

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202308-0081-6

Page: 1 of 3

RF Exposure Evaluation FCC ID: 2BDDK-M3

1. Client Information

Applicant	1:	Shenzhen Wooask Technology Co., Ltd			
Address		506, Tower 2, Beihang Building, 53 Gaoxin South 9th Road, Nanshan, Shenzhen, China			
Manufacturer	:	Shenzhen Wooask Technology Co., Ltd			
Address	dress : 506, Tower 2, Beihang Building, 53 Gaoxin South 9th Road, Nansha Shenzhen, China				

2. General Description of EUT

EUT Name	1	Translator Earbuds				
Model(s) No.		M3, M7, M8, M9, M10, M11, M12, M13, M15				
Model Difference	1	All PCB boards and circuit diagrams are the same, the only difference is that appearance.				
		Operation Frequency:	Bluetooth 5.3(BR+EDR): 2402~2480MHz			
		Operation Frequency:	79 channels			
Product		Antenna Gain:	1.95dBi Ceramic Antenna			
Description		Modulation Type: GFSK(1Mbps) π /4-DQPSK(2Mbps)				
		Bit Rate of Transmitter:	1/2Mbps			
Power Rating	6	Input: DC 5V				
Power Supply (Charging Box)		DC 3.7V by 300mAh Rechargeable Li-ion battery				
Power Supply (Earphone)		DC 3.7V by 40mAh Rechargeable Li-ion battery				
Software Version	:	DHF-B128-V1.4.1(6976D)				
Hardware Version	13	N/A				

Remark: The antenna gain provided by the applicant, the adapter and verified for the RF conduction test and adapter provided by TOBY test lab.

Note: More test information about the EUT please refer the RF Test Report.

TB-RF-074-1. 0

Report No.: TBR-C-202308-0081-6

Page: 2 of 3

SAR Test Exclusion Calculations

1. FCC: According to KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

(1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance ≤ 5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] $\,\leqslant\!3.0$ for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

2. Summary simultaneous transmission for SAR Exclusion

The SAR exemption limits outlined in clause 4.3.2(b) of KDB 447498 have been derived based on an approximate SAR value of 0.4 W/kg using half-wave dipole antennas Footnote 1. As such, when simultaneous transmitter SAR evaluations include transmitters that have been exempt from routine SAR evaluation, the SAR must be estimating based on the ratio between the maximum tune-up tolerance limit of the transmitter that has been exempt and the exemption limit at the specific distance and frequency for that transmitter. This ratio must be multiplied by 0.4 W/kg(2.0 W/kg for controlled use and 1.0 W/kg for limb worn devices) in order to calculate the estimated SAR level.

The estimate SAR value is calculated based the following equation:

(maximum power level including tune-up tolerance for transmitter A / maximum power level of exemption at the same frequency and distance) * 0.4W/kg

1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}/x}$] W/kg, for test separation distances \leq 50 mm;

where
$$x = 7.5$$
 for 1-g SAR and $x = 18.75$ for 10-g SAR.

2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is $> 50 \text{ mm}^{37}$

The [Σ of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [Σ of MPE ratios] is \leq 1.0.

The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all ≤ 0.04 , and the [Σ of MPE ratios] is ≤ 1.0 .

Report No.: TBR-C-202308-0081-6

Page: 3 of 3

3. Calculation:

Test separ	ration: 5mm					
	Million	В	luetooth Mode (GFSK)	CONTRACT OF THE PARTY OF THE PA		AHOLI
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	0.398	0±1	1	1.259	0.390	3.0
2.441	1.049	1±1	2	1.585	0.495	3.0
2.480	1.426	1±1	2	1.585	0.499	3.0
<u> </u>	The same of	Blue	tooth Mode (Pi/4-DQPS	K)		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	1.457	1±1	2	1.585	0.491	3.0
2.441	2.086	2±1	3	1.995	0.623	3.0
2.480	2.266	2±1	3	1.995	0.628	3.0

Conclusion:

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB 447498 v06.

----END OF REPORT----

