No.: GJWSZ2023-0314-SAR1

TEST REPORT

NAME OF SAMPLE:Nofio wireless adapterAPPLICANT:Nofio Pty LtdCLASSIFICATION OF TEST:N/ASCALED PD:**9.86** W/m2

CVC Testing Technology (Shenzhen) Co., Ltd.

Test Report No.: GJWSZ2023-0314-SAR1

Page 2 of 24

Applicant		Name: Notio Pty Ltd Address: 55 Barry Parade Fortitude Valley QLD 4006 AUSTRALIA				
Name: Nofio Pty Ltd						
Manufacturer		Address: 55 Barry Parade Fortitude Valley QLD 4006 AUSTRALIA				
		Name: Nofio wireless adapter				
		Model/Type: P00	98H			
Equipment Under	Test	Trade mark :N/A				
		Serial NO.: N/A				
		Sample NO.:RE	G SET 01			
Date of Receipt.	Date of Receipt. 2023.10.27		Date of Testing		2023.11.09	
Test Spec	cification			Test R	esult	
FCC 47 CFR Part 2 (2.1		1093) Pass			35	
		The equipm	ent under test	was found	to comply with the	
		requirements of the standards and list				
		requirements of the standards applied.				
Evaluation of lest Resu	It					
		Seal of CVC				
					Issue Date: 2023.11.17	
Tested by:		Reviewed by:		Approved by:		
Liong Jia tong		Huang Mong.			with	
Liang Jiatong		Huang Meng Dong Sanbi				
Name Signatu	re	Name Signature Nam			e Signature	
Other Aspects: NUNE.						
Abbreviations: Pass= passed	Fail = fail	ed N/A= not appli	icable EUT=	equipment, samp	ole(s) under tested	

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

Test Report No.: GJWSZ2023-0314-SAR1

Page 3 of 24

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1. SUMMARY	5
3. EQUIPMENT UNDER TEST (EUT) INFORMATION	6
 3.1GENERAL INFORMATION 3.2 DESCRIPTION OF ACCESSORIES	
4. RF EXPOSURE LIMITS	8
4.1 Uncontrolled Environment	
5. SYSTEM DESCRIPTION AND SETUP	9
5.1 EUMMWAVE PROBE / E-FIELD 5G PROBE 5.2 Data Acquisition Electronics (DAE) 5.3 Scan configuration	
6. TEST EQUIPMENT LIST	
7. SYSTEM VERIFICATION SOURCE	
8. POWER DENSITY SYSTEM VERIFICATION	14
9. SYSTEM VERIFICATION RESULTS	15
9.1 Computation of the Electric Field Polarization Ellipse 9.2Total Field and Power Flux Density Reconstruction 9.3Test Positions	
10. RF EXPOSURE EVALUATION RESULTS	
11. UNCERTAINTY ASSESSMENT	
12. APPENDIXES	
Appendix A. System Validation Plots Appendix B. SAR Test Plots Appendix C. Probe Calibration and Dipole Calibration Report Appendix D. Photographs of EUT and setup	
13. REFERENCES	23

Page 4 of 24

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
GJWSZ2023-0314-SAR1	Original release	2023.11.17

Page 5 of 24

1. Summary

The maximum measured average power density found during testing for Nofio Pty Ltd , Head unit wireless adapter, P008H ,are as follows.

Band	Tx Frequency (MHz)	Scaled PD (W/m ²) Ant 0 + 1
WLAN 6GHz	6025~6985	9.86
Resu	ult	pass
Test Date		2023.11.09

This device is in compliance with Human Exposure to RF Radiation Limits (1.0 mW/cm^2) specified in FCC 47 CFR part 1.1310

2. Guidance Applied

The Power Density testing specification, method, and procedure for this device is in accordance with the following standards, below KDB may not include TAF scope:

- FCC 47 CFR Part 2.1093
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- TCB workshop notes
- IEC TR 63170 Edition 1.0 2018-08

Page 6 of 24

3. Equipment Under Test (EUT) Information

3.1General Information

PRODUCT	Nofio wireless adapter
BRAND	N/A
MODEL	P008H
ADDITIONAL MODEL	N/A
POWER SUPPLY	Lithium Battery for Head
MODULATION MODE	6G: OFDM/1024-QAM, 256-QAM, 64-QAM,16-QAM, QPSK, BPSK
OPERATING FREQUENCY	6.025 GHz ~ 6.985 GHz
BATTERY	Model: zoo781-a300 Capacity: 5000mAh/54Wh Input: 30W(max) Output: 45W(max)
ANTENNA TYPE	FPC
LIMIT	1.0 mW/cm^2
OPERATING MODE	Maximum continuous output

Remark:

1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

3. Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Test Report No.: GJWSZ2023-0314-SAR1

Page 7 of 24

3.2 Description Of Accessories

Adapter			
BRAND	BLACKTECH		
Model No.:	10010308		
Input:	100-240 V~50/60 Hz 1.2A		
Output:	12V=3A;15V=3A0V=2.25A		
AC Cable:	N/A		
DC Cable:	Shielded without ferrite		

3.3 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	22.5~23.5 ℃
Humidity (%RH)	65% ~67%

3.4 Test Location

The tests and measurements refer to this report were performed by testing Lab of CVC Testing Technology (Shenzhen) Co., Ltd.

Lab Address: No. 1301, Guanguang Road, Xinlan Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province 518110 P.R.China

Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn FCC(Test firm designation number: CN1363) IC(Test firm CAB identifier number: CN0137) CNAS(Test firm designation number: L16091)

Test Report No.: GJWSZ2023-0314-SAR1

Page 8 of 24

4. **RF Exposure Limits**

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is $1.0 \text{ mV/cm}^2 = 10 \text{ W/m}^2$

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for Oc	ccupational/Controlled Expos	sures	ki jeka ji
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/1	f 4.89/1	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled I	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/1	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Table 1

Page 9 of 24

5. System Description and Setup

The system to be used for the near field power density measurement SPEAG DASY8 system SPEAG cDASY8 5G module software EUmmWVx probe 5GPhantom cover

Test Report No.: GJWSZ2023-0314-SAR1

Page 10 of 24

5.1 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz
Probe Overall Length	320 mm
Probe Body Diameter	8.0 mm
Tip Length	23.0 mm
Tip Diameter	8.0 mm
Probe's two dipoles length	0.9 mm – Diode loaded
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)
Position Precision	< 0.2 mm
Distance between diode sensors	1.5 mm
and probe's tip	
Minimum Mechanical separation	0.5 mm
between probe tip and a Surface	
Applications	E-field measurements of 5G devices and other mm-wave transmitters
	operating above 10GHz in < 2 mm distance from device (free-space)
	Power density, H-field and far-field analysis using total field reconstruction.
Compatibility	cDASY6 + 5G-Module SW1.0 and highe
	sensor 15an calbrated device

Page 11 of 24

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

5.3 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

Test Report No.: GJWSZ2023-0314-SAR1

Page 12 of 24

6. Test Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Data Acquisition Electronics	Speag	DAE4	1725	Oct. 26, 2023	Oct. 25, 2023
E-Field Probe	Speag	EUmmWV4	9630	May.25.2022	May.24.2024
5G Verification Source 10GHz	Speag	5G Verification Source 10GHz	1046	May.18.2022	May.17.2024
5G Verification Source 30GHz	Speag	5G Verification Source 30GHz	1100	May.23.2022	May.22.2024
Power Amplifier	Mini-Circuit	ZVA-183W-S+	726202215	Jan. 17, 2023	Jan. 16, 2024
Power Sensor	R&S	NRP183-10	101845	Sep. 25, 2023	Sep. 24, 2024
Power Sensor	R&S	NRP183-10	101843	Sep. 25, 2023	Sep. 24, 2024
Temperature hygrometer	UNI-T	A10T	C193561455	Jan. 16, 2023	Jan. 15, 2024

Page 13 of 24

7. System Verification Source

The System Verification sources at 10 GHz and above comprise X-band horn-antennas and very stable signal generators.

Model	X-band horn antenna
Calibrated frequency:	10 GHz at 10 mm from the case surface
E-field polarization	linear
Input power	max. 20 W
Connector	SMA
Operation	requires a stable source with known forward power to perform system performance
	check or validation
Size	100 mm x 100 mm x 172 mm
Weight	700 g

Page 14 of 24

8. Power Density System Verification

The system performance check verifies that the system operates within its specifications. The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 0.66dB of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.25 \left(\frac{\lambda}{4}\right)$	120/120	16×16
30	$0.25 \left(\frac{\hat{\lambda}}{4}\right)$	60/60	24×24
60	$0.25 (\frac{\hat{\lambda}}{4})$	32.5/32.5	26×26
90	$0.25~(\frac{\hat{\lambda}}{4})$	30/30	36 imes 36

Settings for measurement of verification sources

Verification Setup Photo

Page 15 of 24

9. System Verification Results

Frequency	5G	Probe	DAE	Distance	Measured	Targeted	Deviation	Date
(GHz)	Verification	S/N	S/N	(mm)	4 cm^2	4 cm^2	(%)	
	Source				(W/m^2)	(W/m^2)		
10G	10GHz 1046	9630	1725	10	54.2	48.9	10.8	2023/10/09

9.1 Computation of the Electric Field Polarization Ellipse

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (\emptyset , θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, \emptyset and θ) are sufficient for the description of the incident field.

Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (\emptyset , θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r1 and r2 toward the probe axisand to perform measurements at three angular positions of the probe, i.e., at β 1, β 2 and β 3, results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, morerotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree (r2 = r1 + 90 degree), and to simplify, the first rotation angle of the probe (β 1) can be set to 0 degree.

Page 16 of 24

9.2Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe. The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re\{S\}|$ is the total Poynting vector
- $n \cdot Re\{S\}$ is the normal Poything vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

9.3Test Positions

This is an accessory product for a VR headset, wireless video transmitter and receiver for video transfer of VR Headset data. Plastic Enclosure thickness is about 1.2mm. The antenna will attach to this surface, on the side that faces the user's head. Antenna Distance from Head is about 25mm from the closest part of the antenna, and 40mm from the furthest. SAR evaluation is required on one sides of Antenna, at 25 mm separation from a flat phantom.

Page 17 of 24

10. RF Exposure Evaluation Results

The PD test was performed of a 25mm separation between sensor and EUT surface.
 According to TCB Workshop in October 2018, 4 cm² averaging area are used.

Mode	Test Position	Separation Distance (mm)	Ch.	Fre.	Ant.	Conducted Power (dBm)	Maximum Tune-up (dBm)	Tune -up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Scaling Factor for measurement uncertainty	Power Drift (dB)	Normal psPD 4 cm2 (W/m^2)	Scaled Normal psPD (W/m^2)	Scaled Normal psPD (W/m^2) Ant 0+1	Total psPD (W/m^2)	Scaled Total psPD (W/m^2)	Scaled Total psPD (W/m^2) Ant 0+1	
			15	6025	Ant 0	11.15	12.0	1.22	100	1	1.4521	-0.09	2.15	3.80	6.60	2.70	4.77	8.07	
					Ant 1	12.89	13.0	1.03	100	1	1.4521	-0.08	1.88	2.80		2.22	3.31		
		47 6		Ant 0	10.52	12.0	1.41	100	1	1.4521	0.09	1.62	3.31		1.94	3.96			
			47	47 6185	Ant 1	12.86	13.0	1.03	100	1	1.4521	-0.08	1.77	2.65	5.96	2.19	3.28	7.25	
			79			Ant 0	10.43	12.0	1.44	100	1	1.4521	0.02	1.77	3.69		2.38	4.96	
				79 6345	Ant 1	12.67	13.0	1.08	100	1	1.4521	0.14	2.05	3.21	6.90	2.43	3.81	0.77	
802.11ax	Front Face	25			Ant 0	10.71	12.0	1.35	100	1	1.4521	0.10	2.27	4.44		2.75	5.37		
HE160			111 (6505	Ant 1	10.97	12.0	1.27	100	1	1.4521	-0.02	1.94	3.57	8.01	2.44	4.49	9.86	
					Ant 0	12.00	12.0	1.00	100	1	1.4521	0.03	2.23	3.24		2.66	3.86		
					143	6665	Ant 1	10.96	12.0	1.27	100	1	1.4521	-0.10	1.42	2.62	5.86	1.72	3.17
					Ant 0	11.12	12.0	1.22	100	1	1.4521	-0.06	2.17	3.86		2.58	4.59		
			175 6825	6825	Ant 1	11.93	12.0	1.02	100	1	1.4521	0.03	1.52	2.24	6.10	1.78	2.63	7.21	
					Ant 0	7.31	8.0	1.17	100	1	1.4521	0.03	1.10	1.87		1.22	2.08	1	
			207	6985	Ant 1	8.68	9.0	1.08	100	1	1.4521	0.00	1.00	1.56	3.43	1.12	1.75	3.83	

Page 18 of 24

11. Uncertainty Assessment

The budget is valid for evaluation distances > λ /5. For specifific tests and confifigurations, the Uncertainty could be considerably smaller.

Error Description	Uncertainty	Brobability	Divisor		Standard
Error Description	(+dB)	Frobability	DIVISOI	(CI)	(+dB)
Uncertainty	terms dependent on th	e measurement syst	em	I	(±00)
Probe Calibration	0.49	N	1	1	0.49
Probe correction	0.00	R	1.732	1	0.00
Frequency response (BW ≤ 1 GHz)	0.20	R	1.732	1	0.12
Sensor cross coupling	0.00	R	1.732	1	0.00
Isotropy	0.50	R	1.732	1	0.29
Linearity	0.20	R	1.732	1	0.12
Probe scattering	0.00	R	1.732	1	0.00
Probe positioning offset	0.30	R	1.732	1	0.17
Probe positioning repeatability	0.04	R	1.732	1	0.02
Sensor mechanical offset	0.00	R	1.732	1	0.00
Probe spatial resolution	0.00	R	1.732	1	0.00
Field impedance dependence	0.00	R	1.732	1	0.00
Amplitude and phase drift	0.00	R	1.732	1	0.00
Amplitude and phase noise	0.04	R	1.732	1	0.02
Measurement area truncation	0.00	R	1.732	1	0.00
Data acquisition	0.03	Ν	1	1	0.03
Sampling	0.00	R	1.732	1	0.00
Field reconstruction	0.80	R	1.732	1	0.46
Forward transformation	0	R	1.732	1	0
Power density scaling	-	R	1.732	1	-
Spatial averaging	0.10	R	1.732	1	0.06
System detection limit	0.04	R	1.732	1	0.02
Uncertainty term	ns dependent on the DU	T and environmental	factors		
Probe coupling with DUT	0.00	R	1.732	1	0.0
Modulation response	0.40	R	1.732	1	0.23
Integration time	0.00	R	1.732	1	0.0
Response time	0.00	R	1.732	1	0.0
Device holder influence	0.10	R	1.732	1	0.06
DUT alignmenl	0.00	R	1.732	1	0.0
RF ambient conditions	0.04	R	1.732	1	0.02
Ambient reflections	0.04	R	1.732	1	0.02
Immunity /secondary reception	0.00	R	1.732	1	0.0
Drift of the DUT		R	1.732	1	-
Combin	ed Std.Uncertainty				0.81
Expanded	1.62				

Test Report No.: GJWSZ2023-0314-SAR1

Page 19 of 24

12. Appendixes

Appendix A. System Validation Plots

System Performance check Data (10000 MHz)

Measurement Report for Device, FRONT, Validation band, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]
Source 10G,	100.0 x 100.0 x 172.0

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G Air	FRONT, 10.00	Validation band	CW, 0	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave- xxxx	Air	EUmmWV4 - SN9630_F1-55GHz, 2022-05-	DAE4 Sn1725, 2022-06-02
		25	

Scan Setup

	5G Scan
Grid Extents [mm]	25.0 x 25.0
Grid Steps [lambda]	0.125 x 0.125
Sensor Surface [mm]	10.0
MAIA	Y

Measurement Results

	5G Scan
Date	2023-11-09
Avg. Area [cm ²]	4.00
psPDn+ [W/m²]	53.9
psPDtot+ [W/m ²]	54.2
psPDmod+ [W/m ²]	54.6
E _{max} [V/m]	152
Power Drift [dB]	-0.03

Page 20 of 24

Appendix B. SAR Test Plots

Measurement Report for Device, FRONT, Custom Band, UID 0 -, Antenna 0, Channel 111 (6505.0MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]		IMEI	D	OUT Type	
, Device	90.0 x 90.0 x 10.0			N	lofio wireless adapter	
Exposure Conditions						
Phantom Section	Position, Test Distance	Band	Group,	Frequ	uency [MHz],	Conversion Factor

	[mm]	24.14	UID	Channel Number	
5G Air	FRONT, 25.00	Custom Band	CW, 0	6505.0, 111	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave- xxxx	Air	EUmmWV4 - SN9630_F1-55GHz, 2022-05-	DAE4 Sn1725, 2022-06-02
		25	

EC Scon

Scan Setup

	Ju Juan
Grid Extents [mm]	32.0 x 48.00000000000001
Grid Steps [lambda]	0.125 x 0.125
Sensor Surface [mm]	25.0
MAIA	Y

Measurement Results

	5G Scan
Date	2023-11-09
Avg. Area [cm ²]	4.00
psPDn+ [W/m²]	2.27
psPDtot+ [W/m ²]	2.75
psPDmod+ [W/m ²]	2.80
E _{max} [V/m]	34.0
Power Drift [dB]	0.10

Page 21 of 24

Y. W. Y. WILL

Measurement Report for Device, FRONT, Custom Band, UID 0 -, Antenna 1, Channel 111 (6505.0MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]		IMEI	DUT Type	
, Device	90.0 x 90.0 x 10.0			Nofio wireless adapter	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G Air	FRONT, 25.00	Custom Band	CW, 0-	6505.0, 111	1.0
Hardware Setup					

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave- xxxx	Air	EUmmWV4 - SN9630_F1-55GHz, 2022-05-	DAE4 Sn1725, 2022-06-02
		25	

Scan Setup

5G Scar
46.000000000003
0.125 x 0.125
25.0
Y

Measurement Results

5G Scan
2023-11-09
4.00
1.94
2.44
2.47
31.0
-0.02

Test Report No.: GJWSZ2023-0314-SAR1

Page 22 of 24

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

Appendix D. Photographs of EUT and setup

Page 23 of 24

13. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

[2] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015

[3] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

----- End of the Report -----

Test Report No.: GJWSZ2023-0314-SAR1

Page 24 of 24

Important

(1) The test report is invalid without the official stamp of CVC;

(2) Any part photocopies of the test report are forbidden without the written permission from CVC;

(3) The test report is invalid without the signatures of Approval and Reviewer;

(4) The test report is invalid if altered;

(5) Objections to the test report must be submitted to CVC within 15 days.

(6) Generally, commission test is responsible for the tested samples only.

(7) As for the test result "-" or "N" means "not applicable", "/" means "not test", "P" means "pass" and "F" means "fail"

The test data and test results given in this test report should only be used for purposes of scientific research, teaching and internal quality control when the CMA symbol is not presented.

Address: No. 1301, Guanguang Road, Xinlan Community, Guanlan Street, Longhua District, Shenzhen, Guangdong, 518110, P. R. China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn http://www.cvc.org.cn