

# Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202405517F01

# **TEST Report**

Applicant: Dongguan Shengxiang Technology Co., Ltd.

Address of Applicant: 4F, Building 10, Lane 4, Yanwuxincun, Dalingshan, Dongguan,

Guangdong, China

Manufacturer: Dongguan Shengxiang Technology Co., Ltd.

**Address of** 4F, Building 10, Lane 4, Yanwuxincun, Dalingshan, Dongguan,

Manufacturer: Guangdong, China

**Equipment Under Test (EUT)** 

Product Name: Wireless Speaker

Model No.: ST-157

Series model: N/A

Trade Mark: N/A

FCC ID: 2BDCS-ST-157

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May. 17, 2024

**Date of Test:** May. 17, 2024 ~ May. 24, 2024

Date of report issued: May. 24, 2024

Test Result: PASS \*

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 1. Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | May. 24, 2024 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Tested/ Prepared By | Heber He             | Date: | May. 24, 2024 |
|---------------------|----------------------|-------|---------------|
|                     | Project Engineer     |       |               |
| Check By:           | Bruce Zhu            | Date: | May. 24, 2024 |
|                     | Reviewer             | _     |               |
| Approved By :       | Kevin Young HT       | Date: | May. 24, 2024 |
|                     | Authorized Signature |       |               |



# 2. Contents

| Page     |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 5        |
| 7        |
| 7        |
| 7        |
| 7        |
| 7<br>7   |
| 7<br>7   |
| 8        |
| 9        |
| 9        |
| 12       |
| 13       |
| 16       |
| 18<br>20 |
| 24       |
| 24       |
| 27       |
| 29       |
| 29<br>33 |
| 40       |
| 41       |
| 41       |
|          |



# 3. Test Summary

| Test Item                        | Section in CFR 47  | Result |
|----------------------------------|--------------------|--------|
| Antenna Requirement              | 15.203/15.247 (c)  | Pass   |
| AC Power Line Conducted Emission | 15.207             | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)      | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)      | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)      | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)(iii) | Pass   |
| Dwell Time                       | 15.247 (a)(1)(iii) | Pass   |
| Radiated Emission                | 15.205/15.209      | Pass   |
| Band Edge                        | 15.247(d)          | Pass   |

#### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Test Item                                | Frequency Range                      | Measurement Uncertainty           | Notes |  |  |
|------------------------------------------|--------------------------------------|-----------------------------------|-------|--|--|
| Radiated Emission                        | 30~1000MHz                           | 3.45 dB                           | (1)   |  |  |
| Radiated Emission                        | 1~18GHz                              | 3.54 dB                           | (1)   |  |  |
| Radiated Emission                        | 18-40GHz                             | 5.38 dB                           | (1)   |  |  |
| Conducted Disturbance 0.15~30MHz 2.66 dB |                                      |                                   |       |  |  |
| Note (1): The measurement unc            | ertainty is for coverage factor of k | =2 and a level of confidence of 9 | 95%.  |  |  |



# 4. General Information

# 4.1. General Description of EUT

| Product Name:                                             | Wireless Speaker                                                              |
|-----------------------------------------------------------|-------------------------------------------------------------------------------|
| Model No.:                                                | ST-157                                                                        |
| Series model:                                             | N/A                                                                           |
| Test sample(s) ID:                                        | HTT202405517-1(Engineer sample) HTT202405517-2(Normal sample)                 |
| Operation Frequency:                                      | 2402MHz~2480MHz                                                               |
| Channel numbers:                                          | 79                                                                            |
| Channel separation:                                       | 1MHz                                                                          |
| Modulation type:                                          | GFSK, π/4-DQPSK                                                               |
| Antenna Type:                                             | PCB Antenna                                                                   |
| Antenna gain:                                             | -0.58 dBi                                                                     |
| Power Supply:                                             | DC 3.7V From Battery and DC 5V From External Circuit                          |
| Adapter Information (Auxiliary test provided by the lab): | Mode: GS-0500200<br>Input: AC100-240V, 50/60Hz, 0.3A max<br>Output: DC 5V, 2A |



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2402MHz   | 21      | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |
| 2                                   | 2403MHz   | 22      | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |
| 3                                   | 2404MHz   | 23      | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |
| 4                                   | 2405MHz   | 24      | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |
| 5                                   | 2406MHz   | 25      | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |
| 6                                   | 2407MHz   | 26      | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |
| 7                                   | 2408MHz   | 27      | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |
| 8                                   | 2409MHz   | 28      | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |
| 9                                   | 2410MHz   | 29      | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |
| 10                                  | 2411MHz   | 30      | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |
| 11                                  | 2412MHz   | 31      | 2432MHz   | 51      | 2452MHz   | 71      | 2472MHz   |
| 12                                  | 2413MHz   | 32      | 2433MHz   | 52      | 2453MHz   | 72      | 2473MHz   |
| 13                                  | 2414MHz   | 33      | 2434MHz   | 53      | 2454MHz   | 73      | 2474MHz   |
| 14                                  | 2415MHz   | 34      | 2435MHz   | 54      | 2455MHz   | 74      | 2475MHz   |
| 15                                  | 2416MHz   | 35      | 2436MHz   | 55      | 2456MHz   | 75      | 2476MHz   |
| 16                                  | 2417MHz   | 36      | 2437MHz   | 56      | 2457MHz   | 76      | 2477MHz   |
| 17                                  | 2418MHz   | 37      | 2438MHz   | 57      | 2458MHz   | 77      | 2478MHz   |
| 18                                  | 2419MHz   | 38      | 2439MHz   | 58      | 2459MHz   | 78      | 2479MHz   |
| 19                                  | 2420MHz   | 39      | 2440MHz   | 59      | 2460MHz   | 79      | 2480MHz   |
| 20                                  | 2421MHz   | 40      | 2441MHz   | 60      | 2461MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |



#### 4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

# 4.3. Description of Support Units

None.

#### 4.4. Deviation from Standards

None.

#### 4.5. Abnormalities from Standard Conditions

None.

#### 4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

#### 4.8. Additional Instructions

| Test Software     | Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power level setup | Default                                                                                                             |

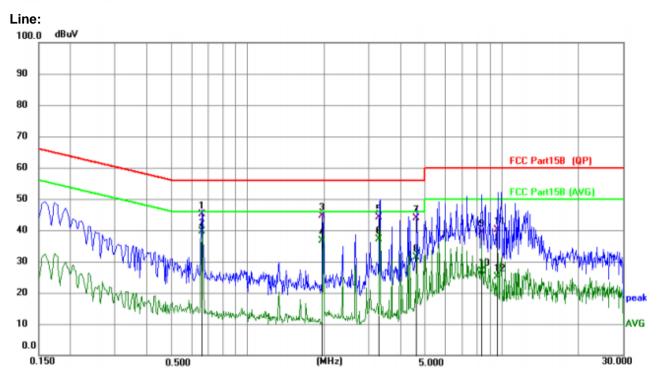


# 5. Test Instruments list

| Item | Test Equipment                     | Manufacturer                           | Model No.          | Inventory | Cal.Date     | Cal.Due date |
|------|------------------------------------|----------------------------------------|--------------------|-----------|--------------|--------------|
|      | 0 0 : 4 1 :                        | 0                                      |                    | No.       | (mm-dd-yy)   | (mm-dd-yy)   |
| 1    | 3m Semi- Anechoic<br>Chamber       | Shenzhen C.R.T technology co., LTD     | 9*6*6              | HTT-E028  | Aug. 10 2021 | Aug. 09 2024 |
| 2    | Control Room                       | Shenzhen C.R.T technology co., LTD     | 4.8*3.5*3.0        | HTT-E030  | Aug. 10 2021 | Aug. 09 2024 |
| 3    | EMI Test Receiver                  | Rohde&Schwar                           | ESCI7              | HTT-E022  | Apr. 26 2024 | Apr. 25 2025 |
| 4    | Spectrum Analyzer                  | Rohde&Schwar                           | FSP                | HTT-E037  | Apr. 26 2024 | Apr. 25 2025 |
| 5    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-NJ-0.6M    | HTT-E018  | Apr. 26 2024 | Apr. 25 2025 |
| 6    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-2M    | HTT-E019  | Apr. 26 2024 | Apr. 25 2025 |
| 7    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-0.6M  | HTT-E020  | Apr. 26 2024 | Apr. 25 2025 |
| 8    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-8.5M  | HTT-E021  | Apr. 26 2024 | Apr. 25 2025 |
| 9    | Composite logarithmic antenna      | Schwarzbeck                            | VULB 9168          | HTT-E017  | May. 21 2024 | May. 20 2025 |
| 10   | Horn Antenna                       | Schwarzbeck                            | BBHA9120D          | HTT-E016  | May. 20 2024 | May. 19 2025 |
| 11   | Loop Antenna                       | Zhinan                                 | ZN30900C           | HTT-E039  | Apr. 26 2024 | Apr. 25 2025 |
| 12   | Horn Antenna                       | Beijing Hangwei Dayang                 | OBH100400          | HTT-E040  | Apr. 26 2024 | Apr. 25 2025 |
| 13   | low frequency Amplifier            | Sonoma Instrument                      | 310                | HTT-E015  | Apr. 26 2024 | Apr. 25 2025 |
| 14   | high-frequency<br>Amplifier        | HP                                     | 8449B              | HTT-E014  | Apr. 26 2024 | Apr. 25 2025 |
| 15   | Variable frequency power supply    | Shenzhen Anbiao<br>Instrument Co., Ltd | ANB-10VA           | HTT-082   | Apr. 26 2024 | Apr. 25 2025 |
| 16   | EMI Test Receiver                  | Rohde & Schwarz                        | ESCS30             | HTT-E004  | Apr. 26 2024 | Apr. 25 2025 |
| 17   | Artificial Mains                   | Rohde & Schwarz                        | ESH3-Z5            | HTT-E006  | May. 23 2024 | May. 22 2025 |
| 18   | Artificial Mains                   | Rohde & Schwarz                        | ENV-216            | HTT-E038  | May. 23 2024 | May. 22 2025 |
| 19   | Cable Line                         | Robinson                               | Z302S-NJ-BNCJ-1.5M | HTT-E001  | Apr. 26 2024 | Apr. 25 2025 |
| 20   | Attenuator                         | Robinson                               | 6810.17A           | HTT-E007  | Apr. 26 2024 | Apr. 25 2025 |
| 21   | Variable frequency power supply    | Shenzhen Yanghong<br>Electric Co., Ltd | YF-650 (5KVA)      | HTT-E032  | Apr. 26 2024 | Apr. 25 2025 |
| 22   | Control Room                       | Shenzhen C.R.T technology co., LTD     | 8*4*3.5            | HTT-E029  | Aug. 10 2021 | Aug. 09 2024 |
| 23   | DC power supply                    | Agilent                                | E3632A             | HTT-E023  | Apr. 26 2024 | Apr. 25 2025 |
| 24   | EMI Test Receiver                  | Agilent                                | N9020A             | HTT-E024  | Apr. 26 2024 | Apr. 25 2025 |
| 25   | Analog signal generator            | Agilent                                | N5181A             | HTT-E025  | Apr. 26 2024 | Apr. 25 2025 |
| 26   | Vector signal generator            | Agilent                                | N5182A             | HTT-E026  | Apr. 26 2024 | Apr. 25 2025 |
| 27   | Power sensor                       | Keysight                               | U2021XA            | HTT-E027  | Apr. 26 2024 | Apr. 25 2025 |
| 28   | Temperature and humidity meter     | Shenzhen Anbiao<br>Instrument Co., Ltd | TH10R              | HTT-074   | Apr. 28 2024 | Apr. 27 2025 |
| 29   | Radiated Emission Test<br>Software | Farad                                  | EZ-EMC             | N/A       | N/A          | N/A          |
| 30   | Conducted Emission Test Software   | Farad                                  | EZ-EMC             | N/A       | N/A          | N/A          |
| 31   | RF Test Software                   | panshanrf                              | TST                | N/A       | N/A          | N/A          |

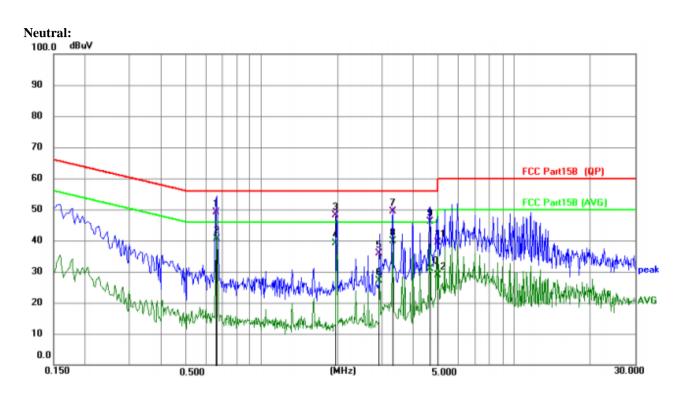


# 6. Test results and Measurement Data


## 6.1. Conducted Emissions

| o.i. Oonaactea Emission | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |         |          |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------|--|--|--|
| Test Requirement:       | FCC Part15 C Section 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                |         |          |  |  |  |
| Test Method:            | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANSI C63.10:2013 |         |          |  |  |  |
| Test Frequency Range:   | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150KHz to 30MHz  |         |          |  |  |  |
| Class / Severity:       | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |         |          |  |  |  |
| Receiver setup:         | RBW=9KHz, VBW=30KHz, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sweep time=auto  |         |          |  |  |  |
| Limit:                  | Fragues av ronge (MILE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit            | (dBuV)  |          |  |  |  |
|                         | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak       |         | rage     |  |  |  |
|                         | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*        |         | o 46*    |  |  |  |
|                         | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56               |         | 16       |  |  |  |
|                         | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60               | 5       | 50       |  |  |  |
| Test setup:             | * Decreases with the logarith                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |         |          |  |  |  |
| Test procedure:         | Reference Plane  LISN  40cm  80cm  Filter  AC power  Remark  E.U.T. Equipment Under Test  LISN: Line impedence Stabilization Network  Test table height=0.8m  1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm |                  |         |          |  |  |  |
| Toot Instrumento        | <ul> <li>photographs).</li> <li>3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.</li> </ul>                                                                                                                                                                                                |                  |         |          |  |  |  |
| Test Instruments:       | Refer to section 6.0 for detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |         |          |  |  |  |
| Test mode:              | Refer to section 5.2 for detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                | 1_      | 1        |  |  |  |
| Test environment:       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mid.: 52%        | Press.: | 1012mbar |  |  |  |
| Test voltage:           | AC 120V, 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |         |          |  |  |  |
| Test results:           | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |         |          |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |         |          |  |  |  |

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



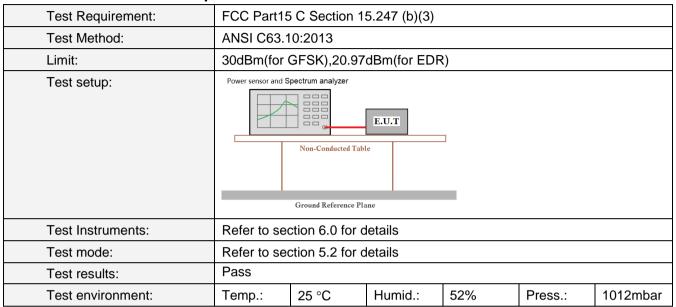

## Measurement data:



| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz    |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.6589 | 34.89            | 10.33             | 45.22            | 56.00 | -10.78 | QP       |
| 2   | *   | 0.6589 | 29.38            | 10.33             | 39.71            | 46.00 | -6.29  | AVG      |
| 3   |     | 1.9764 | 34.15            | 10.40             | 44.55            | 56.00 | -11.45 | QP       |
| 4   |     | 1.9764 | 26.34            | 10.40             | 36.74            | 46.00 | -9.26  | AVG      |
| 5   |     | 3.2953 | 33.59            | 10.53             | 44.12            | 56.00 | -11.88 | QP       |
| 6   |     | 3.2953 | 26.62            | 10.53             | 37.15            | 46.00 | -8.85  | AVG      |
| 7   |     | 4.6291 | 33.17            | 10.60             | 43.77            | 56.00 | -12.23 | QP       |
| 8   |     | 4.6291 | 20.68            | 10.60             | 31.28            | 46.00 | -14.72 | AVG      |
| 9   |     | 8.3472 | 28.73            | 10.65             | 39.38            | 60.00 | -20.62 | QP       |
| 10  |     | 8.3472 | 16.27            | 10.65             | 26.92            | 50.00 | -23.08 | AVG      |
| 11  |     | 9.6555 | 29.46            | 10.69             | 40.15            | 60.00 | -19.85 | QP       |
| 12  |     | 9.6555 | 14.37            | 10.69             | 25.06            | 50.00 | -24.94 | AVG      |
|     |     |        |                  |                   |                  |       |        |          |





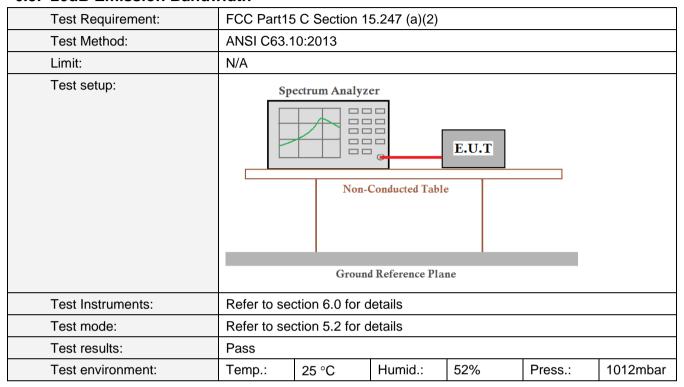

| No. Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|--------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz    |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.6590 | 38.78            | 10.36             | 49.14            | 56.00 | -6.86  | QP       |
| 2 *     | 0.6630 | 30.15            | 10.37             | 40.52            | 46.00 | -5.48  | AVG      |
| 3       | 1.9747 | 37.71            | 10.40             | 48.11            | 56.00 | -7.89  | QP       |
| 4       | 1.9747 | 28.82            | 10.40             | 39.22            | 46.00 | -6.78  | AVG      |
| 5       | 2.9179 | 25.46            | 10.45             | 35.91            | 56.00 | -20.09 | QP       |
| 6       | 2.9179 | 16.74            | 10.45             | 27.19            | 46.00 | -18.81 | AVG      |
| 7       | 3.3046 | 39.04            | 10.46             | 49.50            | 56.00 | -6.50  | QP       |
| 8       | 3.3046 | 29.33            | 10.46             | 39.79            | 46.00 | -6.21  | AVG      |
| 9       | 4.6396 | 35.72            | 10.53             | 46.25            | 56.00 | -9.75  | QP       |
| 10      | 4.6396 | 20.30            | 10.53             | 30.83            | 46.00 | -15.17 | AVG      |
| 11      | 4.9942 | 28.73            | 10.57             | 39.30            | 56.00 | -16.70 | QP       |
| 12      | 4.9942 | 18.20            | 10.57             | 28.77            | 46.00 | -17.23 | AVG      |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los



# 6.2. Conducted Peak Output Power



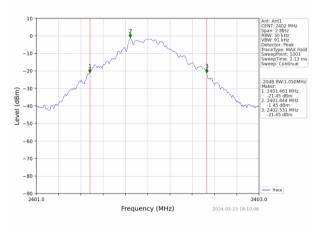

#### **Measurement Data**

| Mode      | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
|-----------|--------------|-------------------------|-------------|--------|--|
|           | Lowest       | 0.87                    |             |        |  |
| GFSK      | Middle       | 0.95                    | 30.00       | Pass   |  |
|           | Highest      | 0.90                    |             |        |  |
|           | Lowest       | 1.70                    |             |        |  |
| π/4-DQPSK | Middle       | 1.80                    | 20.97       | Pass   |  |
|           | Highest      | 1.72                    |             |        |  |

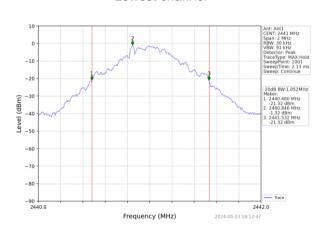


#### 6.3. 20dB Emission Bandwidth

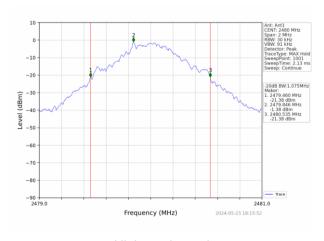



#### **Measurement Data**

| Mode      | Test channel | 20dB Emission Bandwidth (MHz) | Result |  |
|-----------|--------------|-------------------------------|--------|--|
|           | Lowest       | 1.050                         |        |  |
| GFSK      | Middle       | 1.052                         | Pass   |  |
|           | Highest      | 1.075                         |        |  |
|           | Lowest       | 1.328                         |        |  |
| π/4-DQPSK | Middle       | 1.349                         | Pass   |  |
|           | Highest      | 1.371                         |        |  |



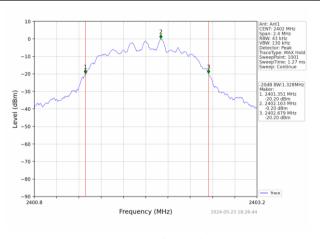

# Test plot as follows:


Test mode: GFSK mode

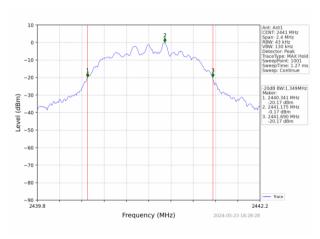


#### Lowest channel

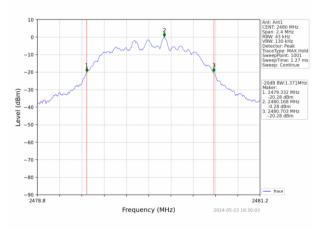



#### Middle channel




Highest channel




Test mode:  $\pi/4$ -DQPSK mode



#### Lowest channel



### Middle channel



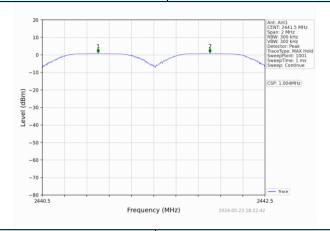
Highest channel



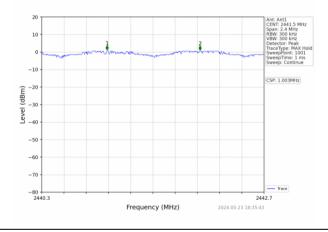
# 6.4. Frequencies Separation

| Test Requirement: | FCC Part1   | FCC Part15 C Section 15.247 (a)(1)                                                           |                 |     |         |          |  |  |  |
|-------------------|-------------|----------------------------------------------------------------------------------------------|-----------------|-----|---------|----------|--|--|--|
| Test Method:      | ANSI C63.   | 10:2013                                                                                      |                 |     |         |          |  |  |  |
| Receiver setup:   | RBW=100     | RBW=100KHz, VBW=300KHz, detector=Peak                                                        |                 |     |         |          |  |  |  |
| Limit:            |             | GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) |                 |     |         |          |  |  |  |
| Test setup:       | Sı          | Non-                                                                                         | Conducted Table |     |         |          |  |  |  |
| Test Instruments: | Refer to se | ection 6.0 for                                                                               | details         |     |         |          |  |  |  |
| Test mode:        | Refer to se | ection 5.2 for                                                                               | details         |     |         |          |  |  |  |
| Test results:     | Pass        |                                                                                              |                 |     |         |          |  |  |  |
| Test environment: | Temp.:      | 25 °C                                                                                        | Humid.:         | 52% | Press.: | 1012mbar |  |  |  |

#### **Measurement Data**


| Micasarciniciti Date | a            |                              |             |        |
|----------------------|--------------|------------------------------|-------------|--------|
| Mode                 | Test channel | Frequencies Separation (MHz) | Limit (kHz) | Result |
|                      |              |                              | 25KHz or    |        |
| GFSK                 | Middle       | 1.004                        | 2/3*20dB    | Pass   |
|                      |              |                              | bandwidth   |        |
|                      |              |                              | 25KHz or    |        |
| π/4-DQPSK            | Middle       | 1.003                        | 2/3*20dB    | Pass   |
|                      |              |                              | bandwidth   |        |

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle




Test plot as follows:

Modulation mode: GFSK



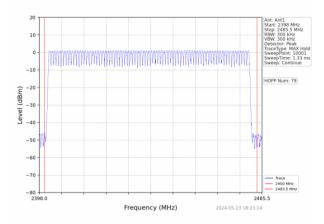
Test mode: π/4-DQPSK



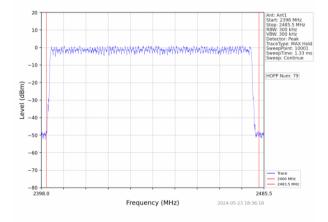


# 6.5. Hopping Channel Number

| Test Requirement: | FCC Part15   | C Section 1                                                              | 5.247 (a)(1)(i | ii)   |         |          |  |  |
|-------------------|--------------|--------------------------------------------------------------------------|----------------|-------|---------|----------|--|--|
| Test Method:      | ANSI C63.1   | 0:2013                                                                   |                |       |         |          |  |  |
| Receiver setup:   |              | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |                |       |         |          |  |  |
| Limit:            | 15 channels  | 3                                                                        |                |       |         |          |  |  |
| Test setup:       | Spe          |                                                                          |                | Z.U.T |         |          |  |  |
| Test Instruments: | Refer to sec | ction 6.0 for d                                                          | letails        |       |         |          |  |  |
| Test mode:        | Refer to sec | ction 5.2 for d                                                          | letails        |       |         |          |  |  |
| Test results:     | Pass         |                                                                          |                |       |         |          |  |  |
| Test environment: | Temp.:       | 25 °C                                                                    | Humid.:        | 52%   | Press.: | 1012mbar |  |  |


#### **Measurement Data:**

| Mode      | Hopping channel numbers | Limit | Result |
|-----------|-------------------------|-------|--------|
| GFSK      | 79                      | >45   | Pass   |
| π/4-DQPSK | 79                      | ≥15   | Pass   |




Test plot as follows:

Test mode: GFSK



Test mode:  $\pi/4$ -DQPSK





# 6.6. Dwell Time

| Test Requirement: | FCC Part1   | 5 C Section 1                                                         | 5.247 (a)(1)( | iii) |         |          |  |  |
|-------------------|-------------|-----------------------------------------------------------------------|---------------|------|---------|----------|--|--|
| Test Method:      | ANSI C63.   | 10:2013                                                               |               |      |         |          |  |  |
| Receiver setup:   | RBW=1MF     | RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak                           |               |      |         |          |  |  |
| Limit:            | 0.4 Second  | t                                                                     |               |      |         |          |  |  |
| Test setup:       | Sp          | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |               |      |         |          |  |  |
| Test Instruments: | Refer to se | ection 6.0 for                                                        | details       |      |         |          |  |  |
| Test mode:        | Refer to se | ction 5.2 for                                                         | details       |      |         |          |  |  |
| Test results:     | Pass        | Pass                                                                  |               |      |         |          |  |  |
| Test environment: | Temp.:      | 25 °C                                                                 | Humid.:       | 52%  | Press.: | 1012mbar |  |  |

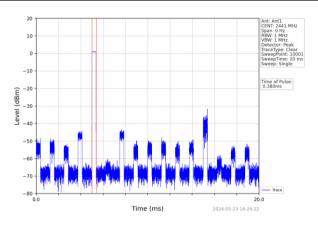


#### **Measurement Data**

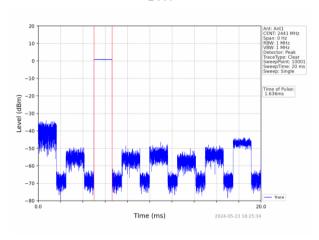
| Modulation | Packet      | Burst time<br>(ms) | Dwell time<br>(ms) | Limit (ms) | Result |  |
|------------|-------------|--------------------|--------------------|------------|--------|--|
|            | DH1         | 0.380              | 121.220            |            |        |  |
| GFSK       | DH3         | 1.636              | 256.852            | 400        | Pass   |  |
|            | DH5         | 2.890              | 326.570            |            |        |  |
|            | 2-DH1       | 0.390              | 123.630            |            |        |  |
| π/4DQPSK   | 2-DH3 1.642 |                    | 254.510            | 400        | Pass   |  |
|            | 2-DH5       | 2.898              | 353.556            |            |        |  |

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

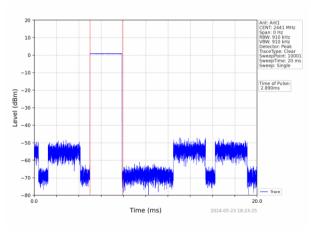
Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  2  $\div$  79)  $\times$ 31.6 Second for DH1, 2-DH1


Dwell time=Pulse time (ms) x (1600  $\div$  4  $\div$  79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600  $\div$  6  $\div$  79) x31.6 Second for DH5, 2-DH5

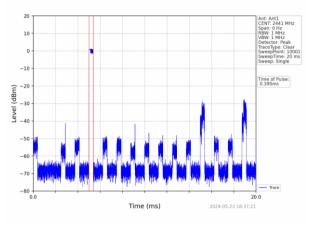



# Test plot as follows:

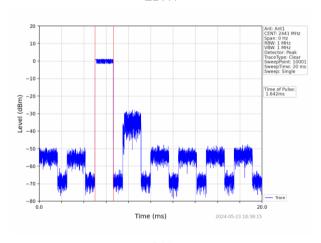

# **GFSK** mode



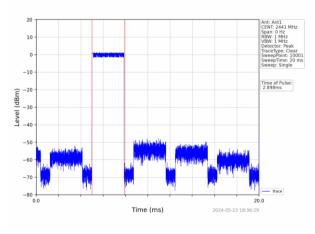





#### DH3







## π/4-DQPSK mode



#### 2DH1

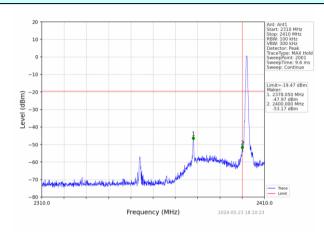


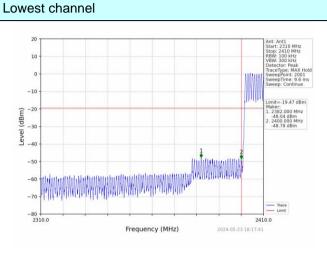
## 2DH3





# 6.7. Band Edge


# 6.7.1. Conducted Emission Method

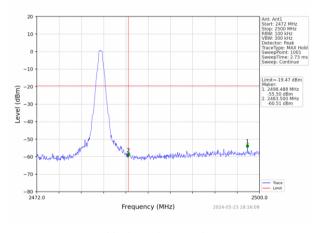

| Test Requirement: | FCC Part15                                                                                                                                                                                                                                                                                                                                                                              | 5 C Section 1   | 5.247 (d)   |          |         |          |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|----------|---------|----------|--|
| Test Method:      | ANSI C63.                                                                                                                                                                                                                                                                                                                                                                               | 10:2013         |             |          |         |          |  |
| Receiver setup:   | RBW=100k                                                                                                                                                                                                                                                                                                                                                                                | Hz, VBW=30      | 0kHz, Detec | tor=Peak |         |          |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |                 |             |          |         |          |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |                 |             |          |         |          |  |
| Test Instruments: | Refer to se                                                                                                                                                                                                                                                                                                                                                                             | ction 6.0 for c | details     |          |         |          |  |
| Test mode:        | Refer to se                                                                                                                                                                                                                                                                                                                                                                             | ction 5.2 for c | details     |          |         |          |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |          |         |          |  |
| Test environment: | Temp.:                                                                                                                                                                                                                                                                                                                                                                                  | 25 °C           | Humid.:     | 52%      | Press.: | 1012mbar |  |

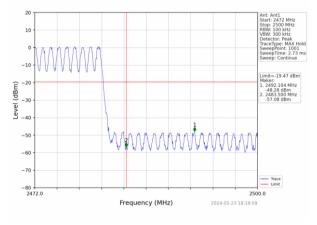


# Test plot as follows: GFSK Mode:

# Test channel







No-hopping mode

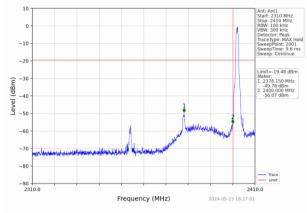
Hopping mode

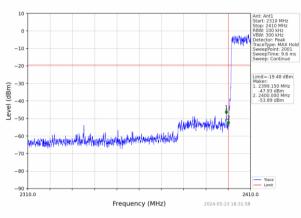
### Test channel:

# Highest channel





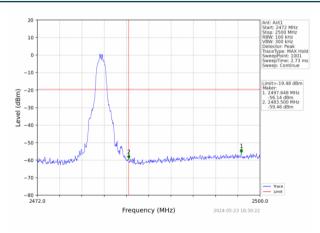

No-hopping mode

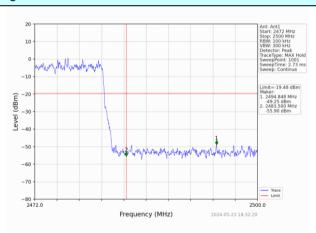

Hopping mode



#### π/4-DQPSK Mode:

# Test channel Lowest channel




No-hopping mode

Hopping mode

# Test channel: Highest channel





No-hopping mode

Hopping mode



## 6.7.2. Radiated Emission Method

| 6.7.2. Radiated Emission Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:               | FCC Part15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.209 a                                                                                                                   | and 15.205                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test Method:                    | ANSI C63.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ):2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test Frequency Range:           | All of the res<br>2500MHz) da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           | tested, only                                                                                                                                             | the wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orst band's (                                                                                       | 2310MHz to                                                                                                                   |
| Test site:                      | Measuremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Distance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3m                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Receiver setup:                 | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency Detector RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / Re                                                                                                | emark                                                                                                                        |
| ·                               | Above 1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | 1MHz                                                                                                                                                     | 3MH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     | k Value                                                                                                                      |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | 1MHz                                                                                                                                                     | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     | ge Value                                                                                                                     |
| Limit:                          | Fred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | quency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                                                                                         | _imit (dBuV                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                   | emark                                                                                                                        |
|                                 | Abov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           | 54.0<br>74.0                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     | ge Value<br>k Value                                                                                                          |
| Test setup:                     | Tum Tableed State of the State |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test Procedure:                 | 1. The EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | was placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on the                                                                                                                    | top of a rot                                                                                                                                             | ating tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ole 1.5 meter                                                                                       | s above the                                                                                                                  |
|                                 | determine  2. The EUT vantenna, vantenna, vantenna, vantenna, vantenna, vantenna ground to horizontal measurem  4. For each sand then tand the romaximum  5. The test-romaximum  5. The test-romaximum  6. If the emislimit specified  6. If the amislimit specified  10dB mare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the position was set 3 m which was n a height is determine t and verticament. Suspected eache antenna ta table was reading. The eceiver syst Bandwidth was in level of the net to do be reported in would be set in the set | of the eters a nounted varied he max I polarizemission was turned em wa with Matter the Esting ced. Other re-testing ced. | from one recimum value zations of the to height of the to height of the total ways are to peak aximum Holl UT in peak ould be stoerwise the ested one by | diation. The interform of a variation of a variatio | four meters field strength and are set to anged to its anged to its anged to degree of Function and | ving antenna above the a Both o make the worst case 4 meters s to find the and wer than the alues of the ot have asi-peak or |
| Test Instruments:               | Refer to sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test mode:                      | Refer to sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion 5.2 for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | letails                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test results:                   | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                              |
| Test environment:               | Temp.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Humi                                                                                                                      | d.: 52%                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Press.:                                                                                             | 1012mbar                                                                                                                     |

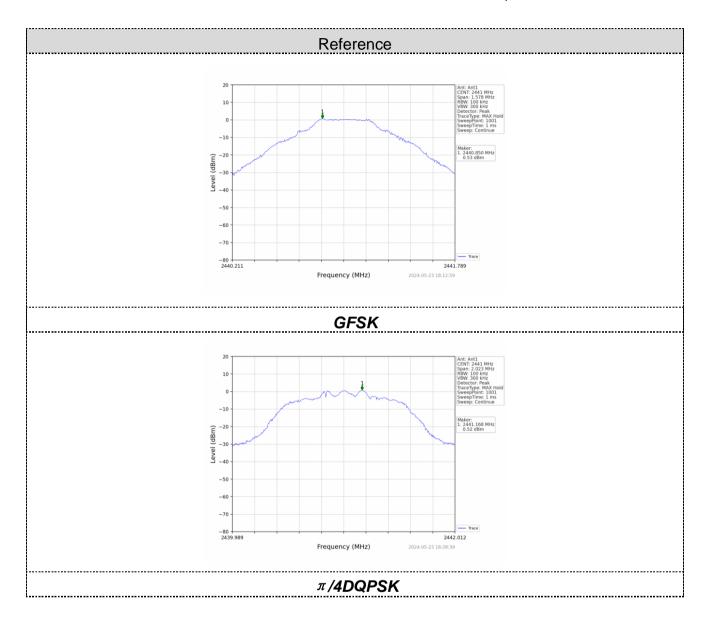


#### **Measurement Data**

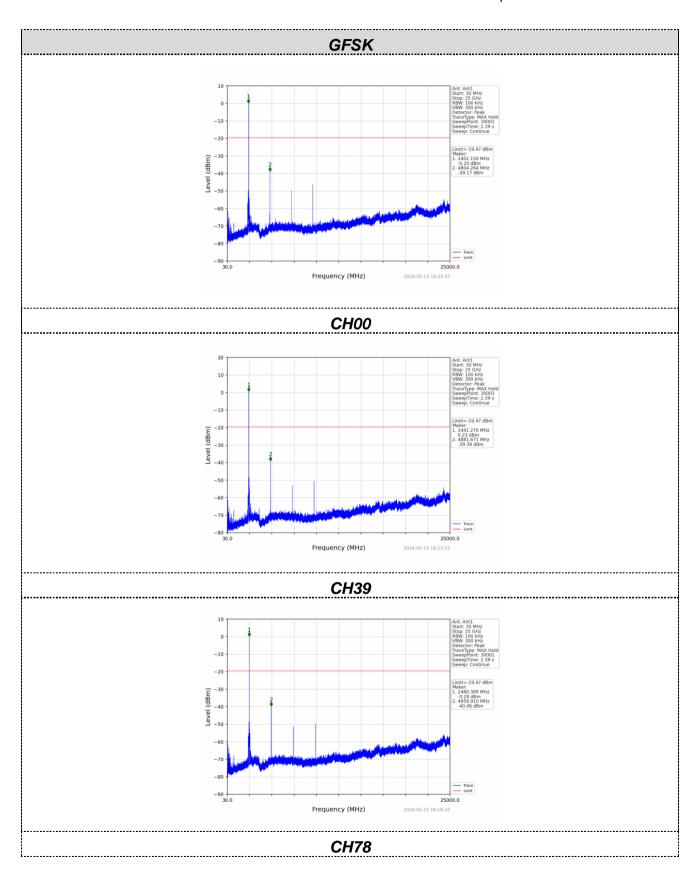
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

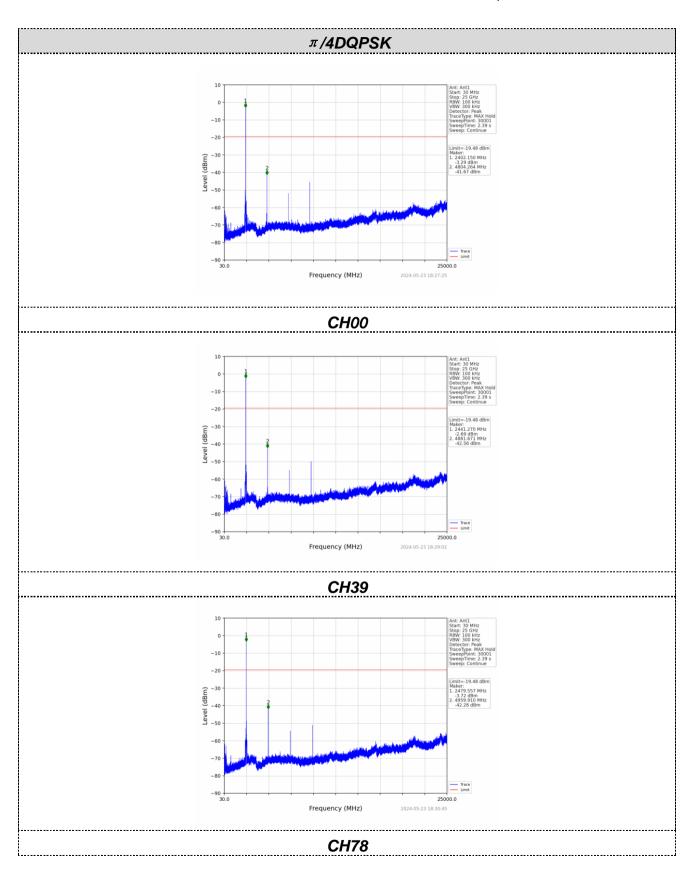
| Freque             | ncy(MHz)                        | :   | 24                | 02             | Pola                   | nrity:                      | HORIZONTAL              |                           |                                |
|--------------------|---------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Le <sup>,</sup><br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna Factor (dB/m)       | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 59.29                           | PK  | 74                | 14.71          | 60.68                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| 2390.00            | 44.48                           | AV  | 54                | 9.52           | 45.87                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| Freque             | ncy(MHz)                        | :   | 24                | 02             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Le <sup>,</sup><br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 58.77                           | PK  | 74                | 15.23          | 60.16                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| 2390.00            | 47.09                           | AV  | 54                | 6.91           | 48.48                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| Freque             | ncy(MHz)                        | :   | 2480              |                | P olarity:             |                             | HORIZONTAL              |                           |                                |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu              | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 56.29                           | PK  | 74                | 17.71          | 57.22                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| 2483.50            | 46.22                           | AV  | 54                | 7.78           | 47.15                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| Freque             | ncy(MHz)                        | :   | 24                | 80             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Le <sup>,</sup><br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna Factor (dB/m)       | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 55.18                           | PK  | 74                | 18.82          | 56.11                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| 2483.50            | 43.24                           | AV  | 54                | 10.76          | 44.17                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |




# 6.8. Spurious Emission


# 6.8.1. Conducted Emission Method

| Test Requirement: | FCC Part15                                                                                                                                                                                                                                                                                                                                                                              | FCC Part15 C Section 15.247 (d)                                       |         |     |         |          |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|-----|---------|----------|--|--|--|--|--|
| Test Method:      | ANSI C63.1                                                                                                                                                                                                                                                                                                                                                                              | ANSI C63.10:2013                                                      |         |     |         |          |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |                                                                       |         |     |         |          |  |  |  |  |  |
| Test setup:       | Spe                                                                                                                                                                                                                                                                                                                                                                                     | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |         |     |         |          |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |                                                                       |         |     |         |          |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |                                                                       |         |     |         |          |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |         |     |         |          |  |  |  |  |  |
| Test environment: | Temp.:                                                                                                                                                                                                                                                                                                                                                                                  | 25 °C                                                                 | Humid.: | 52% | Press.: | 1012mbar |  |  |  |  |  |

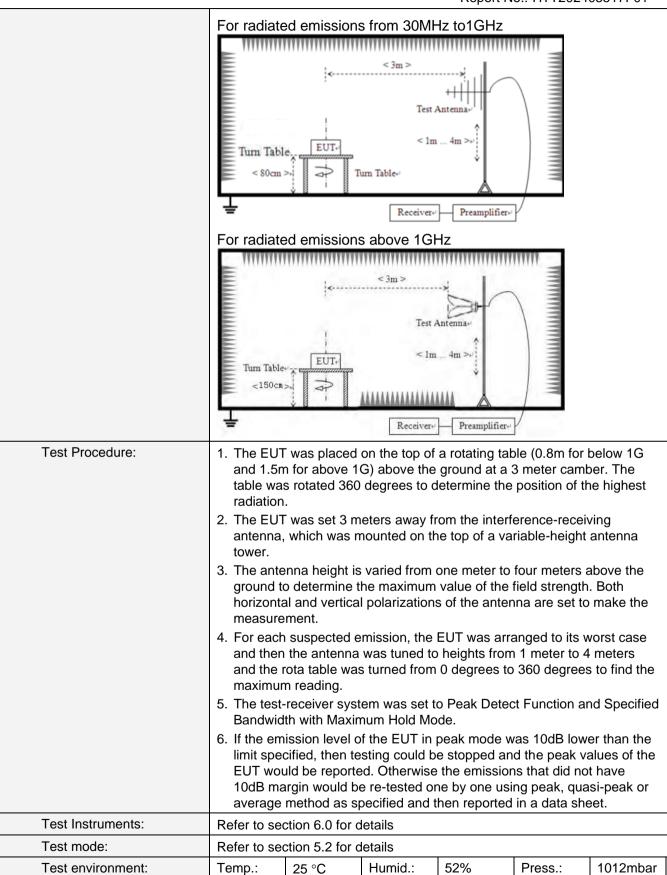













# 6.8.2. Radiated Emission Method

| 0.0.2. Nadiated L     | ilission wethou                  |        |                             |                       |       |           |          |                      |  |
|-----------------------|----------------------------------|--------|-----------------------------|-----------------------|-------|-----------|----------|----------------------|--|
| Test Requirement:     | FCC Part15 C Section             | on 15  | 5.209                       |                       |       |           |          |                      |  |
| Test Method:          | ANSI C63.10:2013                 |        |                             |                       |       |           |          |                      |  |
| Test Frequency Range: | 9kHz to 25GHz                    |        |                             |                       |       |           |          |                      |  |
| Test site:            | Measurement Distar               | nce: ( | 3m                          |                       |       |           |          |                      |  |
| Receiver setup:       | Frequency Detector RBW VBW Value |        |                             |                       |       |           |          |                      |  |
|                       | 9KHz-150KHz                      | Qi     | ıasi-peak                   | 200H                  | Ηz    | 600Hz     | Z        | Quasi-peak           |  |
|                       | 150KHz-30MHz                     | Qι     | ıasi-peak                   | 9KH                   | lz    | 30KH      | Z        | Quasi-peak           |  |
|                       | 30MHz-1GHz                       | Qι     | ıasi-peak                   | 120K                  | Hz    | 300KH     | lz       | Quasi-peak           |  |
|                       | Above 1GHz                       |        | Peak                        | 1MF                   | łz    | 3MHz      | <u>-</u> | Peak                 |  |
|                       | Above 10112                      |        | Peak                        | 1MF                   | łz    | 10Hz      | •        | Average              |  |
| Limit:                | Frequency                        |        | Limit (u\                   | //m)                  | V     | alue      | N        | Measurement Distance |  |
|                       | 0.009MHz-0.490M                  | lHz    | 2400/F(k                    | (Hz)                  | (     | QP        |          | 300m                 |  |
|                       | 0.490MHz-1.705M                  | lHz    | 24000/F(                    | KHz)                  | (     | QP        |          | 30m                  |  |
|                       | 1.705MHz-30MH                    | lz     | 30                          |                       | (     | QP        |          | 30m                  |  |
|                       | 30MHz-88MHz                      |        | 100                         |                       | QP    |           |          |                      |  |
|                       | 88MHz-216MHz                     | 150    |                             | (                     | QP    |           |          |                      |  |
|                       | 216MHz-960MH                     | Z      | 200                         |                       | (     | QP        |          | 3m                   |  |
|                       | 960MHz-1GHz                      | 500    |                             |                       |       | QP        |          | Sili                 |  |
|                       | Above 1GHz                       | 500    |                             |                       |       | erage     |          |                      |  |
|                       | 7.5576 15112                     |        | 5000                        |                       | Р     | eak       |          |                      |  |
| Test setup:           | For radiated emiss               | sions  | from 9kH                    | z to 30               | MHz   | <u>z</u>  |          |                      |  |
|                       | ***********                      | 11111  | (1111111111111111           | ******                | 11111 | 111111111 |          |                      |  |
|                       | Tum Table EUT                    |        | <3m><br>Test A<br>um Table√ | ntenna<br>lm Receiver |       |           |          |                      |  |



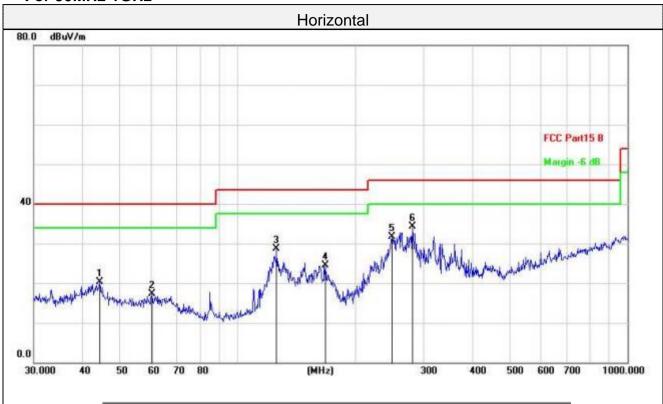




| Test voltage: | AC 120V, 60Hz |
|---------------|---------------|
| Test results: | Pass          |

#### Measurement data:

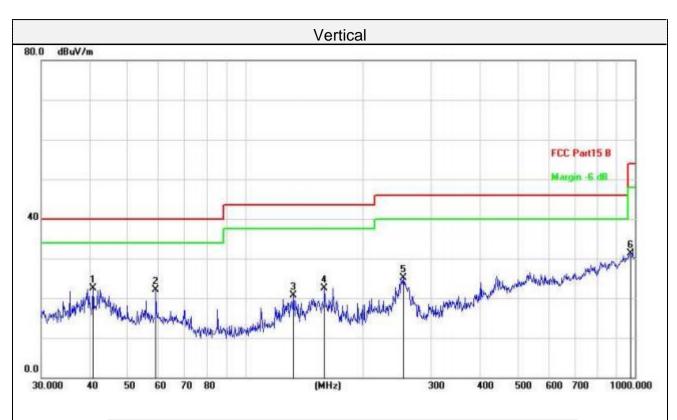
#### Remarks:


- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.




# For 30MHz-1GHz



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 44.2752  | 30.59            | -10.28            | 20.31            | 40.00 | -19.69 | QP       |
| 2   |     | 60.2801  | 28.95            | -11.66            | 17.29            | 40.00 | -22.71 | QP       |
| 3   |     | 125.8864 | 41.38            | -12.74            | 28.64            | 43.50 | -14.86 | QP       |
| 4   |     | 167.8243 | 35.47            | -10.88            | 24.59            | 43.50 | -18.91 | QP       |
| 5   |     | 248.5519 | 43.24            | -11.54            | 31.70            | 46.00 | -14.30 | QP       |
| 6   | *   | 281.0075 | 45.61            | -11.31            | 34.30            | 46.00 | -11.70 | QP       |

Final Level =Receiver Read level + Correct Factor





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *   | 40.7016  | 32.82            | -10.22            | 22.60            | 40.00 | -17.40 | QP       |
| 2   |     | 59.0251  | 33.74            | -11.60            | 22.14            | 40.00 | -17.86 | QP       |
| 3   |     | 133.1511 | 32.98            | -12.32            | 20.66            | 43.50 | -22.84 | QP       |
| 4   |     | 159.7844 | 33.14            | -10.61            | 22.53            | 43.50 | -20.97 | QP       |
| 5   |     | 254.7284 | 36.63            | -11.45            | 25.18            | 46.00 | -20.82 | QP       |
| 6   |     | 972.3374 | 27.90            | 3.38              | 31.28            | 54.00 | -22.72 | QP       |

Final Level =Receiver Read level + Correct Factor



## For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High

channel; only the worst result of GFSK was reported as below:

| Frequency(MHz):    |                    |    | 2402              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|--------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 58.26              | PK | 74                | 15.74          | 52.56                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 4804.00            | 42.72              | AV | 54                | 11.28          | 37.02                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 7206.00            | 54.37              | PK | 74                | 19.63          | 41.72                  | 36                          | 8.15                    | 31.5                      | 12.65                          |
| 7206.00            | 44.69              | AV | 54                | 9.31           | 32.04                  | 36                          | 8.15                    | 31.5                      | 12.65                          |

| Freque             | Frequency(MHz): |                         |    | 2402           |              | Polarity: |                 | VERTICAL          |            |  |
|--------------------|-----------------|-------------------------|----|----------------|--------------|-----------|-----------------|-------------------|------------|--|
| Frequency<br>(MHz) | Le              | Emission Level (dBuV/m) |    | Margin<br>(dB) | Raw<br>Value | Antenna   | Cable<br>Factor | Pre-<br>amplifier | Correction |  |
|                    | (dBu            | V/m)                    |    |                | (dBuV)       | (dB/m)    | (dB)            | (dB)              | (dB/m)     |  |
| 4804.00            | 59.88           | PK                      | 74 | 14.12          | 54.18        | 31        | 6.5             | 31.8              | 5.7        |  |
| 4804.00            | 42.98           | AV                      | 54 | 11.02          | 37.28        | 31        | 6.5             | 31.8              | 5.7        |  |
| 7206.00            | 53.44           | PK                      | 74 | 20.56          | 40.79        | 36        | 8.15            | 31.5              | 12.65      |  |
| 7206.00            | 42.25           | AV                      | 54 | 11.75          | 29.60        | 36        | 8.15            | 31.5              | 12.65      |  |

| Freque             | Frequency(MHz): |    |                   | 2440           |                        | Polarity:                   |                         | HORIZONTAL                |                                |  |
|--------------------|-----------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emis<br>Le      |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4882.00            | 59.46           | PK | 74                | 14.54          | 53.30                  | 31.2                        | 6.61                    | 31.65                     | 6.16                           |  |
| 4882.00            | 44.32           | AV | 54                | 9.68           | 38.16                  | 31.2                        | 6.61                    | 31.65                     | 6.16                           |  |
| 7323.00            | 52.96           | PK | 74                | 21.04          | 40.01                  | 36.2                        | 8.23                    | 31.48                     | 12.95                          |  |
| 7323.00            | 43.93           | AV | 54                | 10.07          | 30.98                  | 36.2                        | 8.23                    | 31.48                     | 12.95                          |  |



| Freque             | Frequency(MHz):   |      |          | 2440   |              | Polarity:         |                 | VERTICAL          |                      |  |  |
|--------------------|-------------------|------|----------|--------|--------------|-------------------|-----------------|-------------------|----------------------|--|--|
| Frequency<br>(MHz) | Emission<br>Level |      | Limit    | Margin | Raw<br>Value | Antenna<br>Factor | Cable<br>Factor | Pre-<br>amplifier | Correction<br>Factor |  |  |
|                    | (dBu              | V/m) | (dBuV/m) | (dB)   | (dBuV)       | (dB/m)            | (dB)            | (dB)              | (dB/m)               |  |  |
| 4882.00            | 62.11             | PK   | 74       | 11.89  | 55.95        | 31.2              | 6.61            | 31.65             | 6.16                 |  |  |
| 4882.00            | 43.93             | AV   | 54       | 10.07  | 37.77        | 31.2              | 6.61            | 31.65             | 6.16                 |  |  |
| 7323.00            | 52.80             | PK   | 74       | 21.20  | 39.85        | 36.2              | 8.23            | 31.48             | 12.95                |  |  |
| 7323.00            | 44.96             | AV   | 54       | 9.04   | 32.01        | 36.2              | 8.23            | 31.48             | 12.95                |  |  |

| Frequency(MHz):    |            |    | 2480              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Le |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 61.83      | PK | 74                | 12.17          | 55.17                  | 31.4                        | 6.76                    | 31.5                      | 6.66                           |
| 4960.00            | 42.44      | AV | 54                | 11.56          | 35.78                  | 31.4                        | 6.76                    | 31.5                      | 6.66                           |
| 7440.00            | 54.90      | PK | 74                | 19.10          | 41.60                  | 36.4                        | 8.35                    | 31.45                     | 13.3                           |
| 7440.00            | 45.13      | AV | 54                | 8.87           | 31.83                  | 36.4                        | 8.35                    | 31.45                     | 13.3                           |

| Freque    | Frequency(MHz): |     |          | 2480   |        | Polarity: |        | VERTICAL  |            |  |
|-----------|-----------------|-----|----------|--------|--------|-----------|--------|-----------|------------|--|
| Frequency | Emission        |     | Limit    | Manain | Raw    | Antenna   | Cable  | Pre-      | Correction |  |
| Frequency | Le              | vel |          | Margin | Value  | Factor    | Factor | amplifier | Factor     |  |
| (MHz)     | (dBuV/m)        |     | (dBuV/m) | (dB)   | (dBuV) | (dB/m)    | (dB)   | (dB)      | (dB/m)     |  |
| 4960.00   | 63.55           | PK  | 74       | 10.45  | 56.89  | 31.4      | 6.76   | 31.5      | 6.66       |  |
| 4960.00   | 43.53           | AV  | 54       | 10.47  | 36.87  | 31.4      | 6.76   | 31.5      | 6.66       |  |
| 7440.00   | 55.31           | PK  | 74       | 18.69  | 42.01  | 36.4      | 8.35   | 31.45     | 13.3       |  |
| 7440.00   | 44.39           | AV  | 54       | 9.61   | 31.09  | 36.4      | 8.35   | 31.45     | 13.3       |  |

#### Remark:

<sup>(1)</sup> Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

<sup>(2)</sup> When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



## 6.9. Antenna Requirement

# **Standard Applicable**

## For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

## FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **Antenna Connected Construction**

The maximum gain of antenna was -0.58 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.



# 7. Test Setup Photo

Reference to the appendix I for details.

# 8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----