

TEST REPORT

FCC ID: 2BDCU-YX379

Applicant: Hubei Yihang New Material Technology Co., Ltd.

Address: No.6, Shanchuan Road, Mamiao Industrial Park, Makou Town, Hanchuan City, Hubei Province, China

Manufacturer: Zhongshan Kuaiku Industrial Co., Ltd

Address: 4th Floor, No. 157 Rainbow Avenue, West District, Zhongshan City, Guangdong Province

EUT: circuit board

Trade Mark: N/A

Model Number: YX-379

Date of Receipt: Oct. 16, 2023

Test Date: Oct. 16, 2023 - Oct. 25, 2023

Date of Report: Oct. 25, 2023

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Applicable Standards: FCC Part 18
MP-5(1986)

Test Result: Pass

Report Number: DL-20231025070E

Prepared (Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

TABLE OF CONTENT

	Page
1.VERSION	3
2.GENERAL INFORMATION	4
2.1 Description of Device (EUT).....	4
2.2 Tested System Details.....	4
2.3 Test Facility	4
2.4 MEASUREMENT UNCERTAINTY	5
2.5 Test Instrument Used.....	6
3.CONDUCTED EMISSION AT THE MAINS TERMINALS TEST.....	7
3.1 Block Diagram Of Test Setup.....	7
3.2 Test Standard.....	7
3.3 Power Line Conducted Emission Limit.....	7
3.4 EUT Configuration on Test.....	7
3.5 Operating Condition of EUT	7
3.6 Test Procedure	7
3.7 Test Result	7
4.RADIATION EMISSION TEST.....	7
4.1 Block Diagram of Test Setup.....	8
4.2 Test Standard.....	8
4.3 Radiation Limit.....	8
4.4 EUT Configuration on Test.....	9
4.5 Operating Condition of EUT	9
4.6 Test Procedure	9
4.7 Test Result	10
5.EUT PHOTOGRAPHS.....	14
6.EUT TEST PHOTOGRAPHS	15

1.VERSION

Report No.	Version	Description	Approved
DL-20231025070E	Rev.01	Initial issue of report	Oct. 25, 2023

2.GENERAL INFORMATION

2.1 Description of Device (EUT)

EUT	:	circuit board
Trademark	:	N/A
Model Number	:	YX-379
Model Difference	:	/
Power Supply	:	Input: DC 12V/2A Wireless charger Output: 5W, 7.5W, 10W, 15W

2.2 Tested System Details

None.

2.3 Description Of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E1	circuit board	N/A	YX-379	N/A	EUT
E2	Mobile Phone	N/A	SAMSUNG Galaxy S21 5G	N/A	Auxiliary

2.4 Test mode

Test Modes:		
Mode 1	Wireless charger Output Mode(5W, 1%/50%/99%)	Record
Mode 2	Wireless charger Output Mode(7.5W, 1%/50%/99%)	Pre-tested
Mode 3	Wireless charger Output Mode(10W, 1%/50%/99%)	Pre-tested
Mode 4	Wireless charger Output Mode(15W, 1%/50%/99%)	Pre-tested

Note: 1. We have evaluated 1%, 50% and 99% battery charging mode, and the worst mode (99%) is showed in this report.
2. All modes have been tested, and the report only shows the results of the worst mode4.

2.5 Test Facility

Site Description

Test Lab: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307

IC Registered No.: 27485

CAB ID.: CN0118

2.6 MEASUREMENT UNCERTAINTY

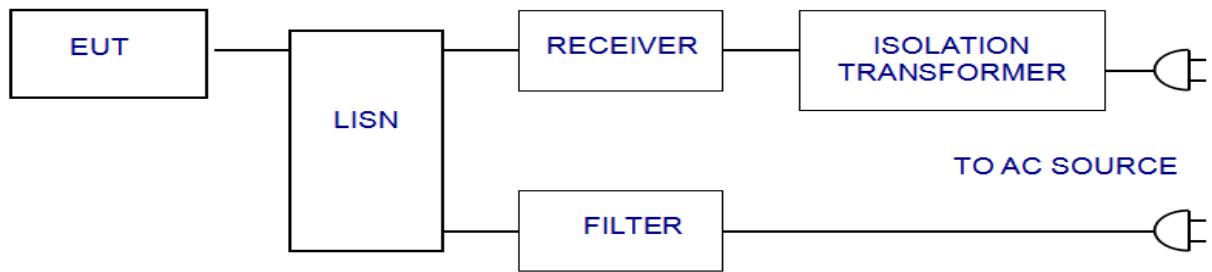
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150K-30MHz)	3.20
Radiated disturbance 30MHz-1000MHz	4.80
Radiated Emission Uncertainty(9KHz-30MHz)	3.24

2.7 Test Instrument Used

For Conducted Emission Test (843 Shielded Room)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
843 Shielded Room	ChengYu	843 Room	843	Sep. 20, 2022	Sep. 19, 2025
EMI Receiver	R&S	ESR	101421	Nov. 05, 2022	Nov. 04, 2023
LISN	R&S	ENV216	102417	Nov. 05, 2022	Nov. 04, 2023
Clamp	COM-POWER	CLA-050	431071	Nov. 05, 2022	Nov. 04, 2023
3-Loop Antenna	DAZE	ZN30401	13021	Nov. 05, 2022	Nov. 04, 2023
ISN T8	Schwarzbeck	NTFM 8158	101135	Nov. 05, 2022	Nov. 04, 2023
ISN T5	Schwarzbeck	NTFM 8158	101136	Nov. 05, 2022	Nov. 04, 2023
843 Cable 1#	ChengYu	CE Cable	001	Nov. 05, 2022	Nov. 04, 2023
843 Cable 1#	ChengYu	CE Cable	002	Nov. 05, 2022	Nov. 04, 2023


For Radiated Emission Test (966 chamber)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
966 Chamber	ChengYu	966 Room	966	Sep. 20, 2022	Sep. 19, 2025
Spectrum Analyzer	Agilent	E4408B	MY50140780	Nov. 05, 2022	Nov. 04, 2023
EMI Receiver	R&S	ESRP7	101393	Nov. 05, 2022	Nov. 04, 2023
Amplifier	Schwarzbeck	BBV9743B	00153	Nov. 05, 2022	Nov. 04, 2023
Amplifier	EMEC	EM01G8GA	00270	Nov. 05, 2022	Nov. 04, 2023
Broadband Trilog Antenna	Schwarzbeck	VULB9162	00306	Nov. 05, 2022	Nov. 04, 2023
Horn Antenna	Schwarzbeck	BBHA9120D	02139	Nov. 05, 2022	Nov. 04, 2023
Loop Antenna	ZHINAN	ZN30900A	/	Nov. 05, 2022	Nov. 04, 2023
966 Cable 1#	ChengYu	966	004	Nov. 05, 2022	Nov. 04, 2023
966 Cable 2#	ChengYu	966	003	Nov. 05, 2022	Nov. 04, 2023

3.CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1 Block Diagram Of Test Setup

3.2 Test Standard

FCC PART 18, MP-5(1986)

3.3 Power Line Conducted Emission Limit

Frequency MHz		Limits dB(μ V)	
		Quasi-peak Level	Average Level
0.15	~ 0.50	66 ~ 56*	56 ~ 46*
0.50	~ 5.00	56	46
5.00	~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipments are installed on conducted emission test to meet FCC PART 18 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5 Operating Condition of EUT

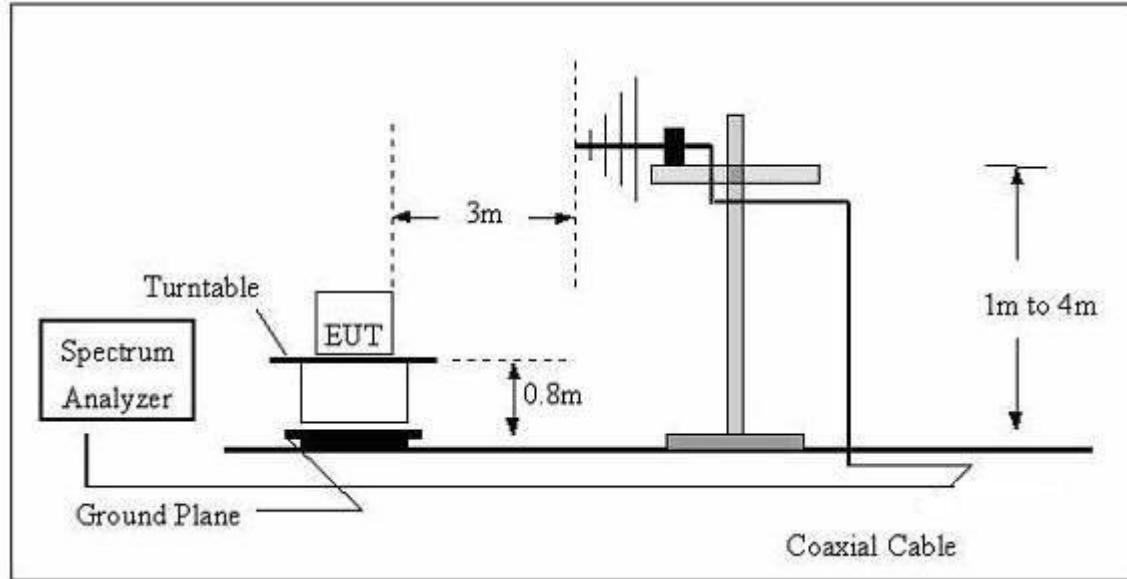
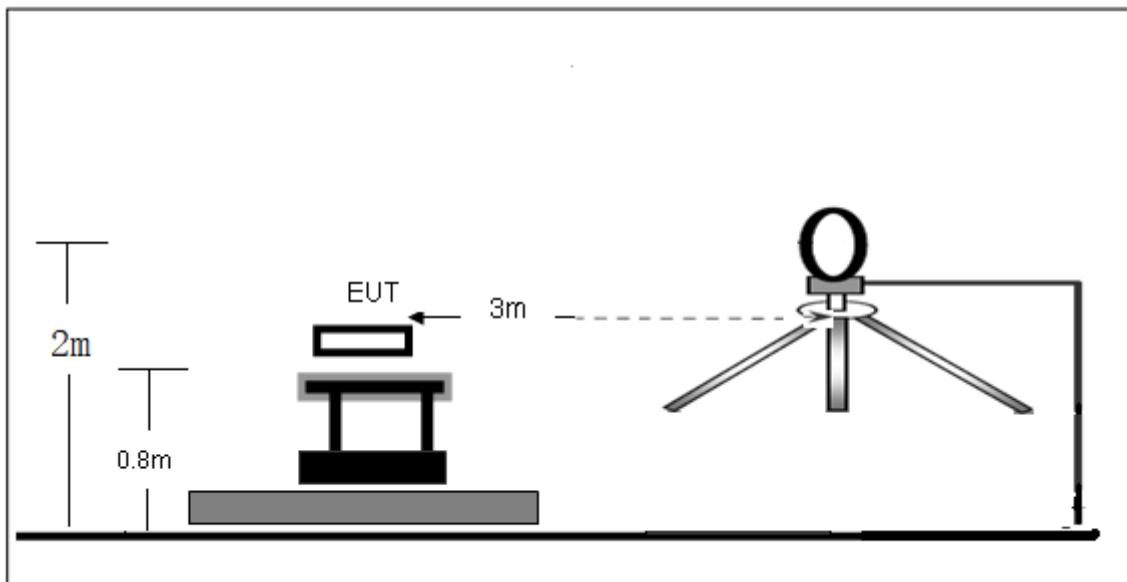
- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **FCC PART 18** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.



3.7 Test Result

The EUT is powered by DC, no requirements for this item.

4. RADIATION EMISSION TEST

4.1 Block Diagram of Test Setup

4.2 Test Standard

FCC PART 18, MP-5(1986)

4.3 Radiation Limit

Limits for frequency below 30MHz

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise indicated, shall not exceed the following table:

Frequency MHz	Distance Meters	Field Strengths Limit	
		dB μ V/m	Remark
0.009~30MHz	3	103.5	Quasi-peak

Remark: (1) Emission level dB V/m for 0.009~30MHz = $20\log(15) + 40\log(300/3)$ dB V/m; (2) Calculated according FCC 18.305. (3) The smaller limit shall apply at the cross point between two frequency bands. (4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Limits for frequency Above 30MHz

FREQUENCY (MHz)	DISTANCE (Meters)	FIELD STRENGTHS LIMITS (dB μ V/m)
30 ~ 1000	3	63.5

(1) Emission level dB V/m for above 30MHz = $20\log(15) + 20\log(300/3)$ dB V/m

4.4 EUT Configuration on Test

The FCC PART 18 regulations test method must be used to find the maximum emission during radiated emission test. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

4.6 Test Procedure

1) Sequence of testing 9 kHz to 30 MHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 2.0 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

--- The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at RBW: 10KHz, VBW: 30KHz.

Sequence of testing 30 MHz to 1 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

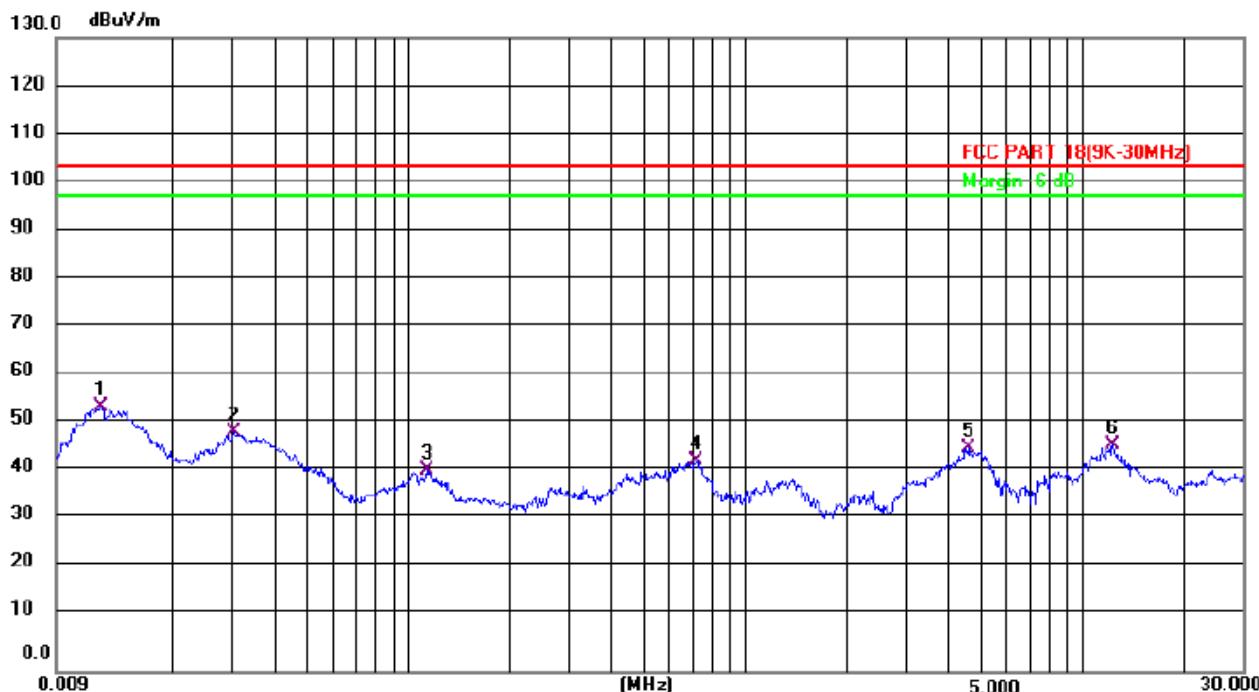
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 4 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored
- The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at RBW: 120KHz, VBW: 300KHz.


4.7 Test Result

PASS

Please refer to the following page.

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	/
Test Voltage :	DC 12V	Test Mode:	Mode 4

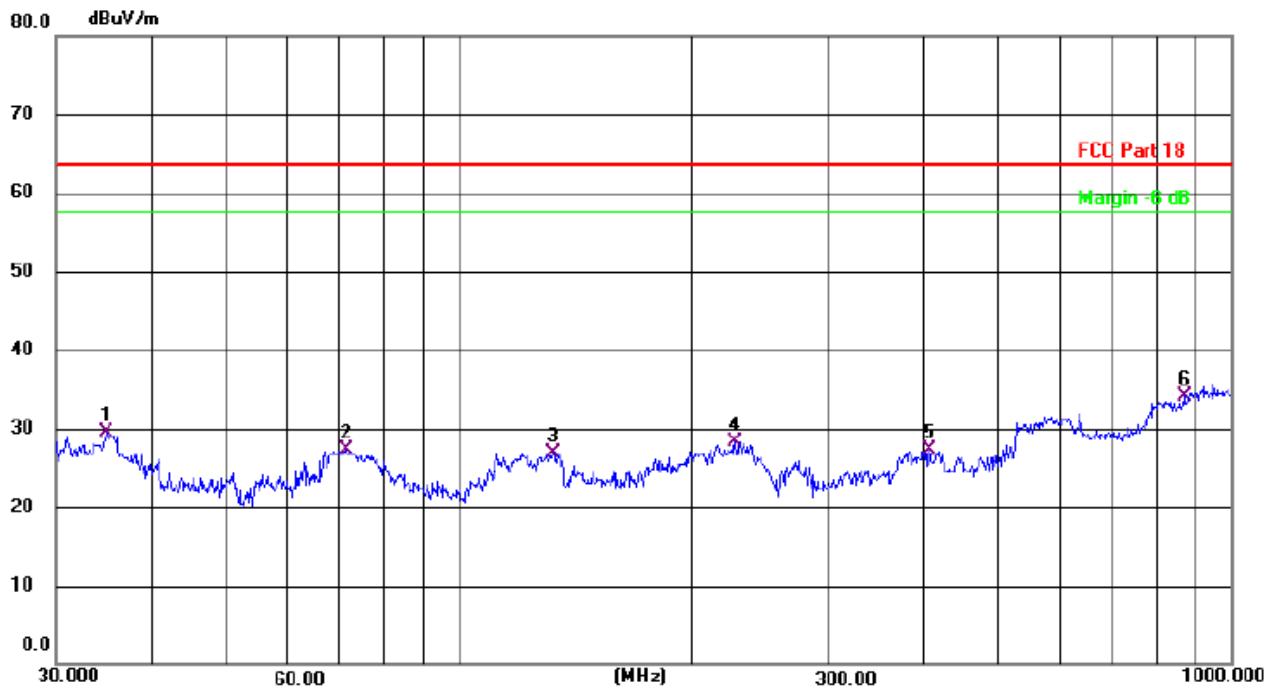
Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
0.0122	53.48	10.22	63.70	103.5	-39.80	QP
0.0303	49.11	10.47	59.58	103.5	-43.92	QP
0.1130	39.39	10.88	50.27	103.5	-53.23	QP
0.7186	41.39	10.23	51.62	103.5	-51.88	QP
4.5689	44.83	10.18	55.01	103.5	-48.49	QP
12.2911	45.24	10.69	55.93	103.5	-47.57	QP

Note:

Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

Margin = Emission Level(Meter Reading+ Factor) - Limit.


Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Horizontal
Test Voltage :	DC 12V	Test Mode:	Mode 4

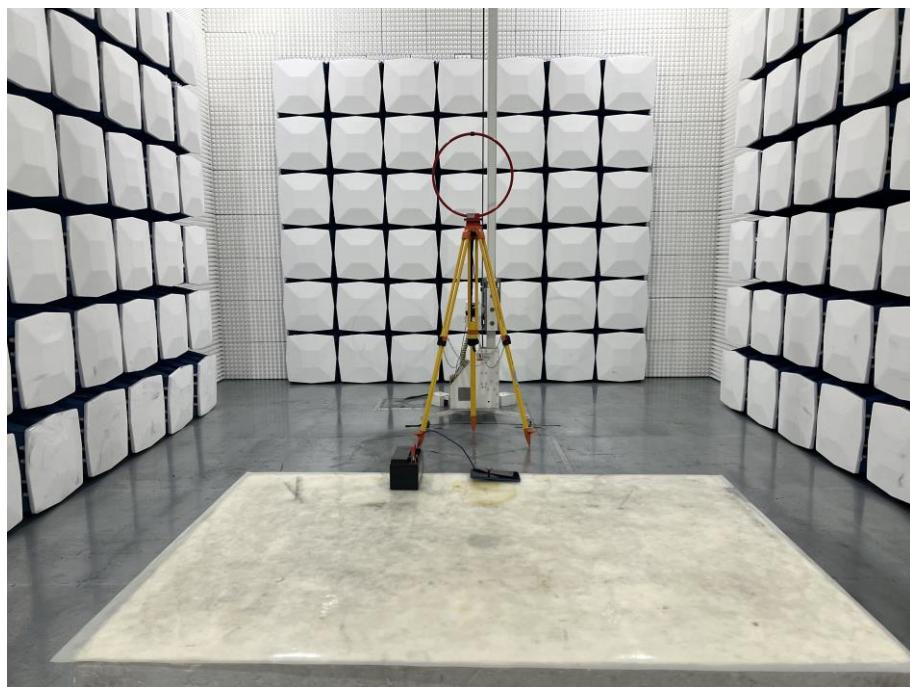
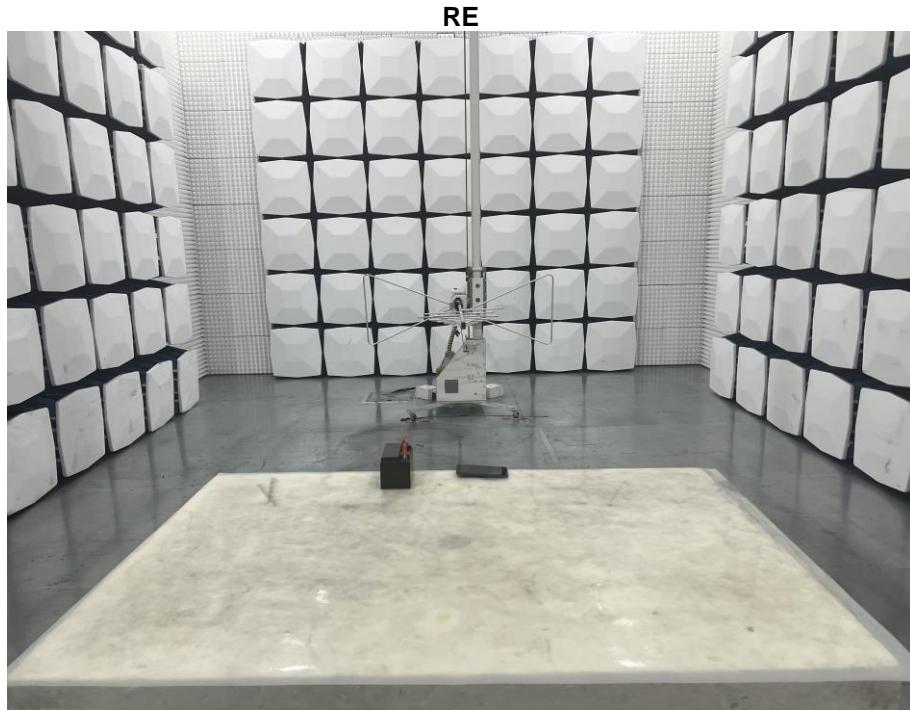
No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Margin dB	Detector
1		43.5056	38.74	-11.88	26.86	63.50	-36.64	QP
2		70.3365	40.63	-14.00	26.63	63.50	-36.87	QP
3		195.8214	40.73	-13.56	27.17	63.50	-36.33	QP
4		282.9849	38.79	-11.06	27.73	63.50	-35.77	QP
5		595.1326	36.07	-5.75	30.32	63.50	-33.18	QP
6	*	955.4379	33.76	-0.29	33.47	63.50	-30.03	QP

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Vertical
Test Voltage :	DC 12V	Test Mode:	Mode 4

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		34.8821	43.13	-13.72	29.41	63.50	-34.09	QP
2		71.3300	42.54	-15.30	27.24	63.50	-36.26	QP
3		132.2204	42.92	-15.93	26.99	63.50	-36.51	QP
4		227.6904	40.14	-11.86	28.28	63.50	-35.22	QP
5		406.0880	35.40	-8.16	27.24	63.50	-36.26	QP
6	*	869.1300	34.50	-0.30	34.20	63.50	-29.30	QP

Remarks:

- 1.Final Level =Receiver Read level + Correct factor (Antenna Factor + Cable Loss – Preamplifier Factor)
- 2.The emission levels of other frequencies are very lower than the limit and not show in test report.

5. EUT PHOTOGRAPHS

Reference to the appendix II for details.

6. EUT TEST PHOTOGRAPHS

***** END OF REPORT *****