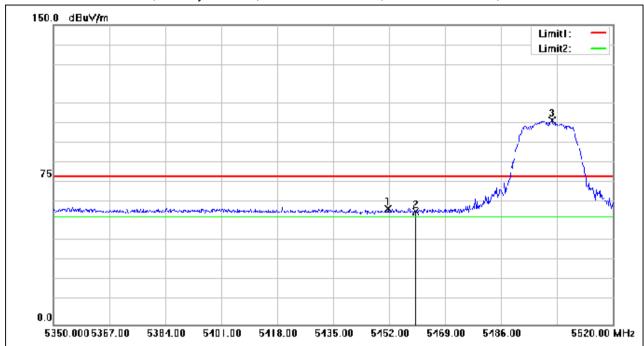
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 54 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5124.800	76.24	-18.25	57.99	74.00	-16.01	peak
2	5150.000	80.24	-18.21	62.03	74.00	-11.97	peak
3	5183.020	123.93	-18.16	105.77	74.00	31.77	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 55 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5451.660	75.60	-17.76	57.84	74.00	-16.16	peak
2	5460.000	74.34	-17.76	56.58	74.00	-17.42	peak
3	5501.470	119.77	-17.70	102.07	74.00	28.07	peak



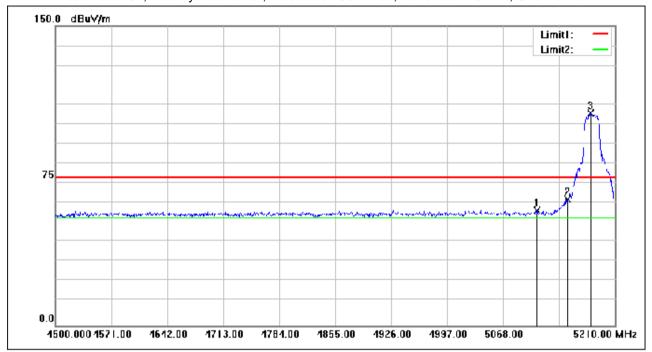
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 56 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5137.580	63.22	-18.23	44.99	54.00	-9.01	AVG
2	5150.000	66.69	-18.21	48.48	54.00	-5.52	AVG
3	5181.600	114.82	-18.17	96.65	54.00	42.65	AVG



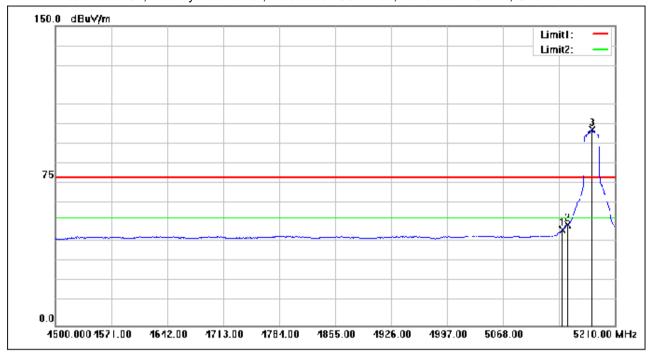
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 57 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5110.600	76.00	-18.27	57.73	74.00	-16.27	peak
2	5150.000	81.24	-18.21	63.03	74.00	-10.97	peak
3	5178.760	124.44	-18.17	106.27	74.00	32.27	peak



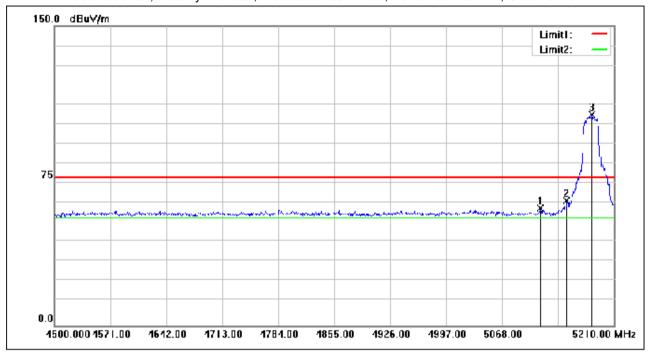
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 58 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.260	66.13	-18.22	47.91	54.00	-6.09	AVG
2	5150.000	68.83	-18.21	50.62	54.00	-3.38	AVG
3	5180.890	116.40	-18.17	98.23	54.00	44.23	AVG



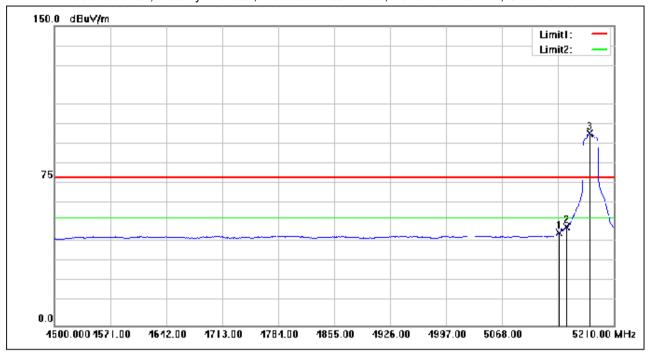
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 59 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5116.990	76.84	-18.26	58.58	74.00	-15.42	peak
2	5150.000	80.65	-18.21	62.44	74.00	-11.56	peak
3	5182.310	123.75	-18.17	105.58	74.00	31.58	peak



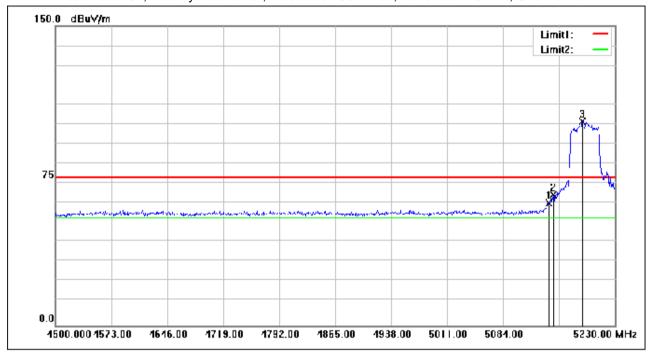
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 60 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5140.420	64.47	-18.23	46.24	54.00	-7.76	AVG
2	5150.000	67.69	-18.21	49.48	54.00	-4.52	AVG
3	5179.470	114.45	-18.17	96.28	54.00	42.28	AVG



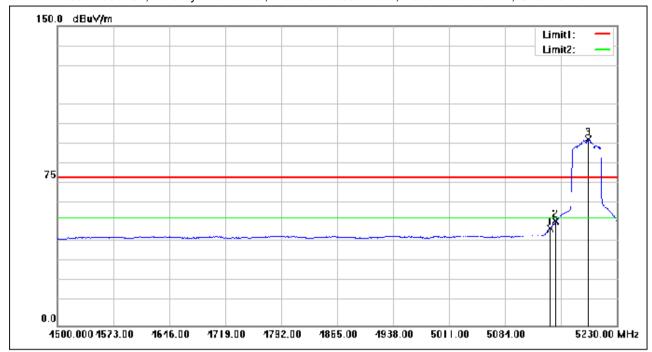
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 61 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.860	79.57	-18.22	61.35	74.00	-12.65	peak
2	5150.000	83.49	-18.21	65.28	74.00	-8.72	peak
3	5187.660	120.38	-18.16	102.22	74.00	28.22	peak



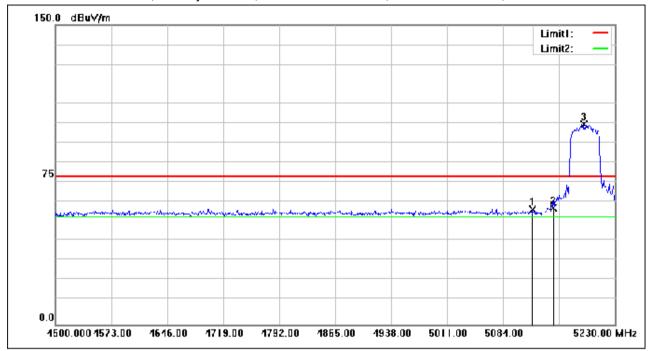
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 62 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.130	66.75	-18.22	48.53	54.00	-5.47	AVG
2	5150.000	70.34	-18.21	52.13	54.00	-1.87	AVG
3	5192.040	111.40	-18.15	93.25	54.00	39.25	AVG



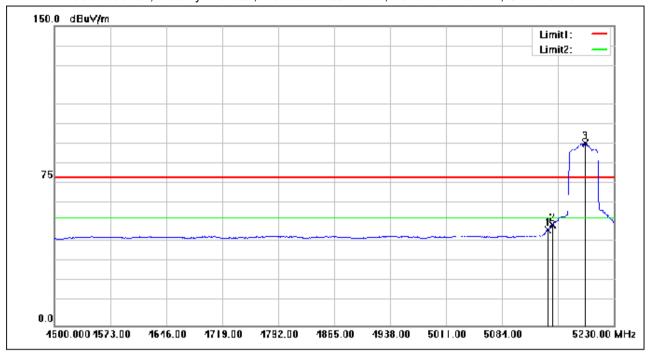
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 63 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5121.960	75.94	-18.25	57.69	74.00	-16.31	peak
2	5150.000	76.63	-18.21	58.42	74.00	-15.58	peak
3	5189.120	118.56	-18.16	100.40	74.00	26.40	peak



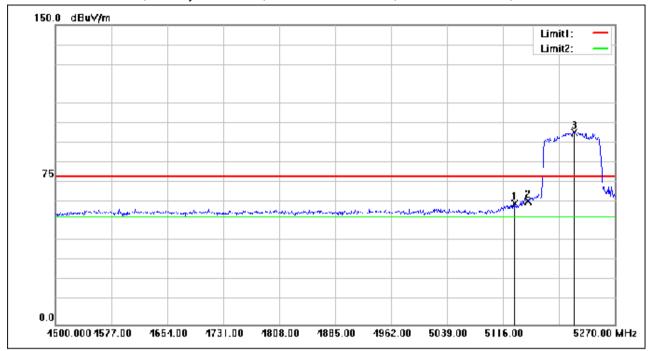
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 64 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	5143.860	65.87	-18.22	47.65	54.00	-6.35	AVG
2	5150.000	68.72	-18.21	50.51	54.00	-3.49	AVG
3	5192.040	109.42	-18.15	91.27	54.00	37.27	AVG



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 65 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5131.400	78.72	-18.23	60.49	74.00	-13.51	peak
2	5150.000	80.01	-18.21	61.80	74.00	-12.20	peak
3	5213.790	114.42	-18.11	96.31	74.00	22.31	peak



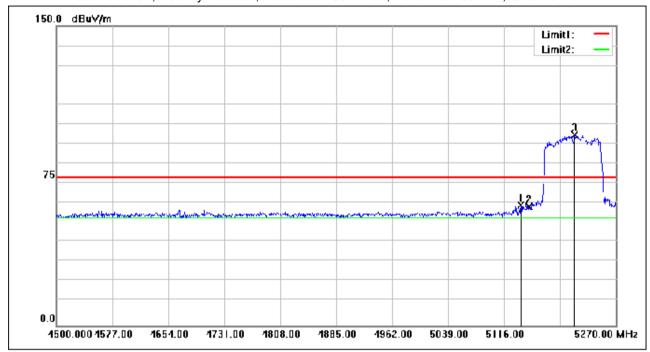
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 66 of 255

Test Mode: 02; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5142.950	68.84	-18.22	50.62	54.00	-3.38	AVG
2	5150.000	69.79	-18.21	51.58	54.00	-2.42	AVG
3	5211.480	104.92	-18.12	86.80	54.00	32.80	AVG



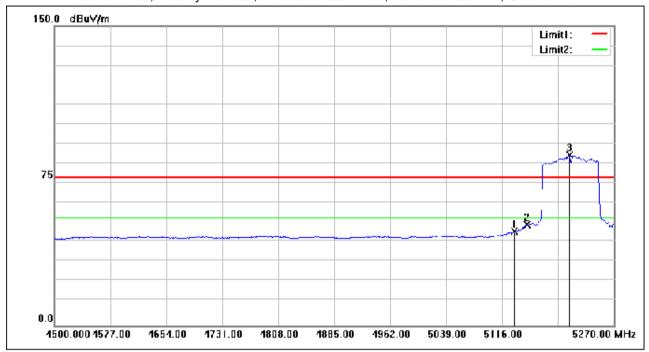
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 67 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5139.100	78.28	-18.23	60.05	74.00	-13.95	peak
2	5150.000	77.59	-18.21	59.38	74.00	-14.62	peak
3	5213.020	113.65	-18.12	95.53	74.00	21.53	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 68 of 255

Test Mode: 02; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5132.940	65.29	-18.23	47.06	54.00	-6.94	AVG
2	5150.000	68.57	-18.21	50.36	54.00	-3.64	AVG
3	5208.400	103.55	-18.13	85.42	54.00	31.42	AVG

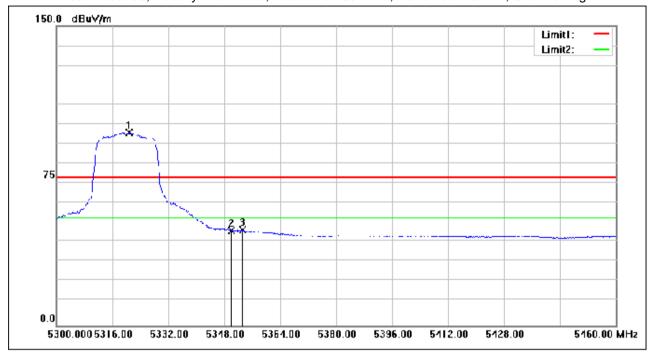
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 69 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5318.720	124.15	-17.96	106.19	74.00	32.19	peak
2	5350.000	77.54	-17.92	59.62	74.00	-14.38	peak
3	5357.120	78.79	-17.91	60.88	74.00	-13.12	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 70 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5320.800	114.59	-17.96	96.63	54.00	42.63	AVG
2	5350.000	65.35	-17.92	47.43	54.00	-6.57	AVG
3	5353.120	65.54	-17.91	47.63	54.00	-6.37	AVG

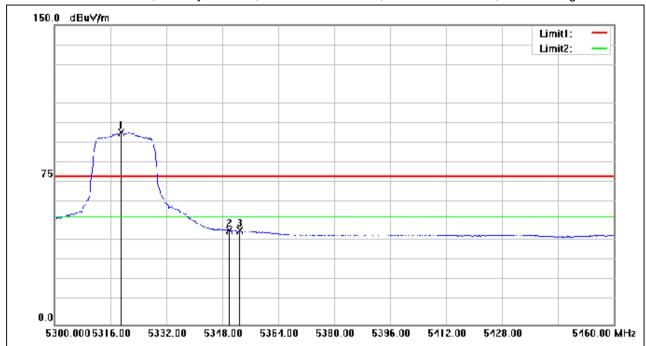
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 71 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5319.040	122.92	-17.96	104.96	74.00	30.96	peak
2	5350.000	78.31	-17.92	60.39	74.00	-13.61	peak
3	5354.880	77.45	-17.91	59.54	74.00	-14.46	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 72 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5319.040	114.29	-17.96	96.33	54.00	42.33	AVG
2	5350.000	64.97	-17.92	47.05	54.00	-6.95	AVG
3	5352.960	64.81	-17.91	46.90	54.00	-7.10	AVG

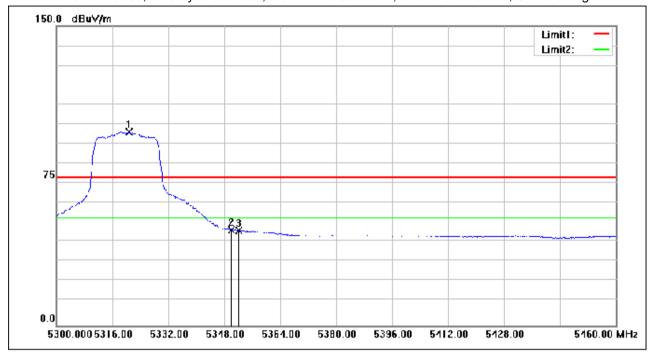
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 73 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5321.280	124.15	-17.96	106.19	74.00	32.19	peak
2	5350.000	79.55	-17.92	61.63	74.00	-12.37	peak
3	5354.720	78.83	-17.91	60.92	74.00	-13.08	peak



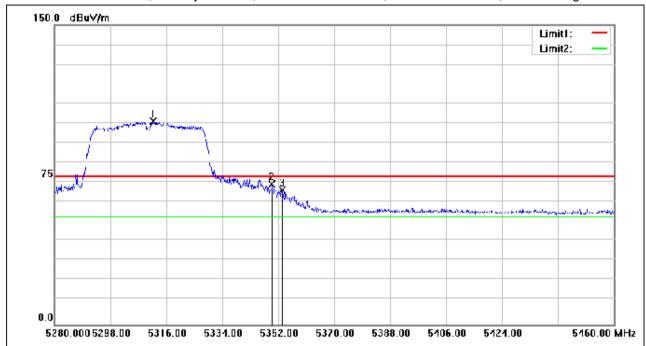
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 74 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5320.800	114.99	-17.96	97.03	54.00	43.03	AVG
2	5350.000	65.57	-17.92	47.65	54.00	-6.35	AVG
3	5352.160	65.53	-17.91	47.62	54.00	-6.38	AVG



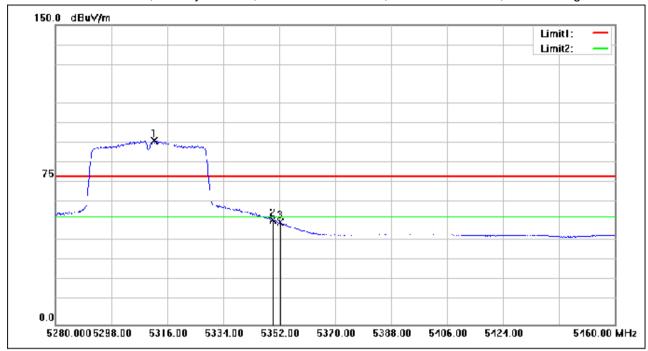
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 75 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5311.680	119.76	-17.97	101.79	74.00	27.79	peak
2	5350.000	88.17	-17.92	70.25	74.00	-3.75	peak
3	5353.260	85.38	-17.91	67.47	74.00	-6.53	peak



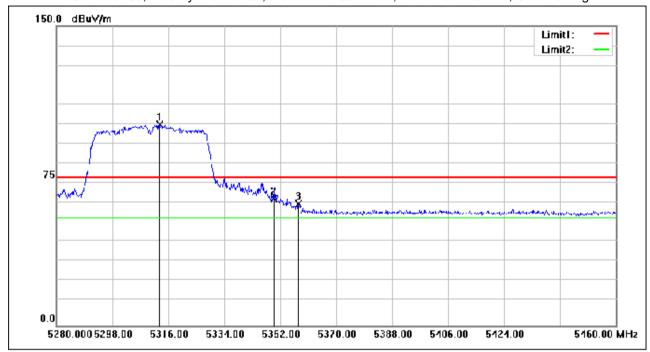
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 76 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5311.680	110.17	-17.97	92.20	54.00	38.20	AVG
2	5350.000	70.10	-17.92	52.18	54.00	-1.82	AVG
3	5352.360	69.20	-17.91	51.29	54.00	-2.71	AVG



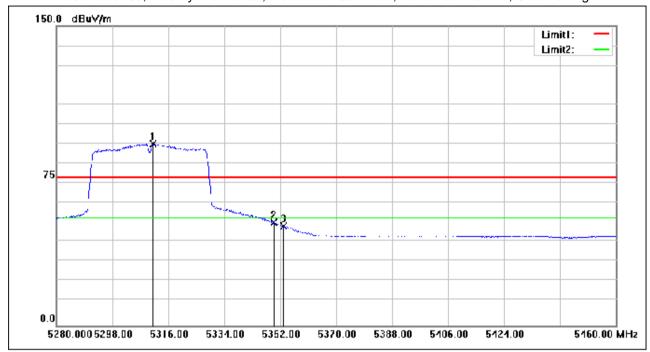
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 77 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5313.120	118.50	-17.97	100.53	74.00	26.53	peak
2	5350.000	81.34	-17.92	63.42	74.00	-10.58	peak
3	5357.940	79.00	-17.91	61.09	74.00	-12.91	peak



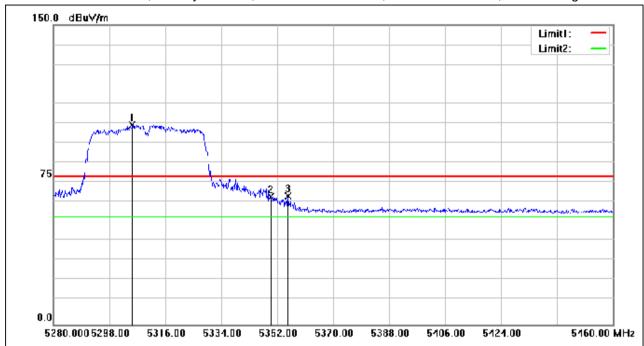
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 78 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5311.140	108.92	-17.97	90.95	54.00	36.95	AVG
2	5350.000	69.34	-17.92	51.42	54.00	-2.58	AVG
3	5353.080	67.75	-17.91	49.84	54.00	-4.16	AVG



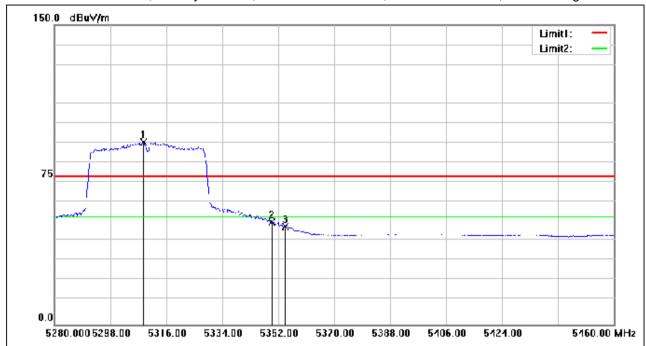
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 79 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5305.380	118.05	-17.99	100.06	74.00	26.06	peak
2	5350.000	81.85	-17.92	63.93	74.00	-10.07	peak
3	5355.420	82.14	-17.91	64.23	74.00	-9.77	peak



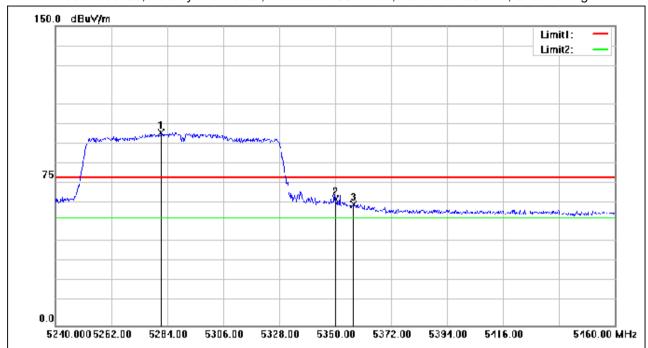
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 80 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5308.620	109.24	-17.98	91.26	54.00	37.26	AVG
2	5350.000	69.15	-17.92	51.23	54.00	-2.77	AVG
3	5354.340	66.95	-17.91	49.04	54.00	-4.96	AVG



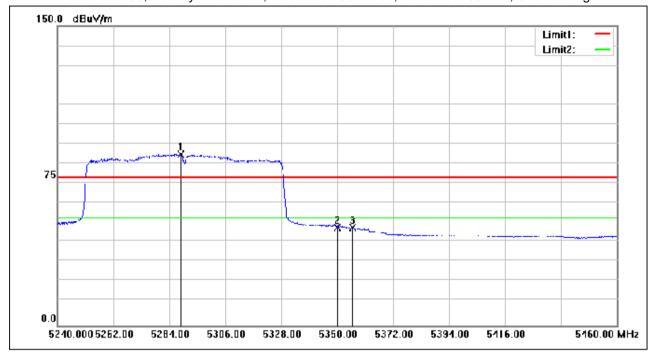
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 81 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5281.580	114.65	-18.02	96.63	74.00	22.63	peak
2	5350.000	81.07	-17.92	63.15	74.00	-10.85	peak
3	5357.040	78.51	-17.91	60.60	74.00	-13.40	peak



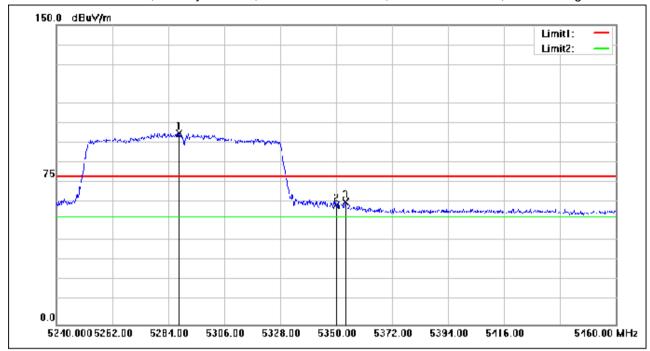
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 82 of 255

Test Mode: 03; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5288.620	103.83	-18.01	85.82	54.00	31.82	AVG
2	5350.000	67.03	-17.92	49.11	54.00	-4.89	AVG
3	5355.940	66.75	-17.91	48.84	54.00	-5.16	AVG



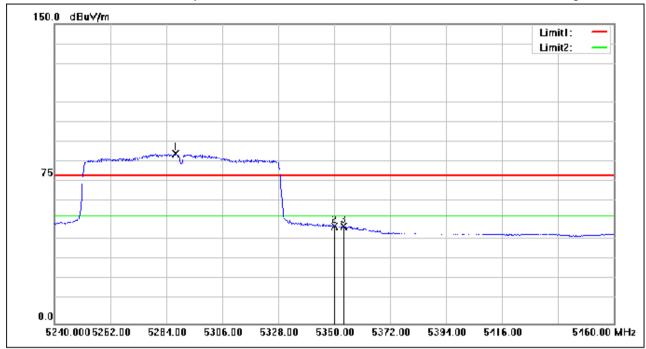
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 83 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5288.180	113.92	-18.01	95.91	74.00	21.91	peak
2	5350.000	77.84	-17.92	59.92	74.00	-14.08	peak
3	5353.520	79.32	-17.91	61.41	74.00	-12.59	peak



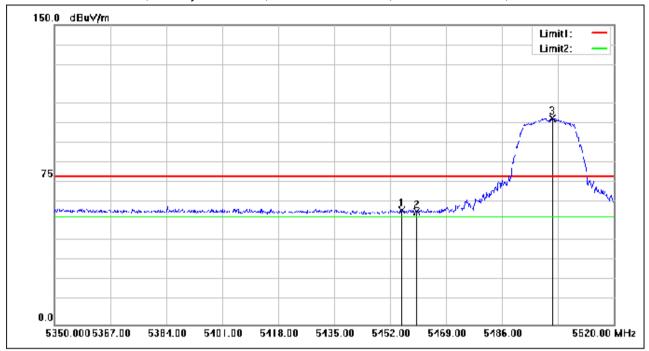
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 84 of 255

Test Mode: 03; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5287.740	102.97	-18.01	84.96	54.00	30.96	AVG
2	5350.000	66.44	-17.92	48.52	54.00	-5.48	AVG
3	5353.520	66.52	-17.91	48.61	54.00	-5.39	AVG



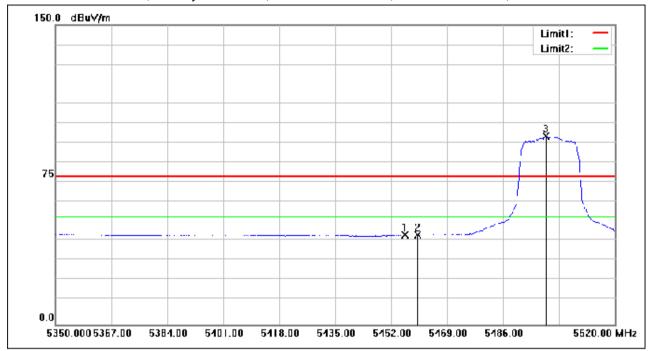
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 85 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5455.570	75.12	-17.76	57.36	74.00	-16.64	peak
2	5460.000	74.03	-17.76	56.27	74.00	-17.73	peak
3	5501.300	121.06	-17.70	103.36	74.00	29.36	peak



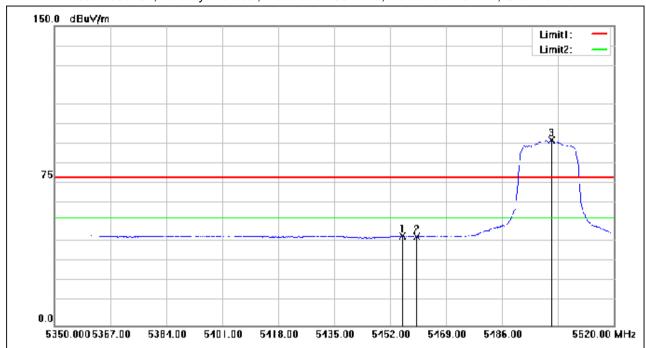
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 86 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5456.250	62.59	-17.76	44.83	54.00	-9.17	AVG
2	5460.000	62.41	-17.76	44.65	54.00	-9.35	AVG
3	5499.090	111.97	-17.70	94.27	54.00	40.27	AVG



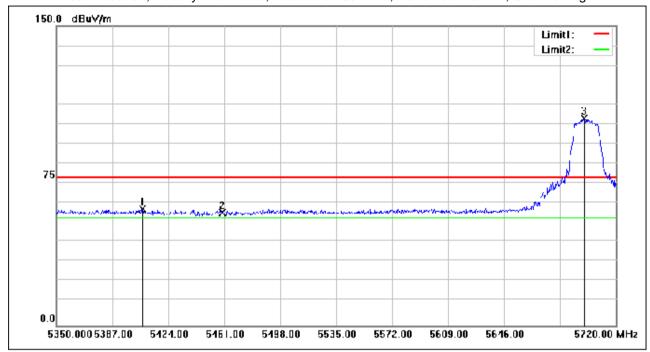
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 87 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5455.740	62.52	-17.76	44.76	54.00	-9.24	AVG
2	5460.000	62.24	-17.76	44.48	54.00	-9.52	AVG
3	5500.960	110.41	-17.70	92.71	54.00	38.71	AVG



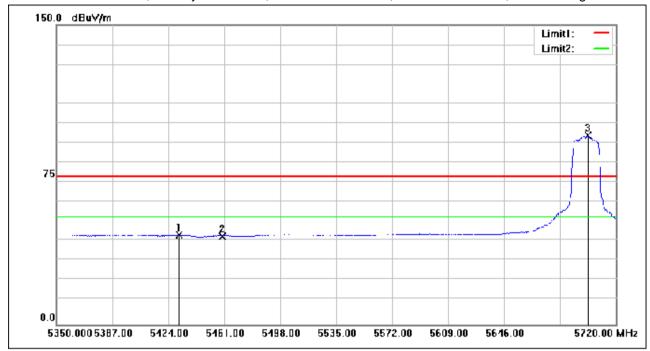
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 88 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5406.980	76.03	-17.84	58.19	74.00	-15.81	peak
2	5460.000	74.14	-17.76	56.38	74.00	-17.62	peak
3	5698.910	120.80	-17.03	103.77	74.00	29.77	peak



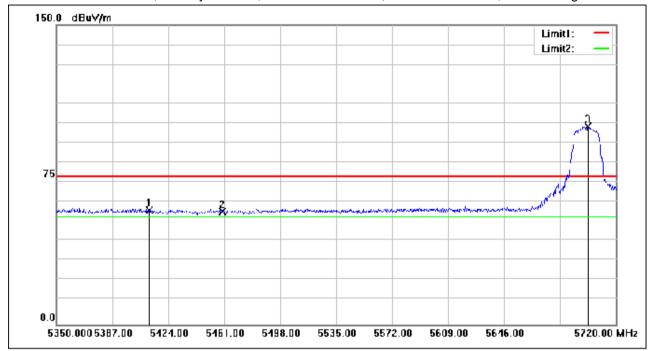
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 89 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5431.030	62.50	-17.79	44.71	54.00	-9.29	AVG
2	5460.000	61.97	-17.76	44.21	54.00	-9.79	AVG
3	5701.500	111.67	-17.02	94.65	54.00	40.65	AVG



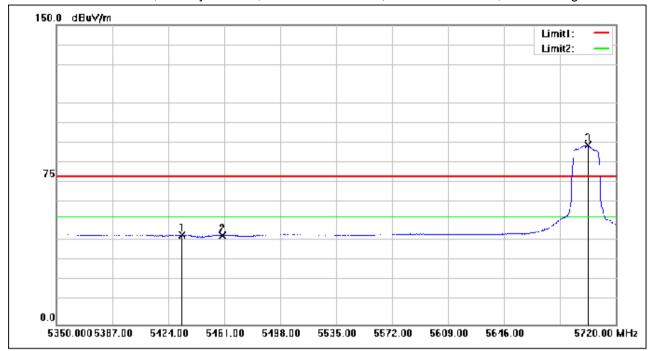
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 90 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5411.420	75.09	-17.82	57.27	74.00	-16.73	peak
2	5460.000	74.21	-17.76	56.45	74.00	-17.55	peak
3	5701.500	116.12	-17.02	99.10	74.00	25.10	peak



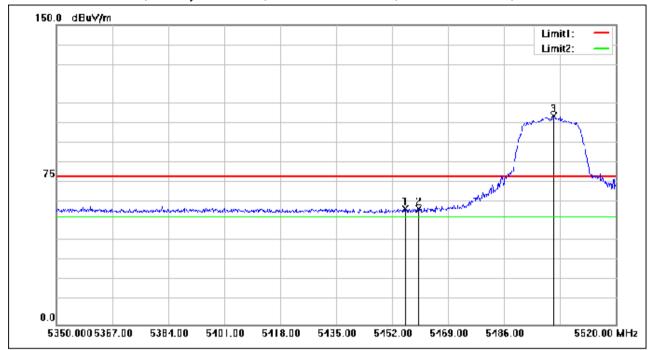
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 91 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5433.250	62.52	-17.79	44.73	54.00	-9.27	AVG
2	5460.000	62.13	-17.76	44.37	54.00	-9.63	AVG
3	5701.500	106.68	-17.02	89.66	54.00	35.66	AVG



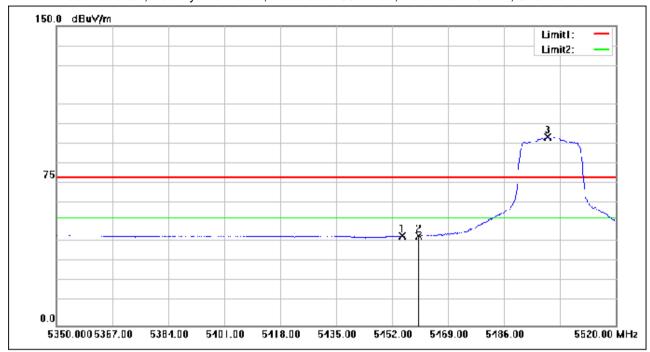
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 92 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5455.910	75.62	-17.76	57.86	74.00	-16.14	peak
2	5460.000	75.62	-17.76	57.86	74.00	-16.14	peak
3	5501.130	122.01	-17.70	104.31	74.00	30.31	peak



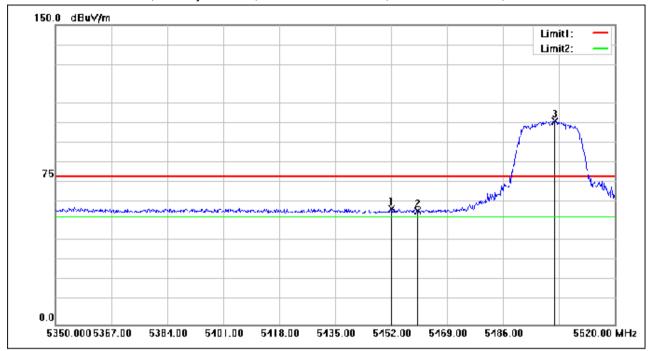
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 93 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5455.060	62.46	-17.76	44.70	54.00	-9.30	AVG
2	5460.000	62.59	-17.76	44.83	54.00	-9.17	AVG
3	5499.260	112.15	-17.70	94.45	54.00	40.45	AVG



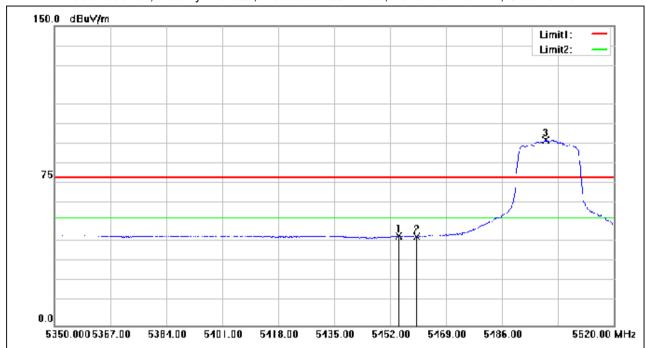
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 94 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5452.170	75.82	-17.76	58.06	74.00	-15.94	peak
2	5460.000	74.53	-17.76	56.77	74.00	-17.23	peak
3	5501.640	119.70	-17.70	102.00	74.00	28.00	peak



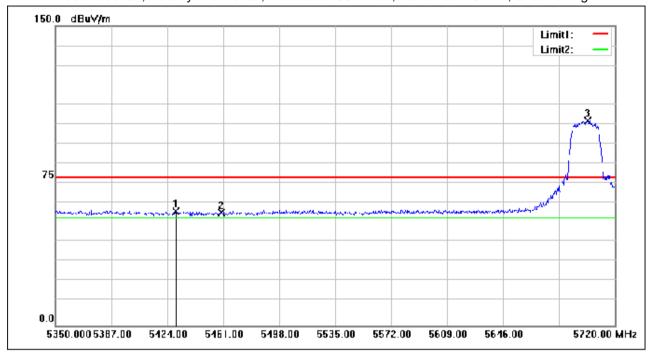
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 95 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5454.550	62.45	-17.76	44.69	54.00	-9.31	AVG
2	5460.000	62.15	-17.76	44.39	54.00	-9.61	AVG
3	5499.260	110.62	-17.70	92.92	54.00	38.92	AVG



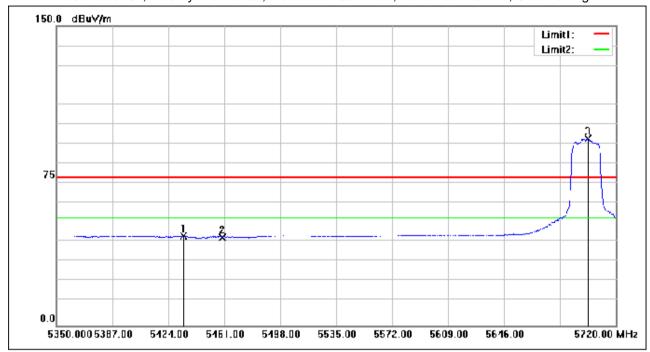
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 96 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5429.550	74.84	-17.81	57.03	74.00	-16.97	peak
2	5460.000	74.11	-17.76	56.35	74.00	-17.65	peak
3	5701.870	119.59	-17.02	102.57	74.00	28.57	peak



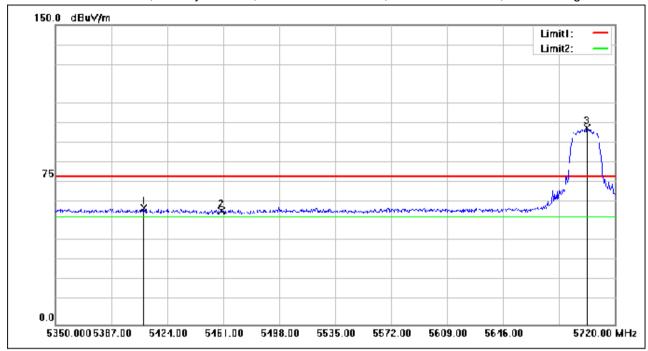
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 97 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5433.990	62.45	-17.79	44.66	54.00	-9.34	AVG
2	5460.000	62.01	-17.76	44.25	54.00	-9.75	AVG
3	5701.500	110.60	-17.02	93.58	54.00	39.58	AVG



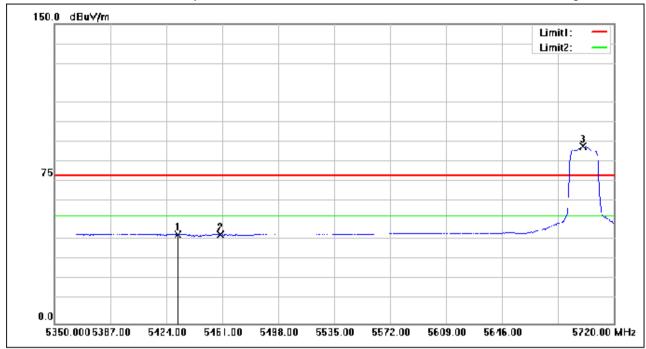
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 98 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5408.460	75.98	-17.84	58.14	74.00	-15.86	peak
2	5460.000	74.64	-17.76	56.88	74.00	-17.12	peak
3	5701.500	115.47	-17.02	98.45	74.00	24.45	peak



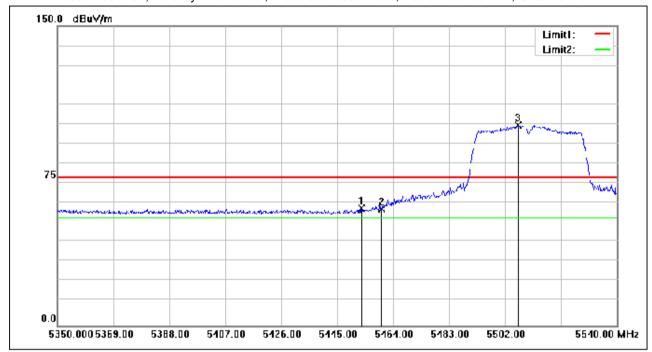
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 99 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5431.770	62.41	-17.79	44.62	54.00	-9.38	AVG
2	5460.000	62.08	-17.76	44.32	54.00	-9.68	AVG
3	5699.280	105.85	-17.03	88.82	54.00	34.82	AVG



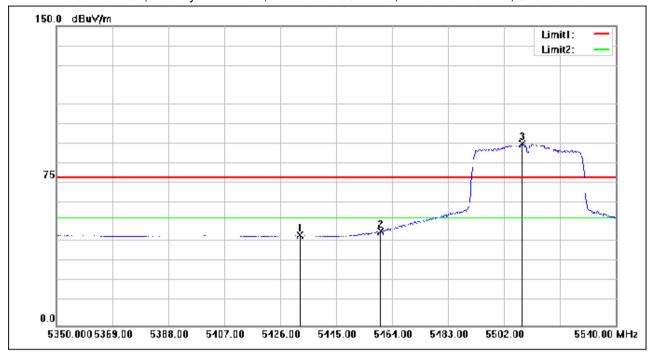
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 100 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5453.170	76.34	-17.76	58.58	74.00	-15.42	peak
2	5460.000	76.20	-17.76	58.44	74.00	-15.56	peak
3	5506.370	117.97	-17.69	100.28	74.00	26.28	peak



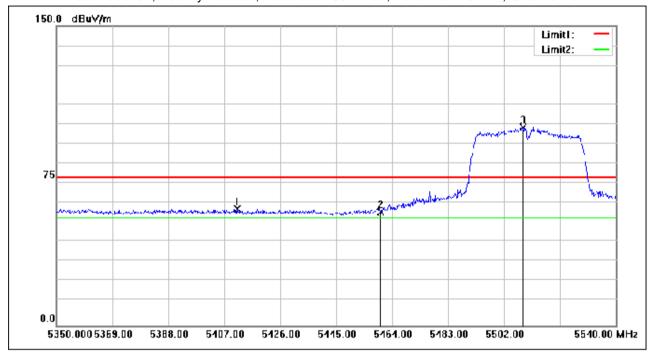
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 101 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5432.650	62.86	-17.79	45.07	74.00	-28.93	peak
2	5460.000	65.00	-17.76	47.24	74.00	-26.76	peak
3	5508.080	108.63	-17.69	90.94	74.00	16.94	peak



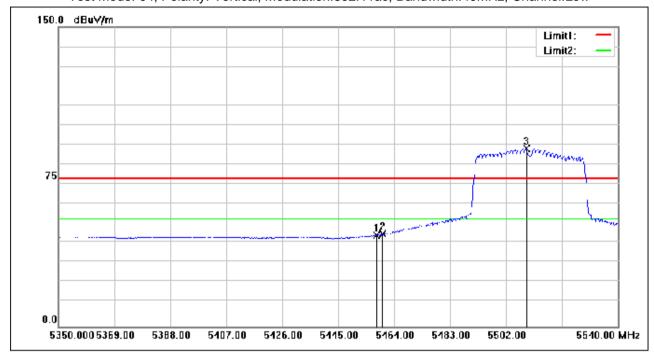
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 102 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5411.370	76.05	-17.82	58.23	74.00	-15.77	peak
2	5460.000	74.63	-17.76	56.87	74.00	-17.13	peak
3	5508.460	116.94	-17.69	99.25	74.00	25.25	peak



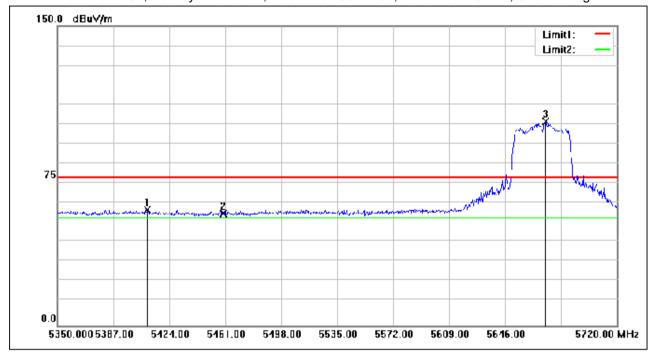
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 103 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5458.110	63.43	-17.76	45.67	54.00	-8.33	AVG
2	5460.000	63.92	-17.76	46.16	54.00	-7.84	AVG
3	5508.840	106.70	-17.69	89.01	54.00	35.01	AVG



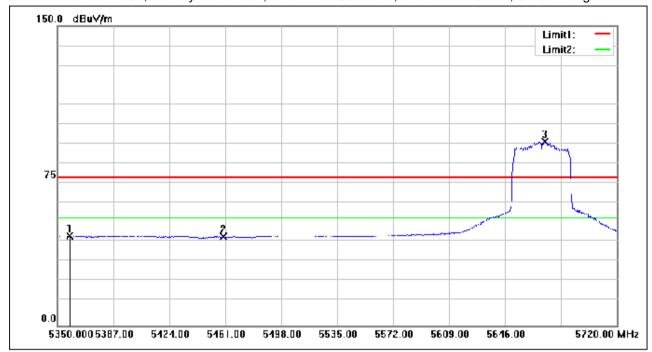
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 104 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5409.570	75.87	-17.83	58.04	74.00	-15.96	peak
2	5460.000	73.72	-17.76	55.96	74.00	-18.04	peak
3	5672.640	119.27	-17.14	102.13	74.00	28.13	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 105 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5358.140	62.82	-17.90	44.92	54.00	-9.08	AVG
2	5460.000	62.03	-17.76	44.27	54.00	-9.73	AVG
3	5672.270	109.23	-17.14	92.09	54.00	38.09	AVG



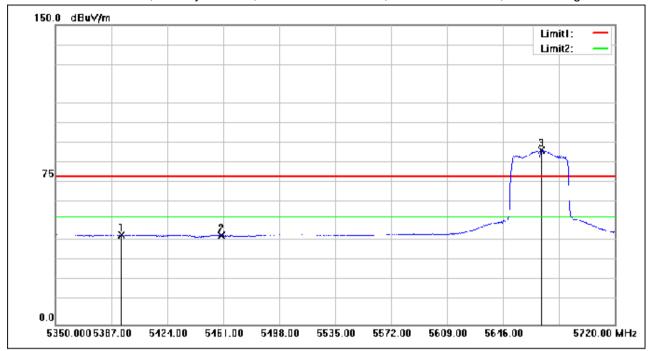
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 106 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5378.860	76.54	-17.87	58.67	74.00	-15.33	peak
2	5460.000	73.51	-17.76	55.75	74.00	-18.25	peak
3	5672.270	113.98	-17.14	96.84	74.00	22.84	peak



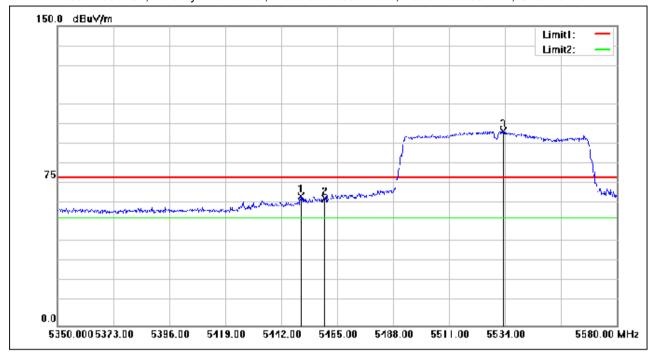
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 107 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5393.660	62.66	-17.85	44.81	54.00	-9.19	AVG
2	5460.000	62.07	-17.76	44.31	54.00	-9.69	AVG
3	5671.530	104.40	-17.14	87.26	54.00	33.26	AVG



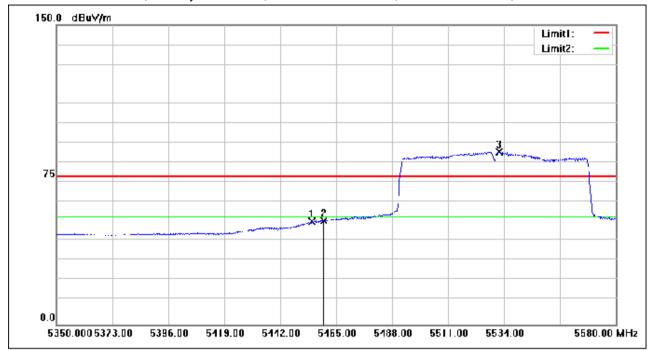
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 108 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5450.050	82.43	-17.77	64.66	74.00	-9.34	peak
2	5460.000	81.18	-17.76	63.42	74.00	-10.58	peak
3	5533.080	114.86	-17.65	97.21	74.00	23.21	peak



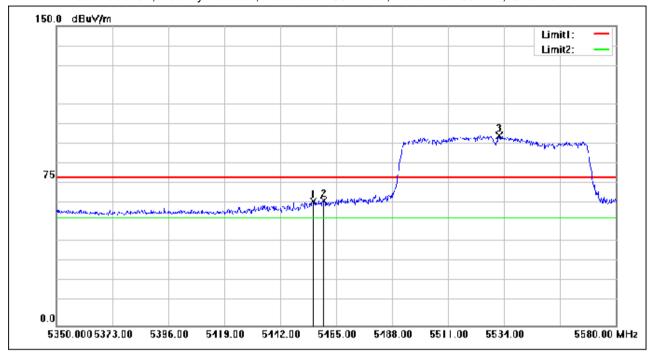
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 109 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5454.880	69.14	-17.76	51.38	54.00	-2.62	AVG
2	5460.000	69.86	-17.76	52.10	54.00	-1.90	AVG
3	5531.930	104.15	-17.65	86.50	54.00	32.50	AVG



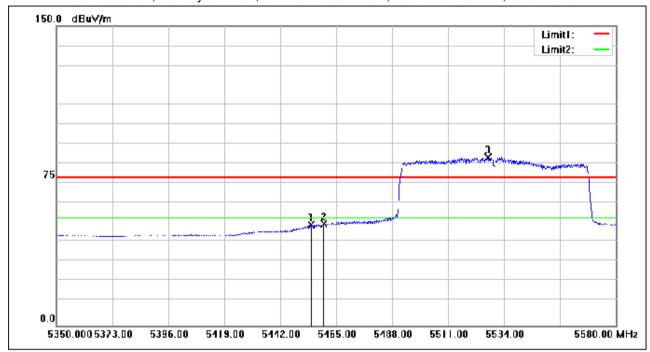
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 110 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5455.570	79.97	-17.76	62.21	74.00	-11.79	peak
2	5460.000	80.13	-17.76	62.37	74.00	-11.63	peak
3	5531.930	112.69	-17.65	95.04	74.00	21.04	peak



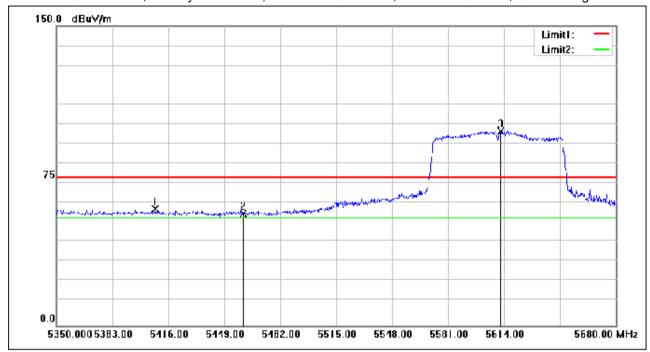
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 111 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5454.650	68.02	-17.76	50.26	54.00	-3.74	AVG
2	5460.000	68.72	-17.76	50.96	54.00	-3.04	AVG
3	5527.330	101.77	-17.66	84.11	54.00	30.11	AVG



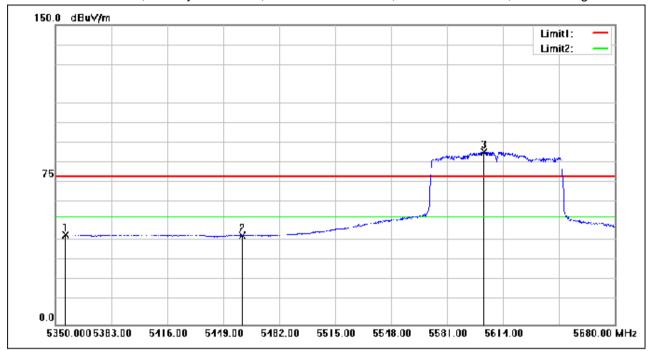
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 112 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5408.080	76.10	-17.84	58.26	74.00	-15.74	peak
2	5460.000	73.64	-17.76	55.88	74.00	-18.12	peak
3	5612.020	114.55	-17.39	97.16	74.00	23.16	peak



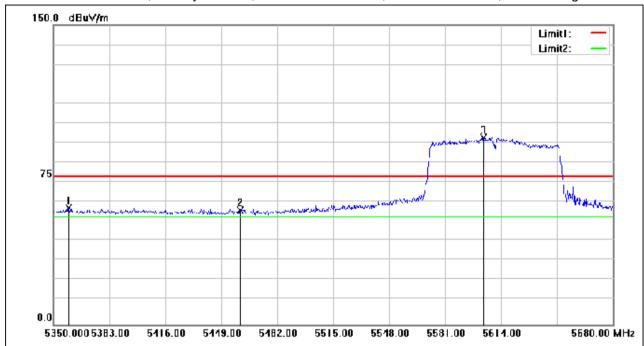
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 113 of 255

Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5355.940	62.87	-17.91	44.96	54.00	-9.04	AVG
2	5460.000	62.24	-17.76	44.48	54.00	-9.52	AVG
3	5602.780	103.99	-17.43	86.56	54.00	32.56	AVG



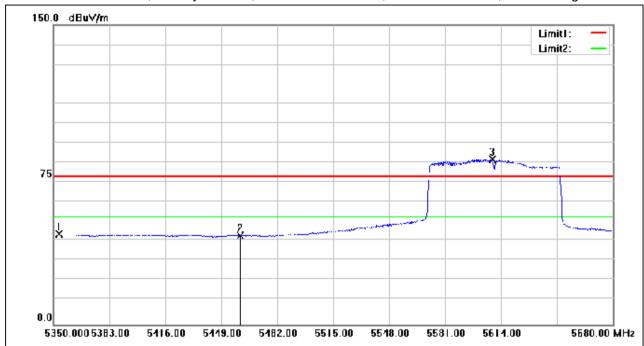
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 114 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5358.910	76.28	-17.90	58.38	74.00	-15.62	peak
2	5460.000	74.97	-17.76	57.21	74.00	-16.79	peak
3	5603.770	111.08	-17.43	93.65	74.00	19.65	peak



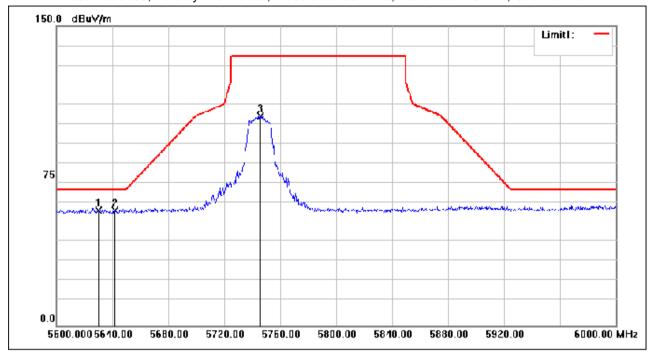
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 115 of 255

Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5353.300	62.99	-17.91	45.08	54.00	-8.92	AVG
2	5460.000	62.26	-17.76	44.50	54.00	-9.50	AVG
3	5608.720	100.12	-17.41	82.71	54.00	28.71	AVG



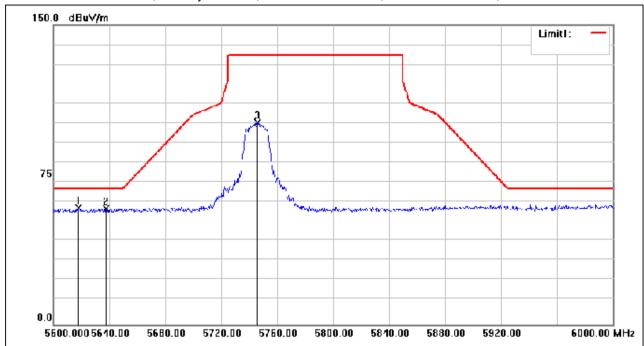
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 116 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5630.000	74.98	-17.32	57.66	68.20	-10.54	peak
2	5642.000	74.74	-17.27	57.47	68.20	-10.73	peak
3	5746.000	121.72	-16.84	104.88	135.00	-30.12	peak



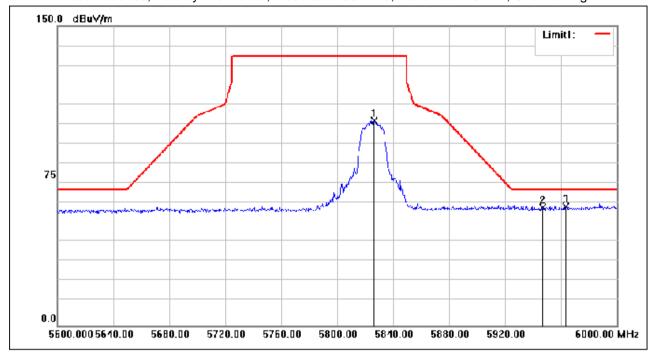
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 117 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5618.000	75.80	-17.36	58.44	68.20	-9.76	peak
2	5637.600	75.34	-17.28	58.06	68.20	-10.14	peak
3	5746.000	117.79	-16.84	100.95	135.00	-34.05	peak



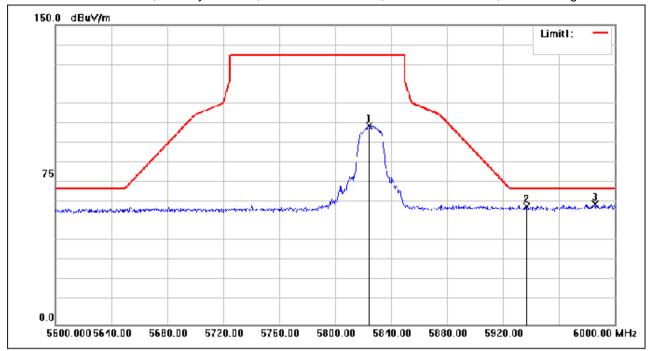
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 118 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5826.400	119.23	-16.50	102.73	135.00	-32.27	peak
2	5946.800	75.20	-16.00	59.20	68.20	-9.00	peak
3	5963.600	75.47	-15.93	59.54	68.20	-8.66	peak



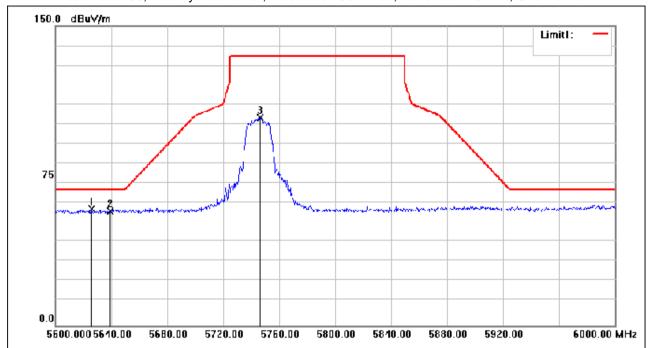
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 119 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5824.000	115.89	-16.51	99.38	135.00	-35.62	peak
2	5936.800	75.28	-16.04	59.24	68.20	-8.96	peak
3	5986.000	75.96	-15.84	60.12	68.20	-8.08	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 120 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5626.000	75.76	-17.34	58.42	68.20	-9.78	peak
2	5639.200	74.49	-17.28	57.21	68.20	-10.99	peak
3	5746.400	120.97	-16.84	104.13	135.00	-30.87	peak

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 121 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5623.600	75.59	-17.34	58.25	68.20	-9.95	peak
2	5642.800	75.04	-17.26	57.78	68.20	-10.42	peak
3	5746.800	116.87	-16.83	100.04	135.00	-34.96	peak

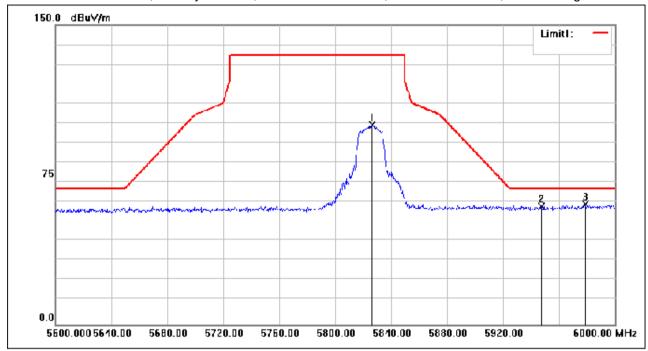
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 122 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5824.000	119.06	-16.51	102.55	135.00	-32.45	peak
2	5937.200	75.45	-16.04	59.41	68.20	-8.79	peak
3	5955.200	75.59	-15.96	59.63	68.20	-8.57	peak



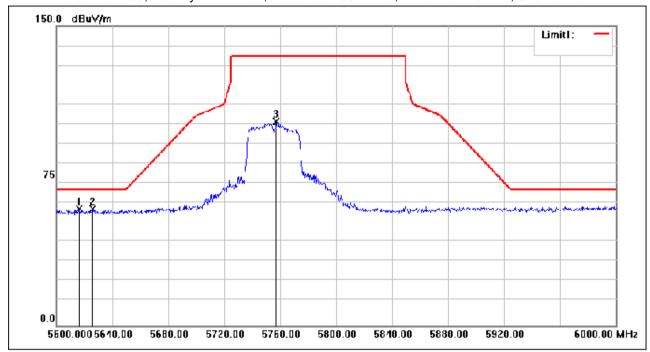
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 123 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5826.400	116.52	-16.50	100.02	135.00	-34.98	peak
2	5947.200	74.96	-16.00	58.96	68.20	-9.24	peak
3	5978.800	75.95	-15.87	60.08	68.20	-8.12	peak



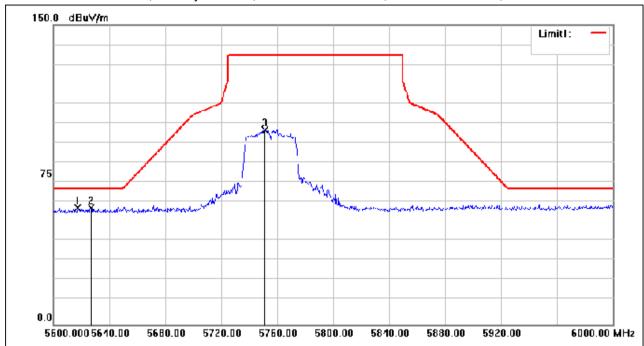
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 124 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5616.000	75.54	-17.37	58.17	68.20	-10.03	peak
2	5626.000	75.72	-17.34	58.38	68.20	-9.82	peak
3	5757.200	119.10	-16.79	102.31	135.00	-32.69	peak



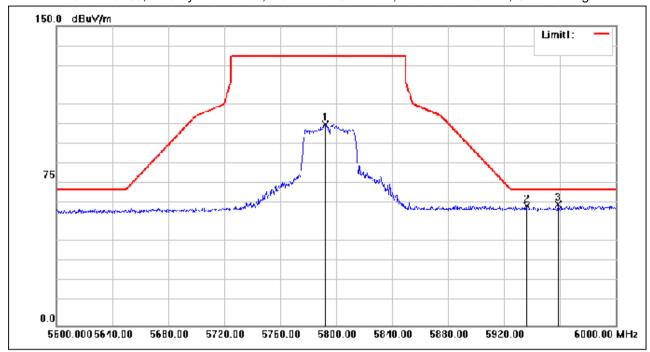
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 125 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5617.200	75.71	-17.37	58.34	68.20	-9.86	peak
2	5626.800	75.82	-17.33	58.49	68.20	-9.71	peak
3	5751.200	113.96	-16.81	97.15	135.00	-37.85	peak



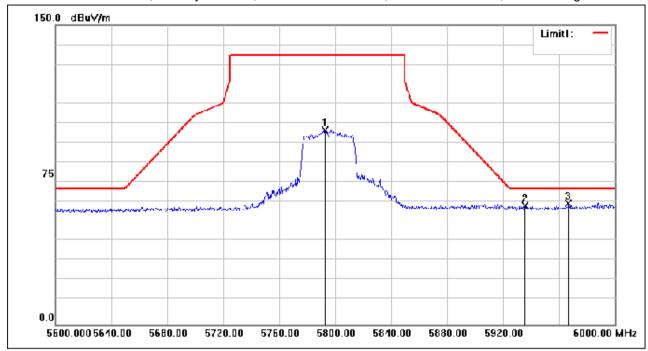
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 126 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5792.400	117.24	-16.64	100.60	135.00	-34.40	peak
2	5936.000	75.71	-16.04	59.67	68.20	-8.53	peak
3	5958.800	76.36	-15.95	60.41	68.20	-7.79	peak



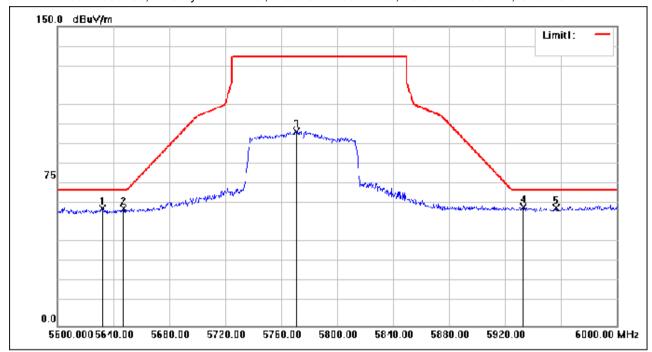
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 127 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5792.800	113.98	-16.64	97.34	135.00	-37.66	peak
2	5935.600	75.44	-16.05	59.39	68.20	-8.81	peak
3	5966.800	76.46	-15.92	60.54	68.20	-7.66	peak



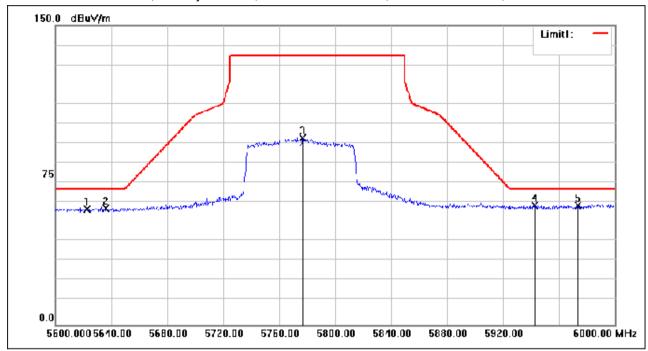
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 128 of 255

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	5632.000	75.82	-17.30	58.52	68.20	-9.68	peak
2	5647.200	75.77	-17.25	58.52	68.20	-9.68	peak
3	5770.800	114.09	-16.73	97.36	135.00	-37.64	peak
4	5933.200	75.34	-16.05	59.29	68.20	-8.91	peak
5	5956.400	75.10	-15.96	59.14	68.20	-9.06	peak



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 129 of 255

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	5622.800	75.46	-17.35	58.11	68.20	-10.09	peak
2	5636.000	75.69	-17.29	58.40	68.20	-9.80	peak
3	5776.800	110.22	-16.70	93.52	135.00	-41.48	peak
4	5942.400	75.75	-16.02	59.73	68.20	-8.47	peak
5	5973.600	75.80	-15.89	59.91	68.20	-8.29	peak

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 130 of 255

7.6 Channel Move Time

Test Requirement KDB 905462 D02 Section 5.1
Test Method: KDB 905462 D02 Section 7.8.3

Limit:

		Applica	bility
Test item	Limit	Master Device or client with Radar Detection	Client without Radar Detection
Non-occupancy period	Minimum 30 minutes	Yes	Not required
Channel Availability Check Time	60 seconds	Yes	Not required
Channel Move Time	10 seconds See Note 1.	Yes	Yes
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	Yes	Yes
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	Yes	Not required

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

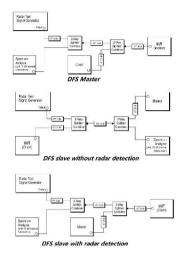
7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	06	Normal operating_Keep the EUT communication with the companion device.



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 131 of 255

7.6.3 Test Setup Diagram

7.6.4 Measurement Procedure and Data

- 1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.
- 3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4) EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test
- 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.
- 7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 132 of 255

7.7 Duty Cycle

Test Requirement KDB 789033 D02 II B 1
Test Method: KDB 789033 D02 II B 1

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.7.2 Test Mode Description

Pre-scan /	Mode	Description							
Final test	Code	Pr							
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.							
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.							
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.							
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.							

7.7.3 Test Setup Diagram

7.7.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 133 of 255

7.8 99% Bandwidth

Test Requirement N/A

Test Method: KDB 789033 D02 II D

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.8.2 Test Mode Description

	7.0.2 Test mode bescription					
Pre-scan / Final test	Mode Code	Description				
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				

7.8.3 Test Setup Diagram

7.8.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 134 of 255

7.9 26dB Emission bandwidth

Test Requirement 47 CFR Part 15, Subpart E 15.407 (a)

Test Method: KDB 789033 D02 II C 1

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.9.2 Test Mode Description

	- / Maria					
Pre-scan / Final test	Mode Code	Description				
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.				

7.9.3 Test Setup Diagram

7.9.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 135 of 255

7.10 Minimum 6 dB bandwidth (5.725-5.85 GHz band)

Test Requirement 47 CFR Part 15, Subpart E 15.407 (e)

Test Method: KDB 789033 D02 II C 2

Limit:

Frequency band(MHz)	Limit		
5725-5850	≥500 kHz		

7.10.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.10.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.

7.10.3 Test Setup Diagram

7.10.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 136 of 255

7.11 Peak Power spectrum density

Test Requirement 47 CFR Part 15, Subpart E 15.407 (a)

Test Method: KDB 789033 D02 II F

Limit:

Frequency b	and(MHz)	Limit			
5150-5	250	≤17dBm in 1MHz for master device			
5150-5	250	≤11dBm in 1MHz for client device			
5250-5	350	≤11dBm in 1MHz for client device			
5470-5	725	≤11dBm in 1MHz for client device			
5725-5	850	≤30dBm in 500 kHz			
Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.				

7.11.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.11.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.

7.11.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 137 of 255

7.11.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 138 of 255

7.12 Frequency Stability

Test Requirement 47 CFR Part 15, Subpart E 15.407 (g)
Test Method: ANSI C63.10 (2013) Section 6.8

7.12.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 46.9 % RH Atmospheric Pressure: 1010 mbar

7.12.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	02	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	03	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	04	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac/ax/be 20/40/80, Only the data of worst case is recorded in the report.

7.12.3 Test Setup Diagram

7.12.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 139 of 255

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2408001587AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2408001587AT

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 140 of 255

10 Appendix

1. Duty Cycle

1.1 Test Result

1.1.1 Ant1

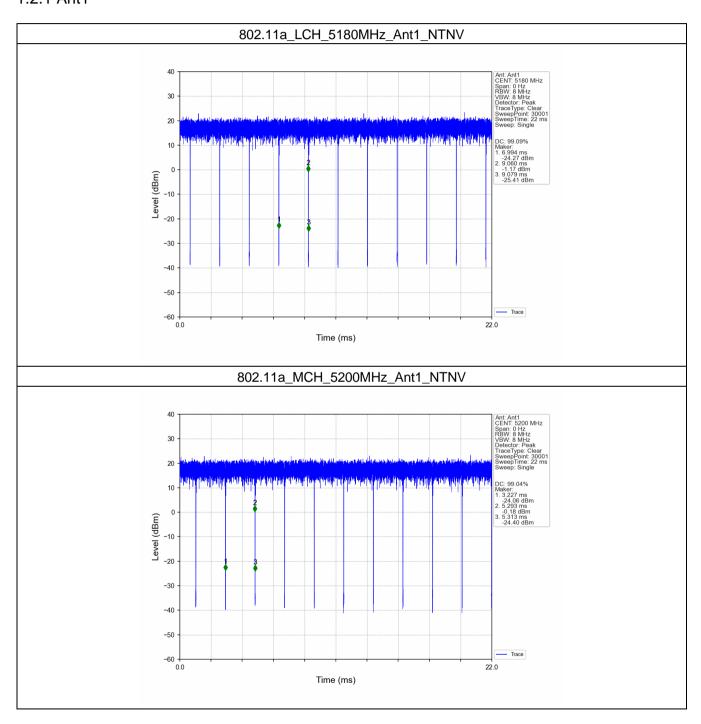
				А	nt1		
Mode	TX Type	Frequency (MHz)	T_on (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	Max. DC Variation (%)
		5180	2.066	2.085	99.09	0.04	0.04
		5200	2.066	2.086	99.04	0.04	0.04
		5240	2.066	2.086	99.04	0.04	0.04
		5260	2.066	2.086	99.04	0.04	0.04
		5300	2.066	2.085	99.09	0.04	0.04
000 44-	CICO	5320	2.066	2.086	99.04	0.04	0.04
802.11a	SISO	5500	2.066	2.086	99.04	0.04	0.04
		5580	2.066	2.086	99.04	0.04	0.04
		5700	2.066	2.085	99.09	0.04	0.04
		5745	2.065	2.085	99.04	0.04	0.04
		5785	2.065	2.084	99.09	0.04	0.00
		5825	2.066	2.086	99.04	0.04	0.04
		5180	1.934	2.033	95.13	0.22	0.00
		5200	1.934	2.033	95.13	0.22	0.00
		5240	1.935	2.034	95.13	0.22	0.00
		5260	1.933	2.033	95.08	0.22	0.04
		5300	1.935	2.035	95.09	0.22	0.03
802.11ac	0100	5320	1.934	2.034	95.08	0.22	0.06
(VHT20)	SISO	5500	1.934	2.034	95.08	0.22	0.07
		5580	1.933	2.033	95.08	0.22	0.07
		5700	1.934	2.035	95.04	0.22	0.03
		5745	1.933	2.033	95.08	0.22	0.07
		5785	1.934	2.034	95.08	0.22	0.07
		5825	1.934	2.034	95.08	0.22	0.03
		5190	0.955	1.054	90.61	0.43	0.07
		5230	0.956	1.054	90.70	0.42	0.03
		5270	0.955	1.054	90.61	0.43	0.03
802.11ac	0100	5310	0.955	1.053	90.69	0.42	0.03
(VHT40)	SISO	5510	0.956	1.054	90.70	0.42	0.03
		5550	0.956	1.053	90.79	0.42	0.00
		5670	0.955	1.054	90.61	0.43	0.03
		5755	0.956	1.054	90.70	0.42	0.07

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 141 of 255

		5795	0.955	1.054	90.61	0.43	0.03
802.11ac (VHT80)	SISO	5210	0.464	0.562	82.56	0.83	0.16
		5290	0.463	0.561	82.53	0.83	0.04
		5530	0.463	0.561	82.53	0.83	0.04
		5610	0.462	0.561	82.35	0.84	0.04
		5775	0.463	0.561	82.53	0.83	0.03

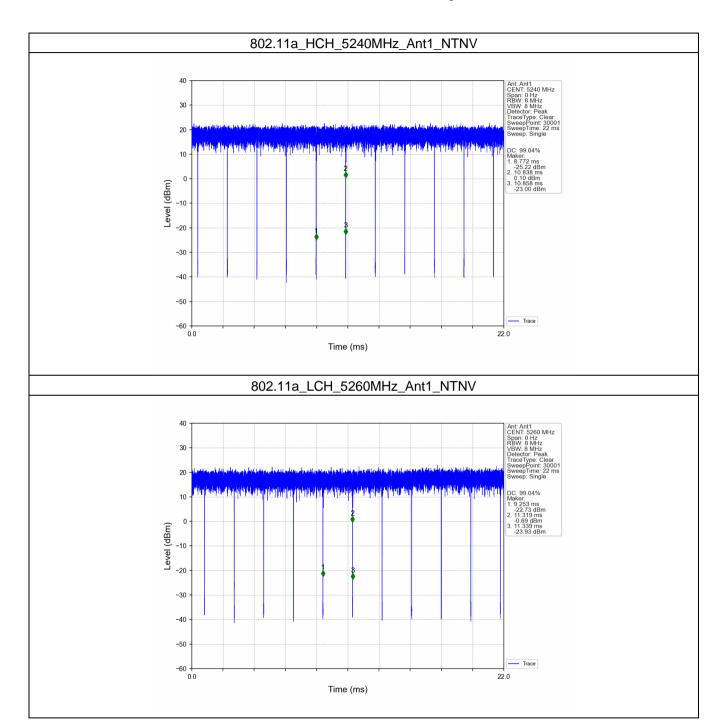

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 142 of 255

1.2 Test Graph

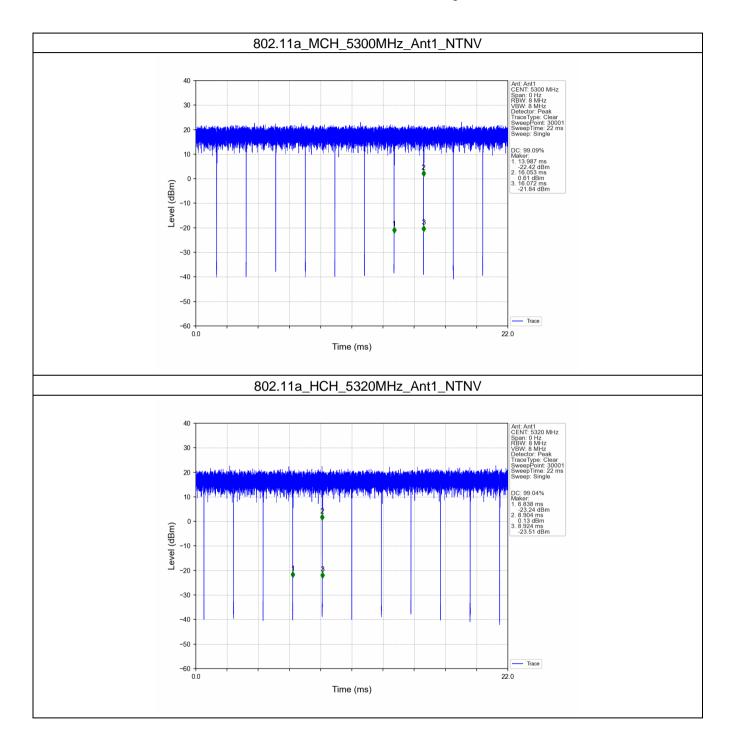
1.2.1 Ant1



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

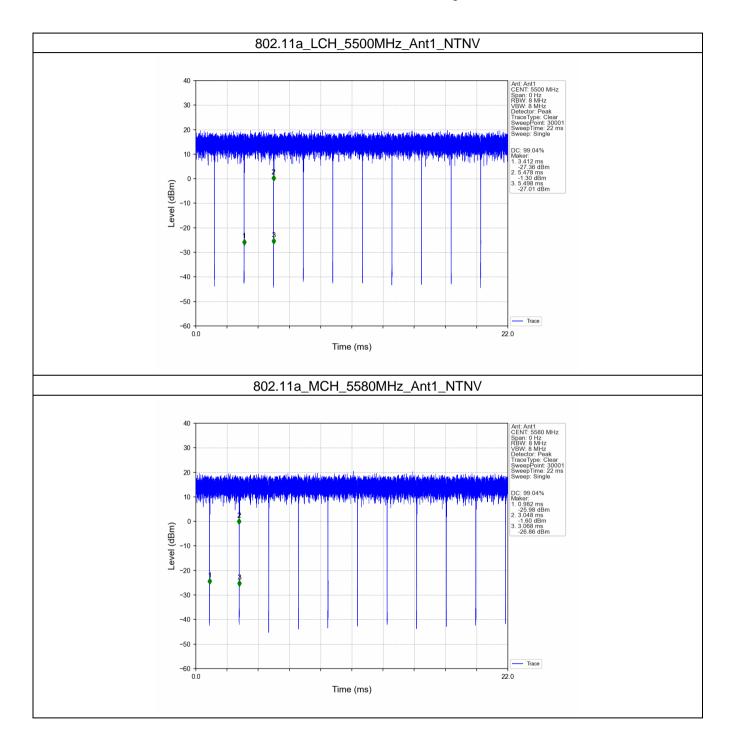
Page: 143 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

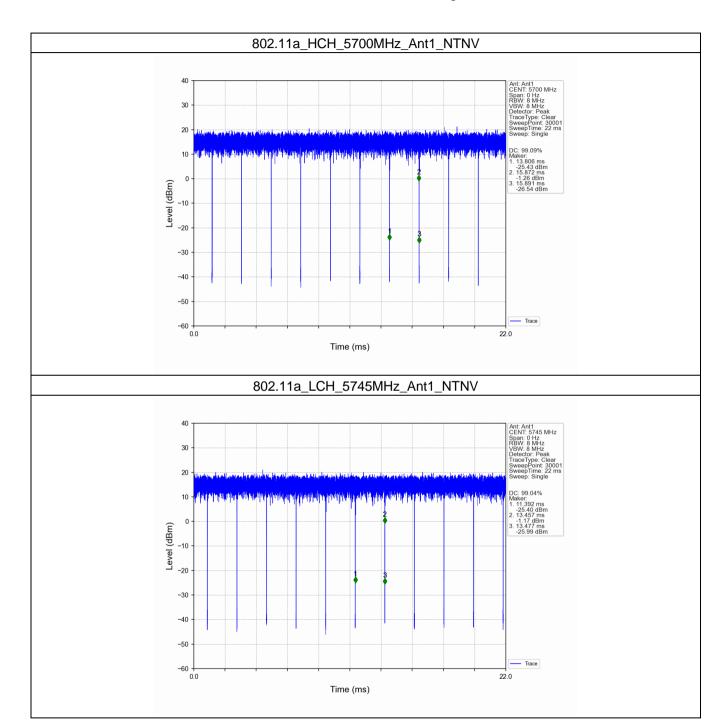
Page: 144 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

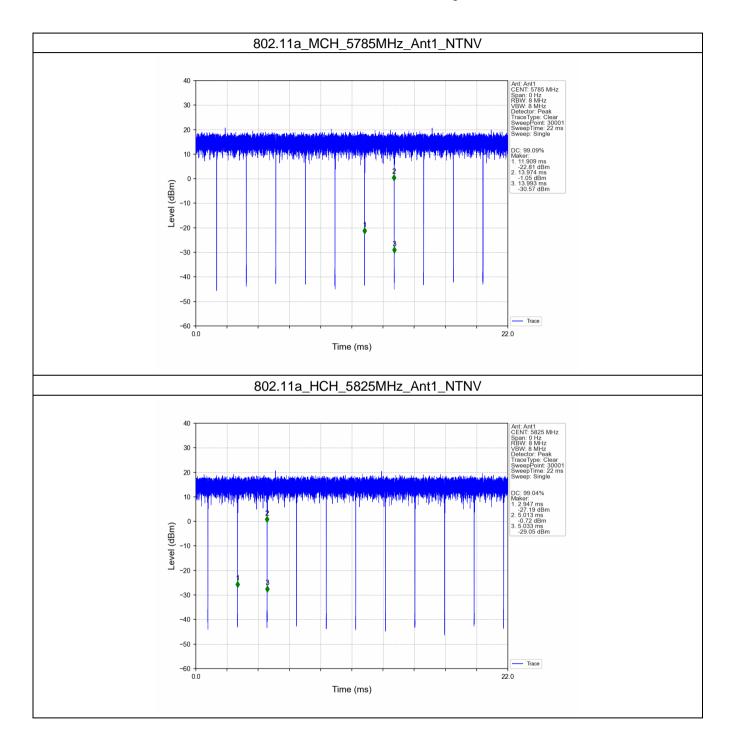
Page: 145 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

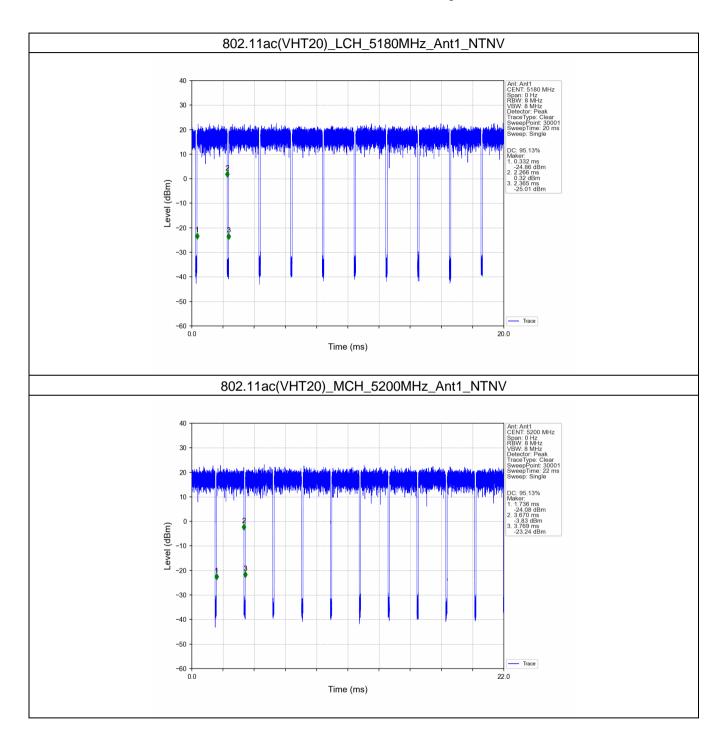
Page: 146 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

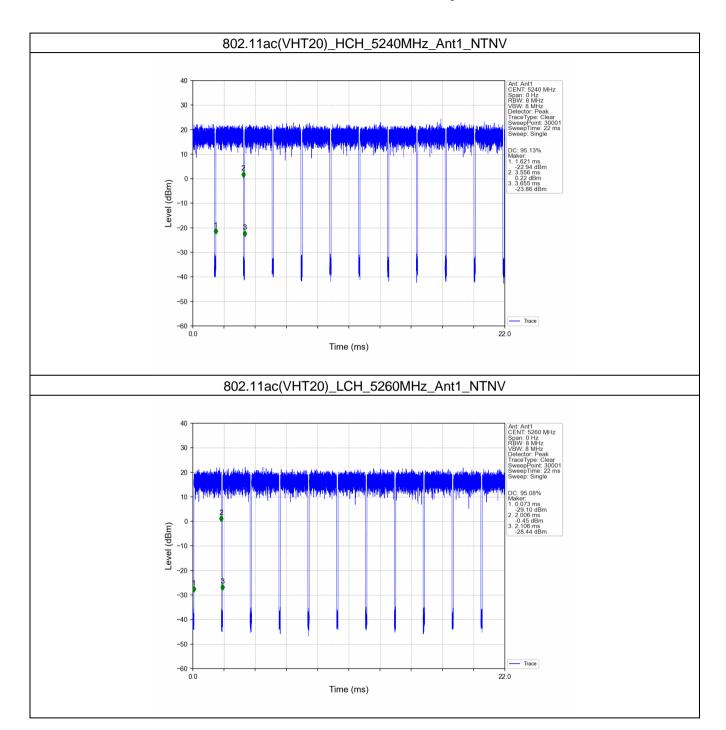
Page: 147 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

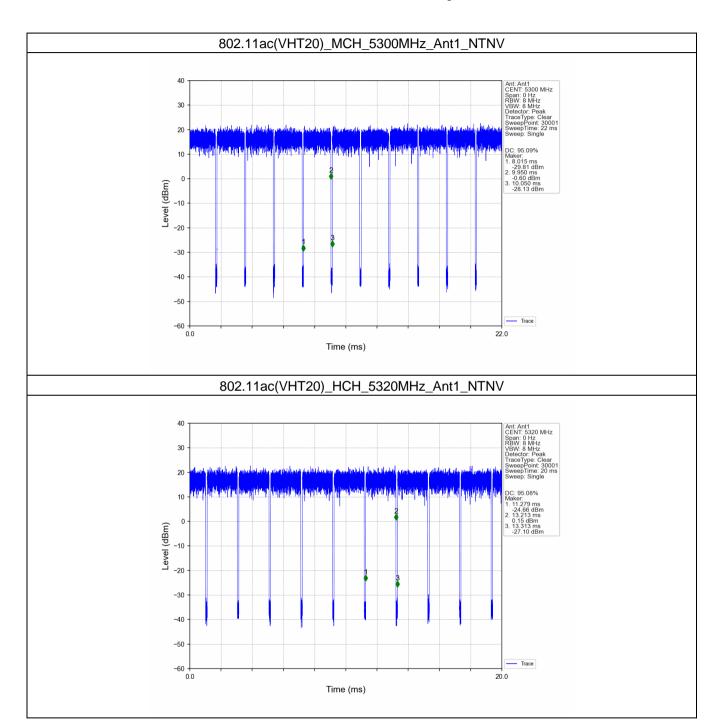
Page: 148 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

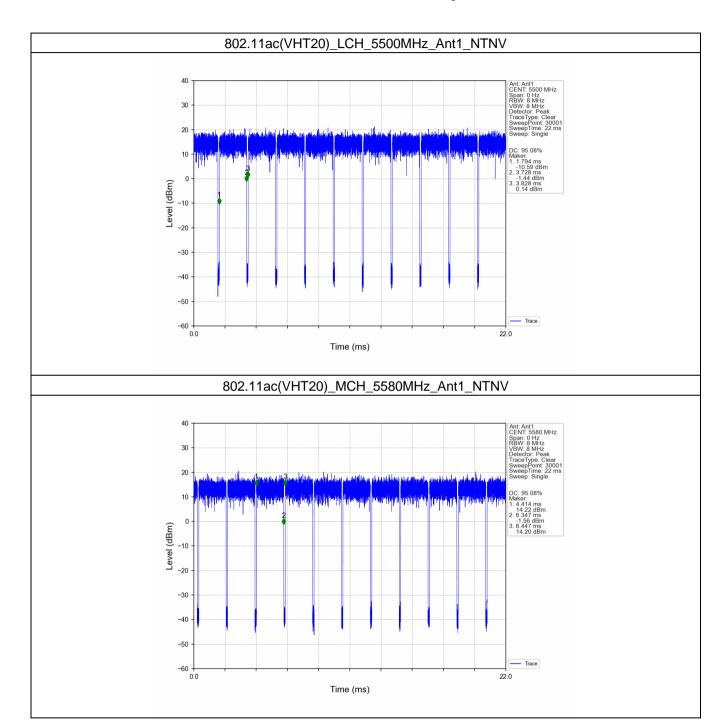
Page: 149 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

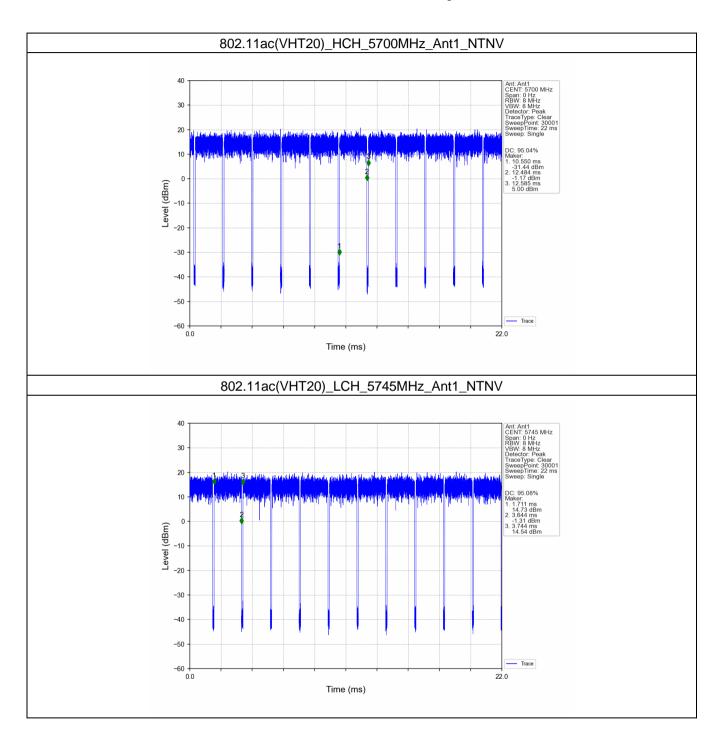
Page: 150 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

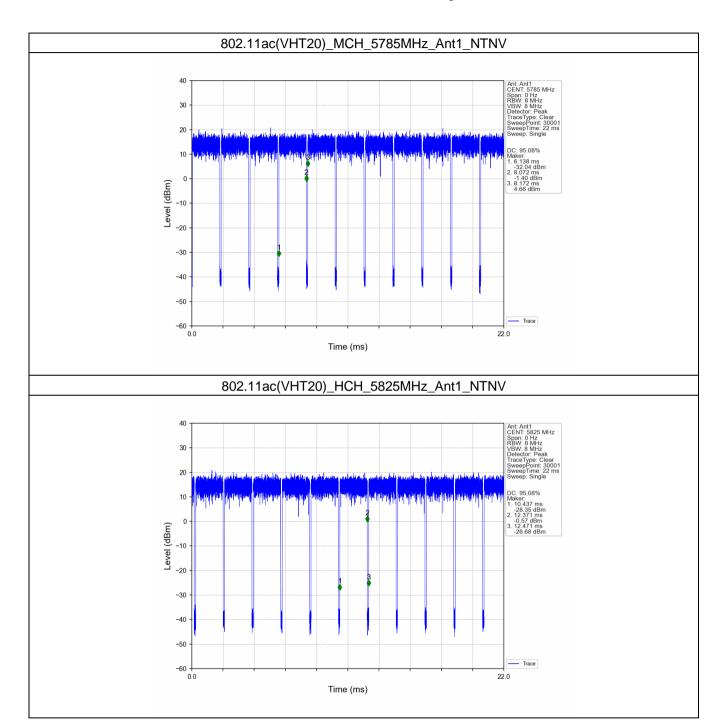
Page: 151 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

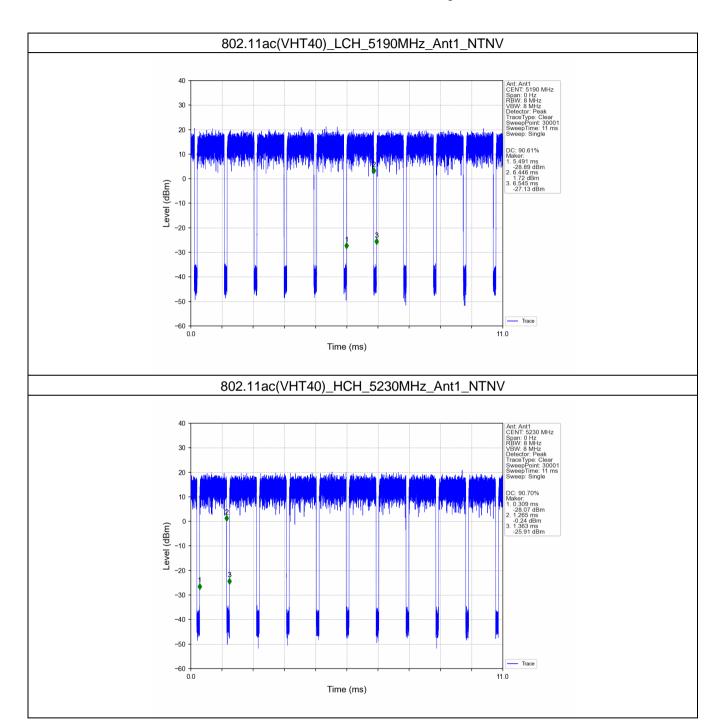
Page: 152 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

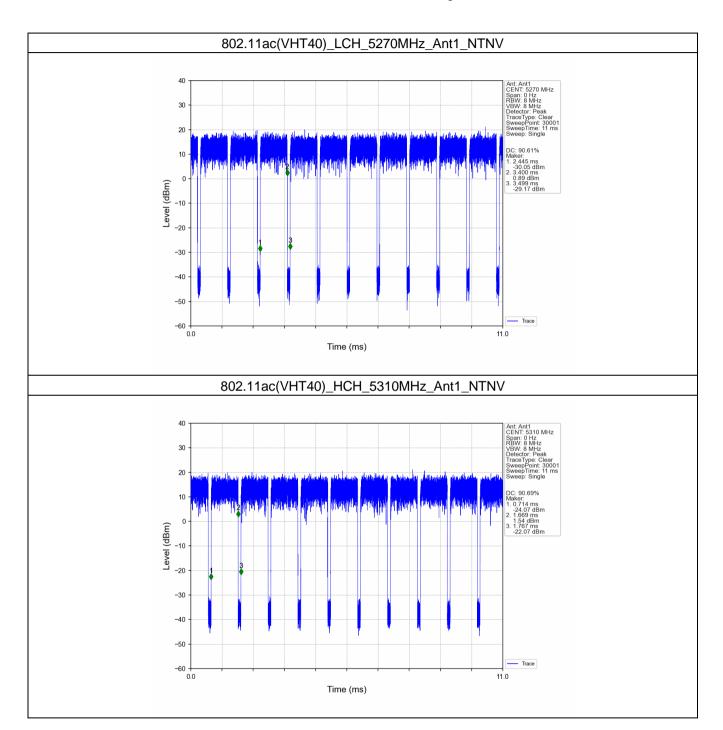
Page: 153 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

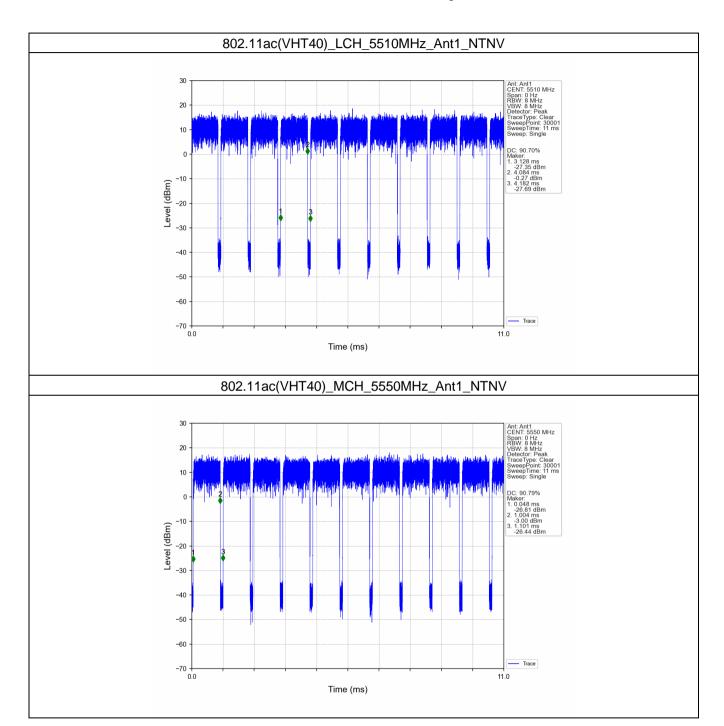
Page: 154 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

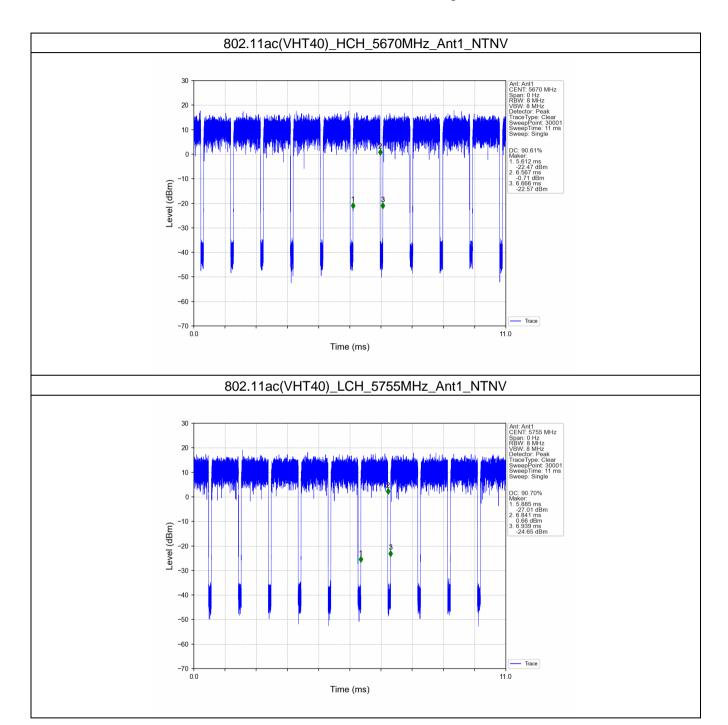
Page: 155 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

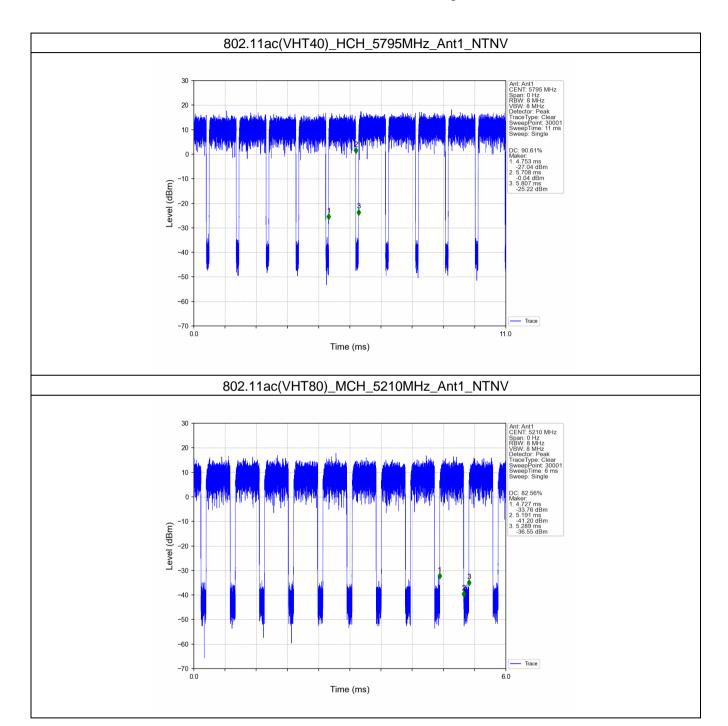
Page: 156 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

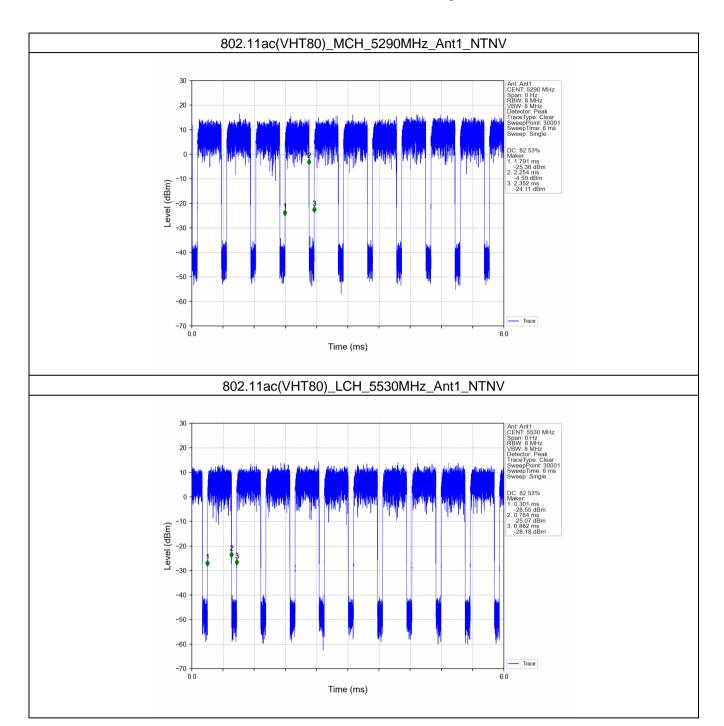
Page: 157 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

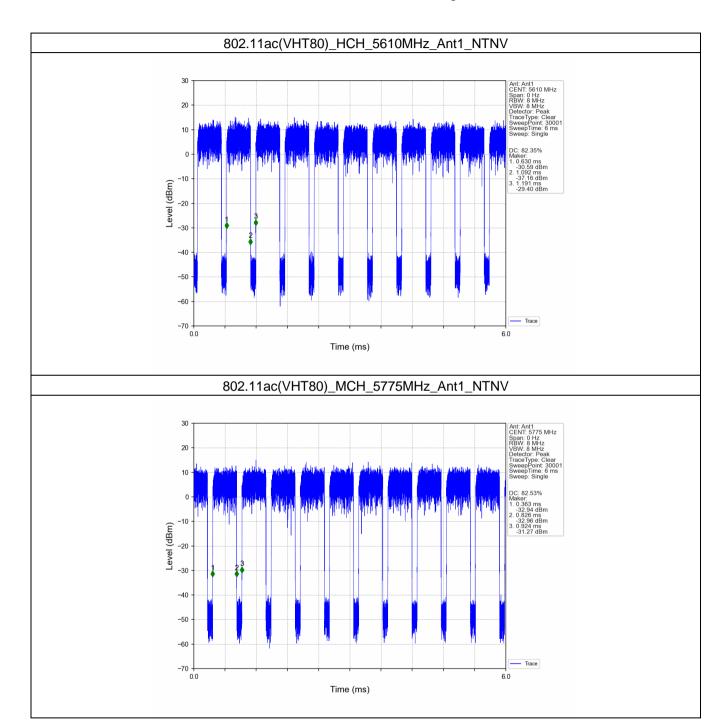
Page: 158 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 159 of 255



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 160 of 255

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 161 of 255

2. Bandwidth

2.1 Test Result

2.1.1 OBW

Mode	TX Type	Frequency (MHz)	ANT	99% Occupied Bandwidth (MHz)		\/ordict
			ANI	Result	Limit	Verdict
		5180	1	18.207	/	Pass
		5200	1	18.123	/	Pass
		5240	1	18.164	/	Pass
		5260	1	18.071	/	Pass
000.44		5300	1	18.183	/	Pass
	0100	5320	1	18.052	/	Pass
802.11a	SISO	5500	1	17.962	/	Pass
		5580	1	17.948	/	Pass
		5700	1	17.962	/	Pass
		5745	1	18.100	/	Pass
		5785	1	18.270		Pass
		5825	1	18.223	/	Pass
		5180	1	19.059	/	Pass
	SISO	5200	1	19.164	/	Pass
		5240	1	19.118	/	Pass
		5260	1	19.002	/	Pass
		5300	1	19.012	/	Pass
802.11ac		5320	1	18.962	/	Pass
(VHT20)		5500	1	18.839	/	Pass
		5580	1	18.807	/	Pass
		5700	1	18.868	/	Pass
		5745	1	18.963	/	Pass
		5785	1	19.025	/	Pass
		5825	1	19.030	/	Pass
	SISO	5190	1	37.161	/	Pass
		5230	1	36.943	/	Pass
		5270	1	37.000	/	Pass
		5310	1	36.981	/	Pass
802.11ac (VHT40)		5510	1	36.700	/	Pass
		5550	1	36.711	/	Pass
		5670	1	36.748		Pass
		5755	1	36.949		Pass
		5795	1	36.993	/	Pass
802.11ac	CICO	5210	1	76.385	/	Pass
(VHT80)	SISO	5290	1	76.578	/	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 162 of 255

5530	1	75.820	/	Pass
5610	1	76.017	/	Pass
5775	1	76.205	/	Pass

2.1.2 6dB BW

Mode	TX Type	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vordiet
				Result	Limit	Verdict
	SISO	5745	1	16.360	>=0.5	Pass
802.11a		5785	1	16.357	>=0.5	Pass
		5825	1	16.356	>=0.5	Pass
000.44	SISO	5745	1	17.306	>=0.5	Pass
802.11ac (VHT20)		5785	1	17.086	>=0.5	Pass
((((((((((((((((((((5825	1	17.542	>=0.5	Pass
802.11ac (VHT40)	SISO	5755	1	35.845	>=0.5	Pass
		5795	1	35.730	>=0.5	Pass
802.11ac (VHT80)	SISO	5775	1	75.229	>=0.5	Pass

2.1.3 26dB BW

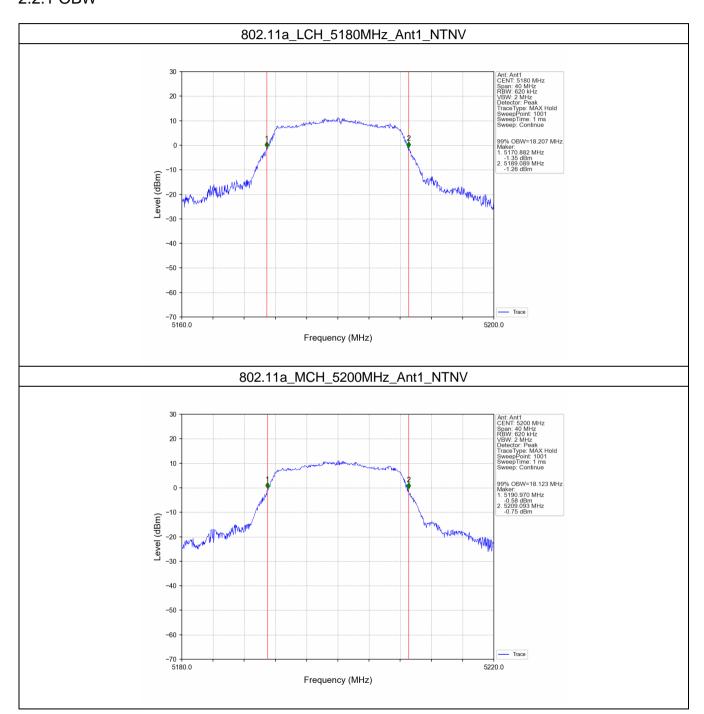
Mode	TX Type	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Vandist
				Result	Limit	Verdict
		5180	1	21.371	/	Pass
		5200	1	21.486	/	Pass
		5240	1	21.537	/	Pass
		5260	1	21.377	/	Pass
802.11a	SISO	5300	1	21.070	/	Pass
		5320	1	20.992	/	Pass
		5500	1	21.043	/	Pass
		5580	1	21.081	/	Pass
		5700	1	20.955	/	Pass
	SISO	5180	1	24.277	/	Pass
		5200	1	25.921	/	Pass
		5240	1	24.112	/	Pass
		5260	1	21.473	/	Pass
802.11ac (VHT20)		5300	1	24.844	/	Pass
(VH120)		5320	1	22.581	/	Pass
		5500	1	21.513	/	Pass
		5580	1	21.529	/	Pass
		5700	1	21.564	/	Pass
802.11ac (VHT40)	SISO	5190	1	45.166	/	Pass
		5230	1	44.541	/	Pass
		5270	1	46.958	/	Pass
		5310	1	51.425	/	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 163 of 255

		5510	1	39.886	/	Pass
		5550	1	39.874	1	Pass
		5670	1	39.969	/	Pass
802.11ac (VHT80)	SISO	5210	1	85.432	/	Pass
		5290	1	99.206	/	Pass
		5530	1	81.003	/	Pass
		5610	1	81.147	/	Pass

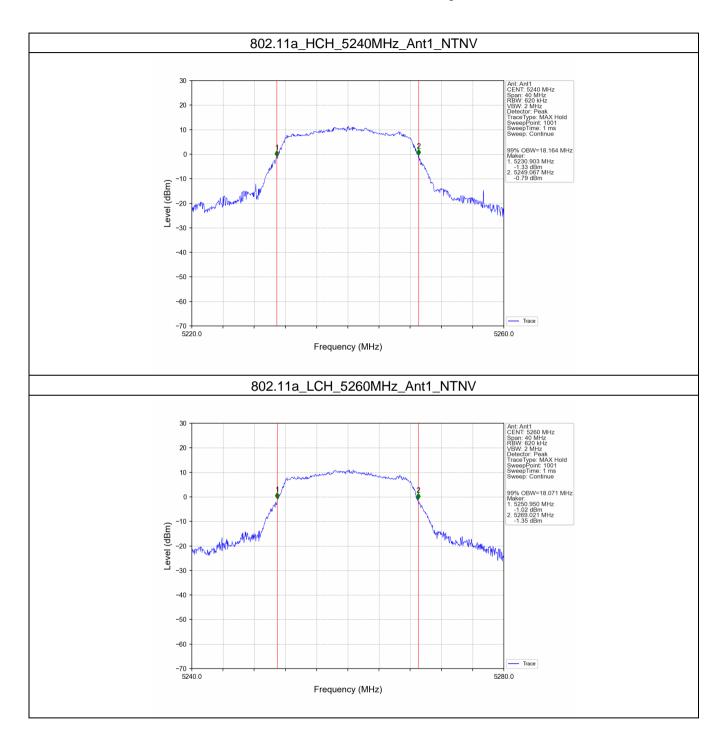

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 164 of 255

2.2 Test Graph

2.2.1 OBW



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240800158703

Page: 165 of 255

