

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No...... CTA23120700701

FCC ID...... 2BDC6-WAVEPLUGUS

Compiled by

(position+printed name+signature)... File administrators Zoey Cao

Supervised by

(position+printed name+signature)...: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue.....: Nov. 15, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTATESTIN

Applicant's name...... Shelly Europe Ltd.

Address 103 Cherni Vrah Blvd., 1407 Sofia, Bulgaria

Standard FCC Rules and Regulations Part PART 15.249

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Z-wave Smart Plug

Trade Mark: Jhally

Manufacturer Shelly Europe Ltd.

Model/Type reference...... Wave Plug US

Listed Models N/A

Ratings AC120V 60Hz

Modulation FSK

Frequency...... 908.40MHz

Result....:: PASS

TEST REPORT

Equipment under Test : Z-wave Smart Plug

Model /Type : Wave Plug US

Listed Models : N/A

Applicant : Shelly Europe Ltd.

Address : 103 Cherni Vrah Blvd., 1407 Sofia, Bulgaria

Manufacturer : Shelly Europe Ltd.

Address : 103 Cherni Vrah Blvd., 1407 Sofia, Bulgaria

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

Camaral	Damaria	-
General F		5
	Description	5 5
	ent Under Test	
	scription of the Equipment under Test (EUT) ration mode	5 5
	agram of Test Setup	5 5 5
Modificat		6
TEST	ENVIRONMENT	7
TEST FA	CILITY	7
Test Faci		7
	nental conditions	7
	y of measurement results	7
	nt of the measurement uncertainty	8
	nts Used during the Test	8
TEST	CONDITIONS AND RESULTS	10
4.1.	AC Power Conducted Emission	10
4.2.	Radiated Emission and Band Edges	
4.3.	20dB bandwidth	
4.4.	Antenna Requirement	20
<u>TEST</u>	SETUP PHOTOS OF THE EUT	21

Report No.: CTA23120700701 Page 4 of 28

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

Report No.: CTA23120700701 Page 5 of 28

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec. 07, 2023
Testing commenced on	:	Dec. 07, 2023
Testing concluded on	1:	Dec. 15, 2023

2.2. Product Description

Name of EUT	Z-wave Smart Plug
Model Number	Wave Plug US
Power Rating	AC120V 60Hz
Sample ID:	CTA231207007-1# (Engineer sample) CTA231207007-2#(Normal sample)
Operation frequency:	908.40Mhz
Modulation:	FSK
Antenna Type:	Internal antenna
Antenna Gain:	0.00 dBi

2.3. Equipment Under Test

Power supply system utilised

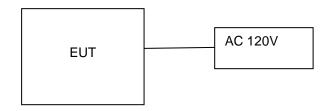
Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow	

/

2.4. Short description of the Equipment under Test (EUT)

This is a Z-wave Smart Plug

For more details, refer to the user's manual of the EUT.


2.5. EUT operation mode

The Applicant provides test software to control the EUT for staying in continuous transmitting and receiving mode for testing .

Testing Frequency:

Channel	Frequency(MHz)
1	908.4

2.6. Block Diagram of Test Setup

Report No.: CTA23120700701 Page 6 of 28

2.7. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA23120700701 Page 7 of 28

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Vadiated Effilosion.	
Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4. Summary of measurement results

FCC PART 15.249		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

Report No.: CTA23120700701 Page 8 of 28

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

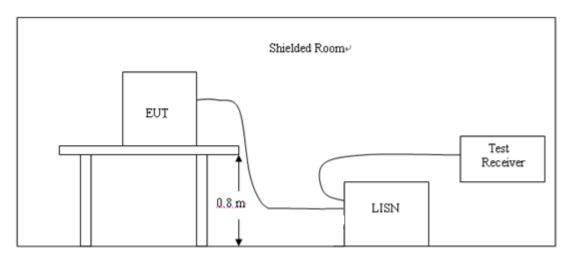
⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12

Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A


Note: The Cal.Interval was one year.

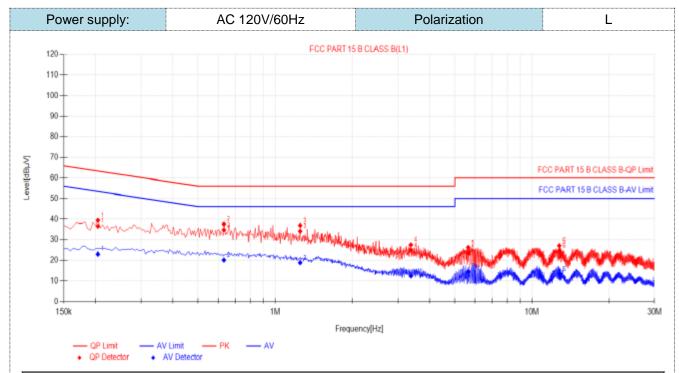
Report No.: CTA23120700701 Page 10 of 28

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

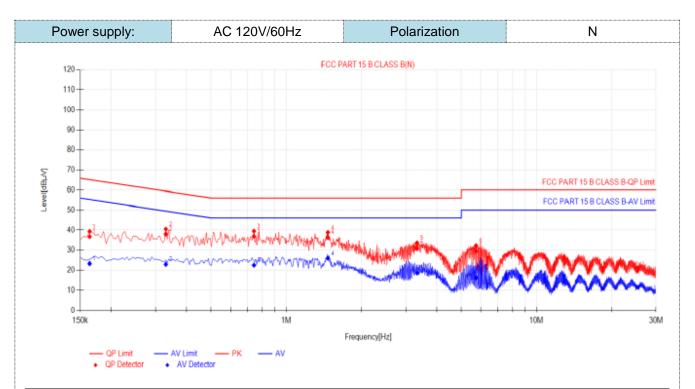
TEST PROCEDURE


- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (c	lBuV)
Frequency range (WHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequen	ncy.	


TEST RESULTS

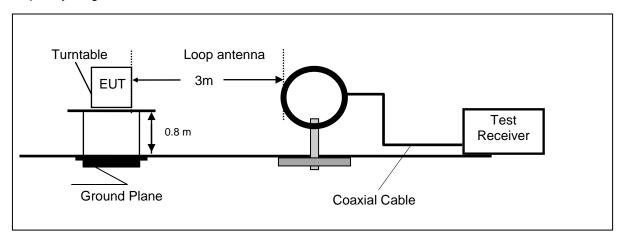
Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.204	10.09	26.48	38.57	63.45	26.88	12.92	23.01	53.45	30.44	PASS
2	0.6315	10.00	24.74	34.74	56.00	21.26	10.11	20.11	46.00	25.89	PASS
3	1.2525	9.90	24.21	34.11	56.00	21.89	8.91	18.81	46.00	27.19	PASS
4	3.3765	9.98	15.00	24.98	56.00	31.02	2.43	12.41	46.00	33.59	PASS
5	5.6445	10.09	13.40	23.49	60.00	36.51	4.42	14.51	50.00	35.49	PASS
6	12.795	10.28	14.25	24.53	60.00	35.47	3.03	13.31	50.00	36.69	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

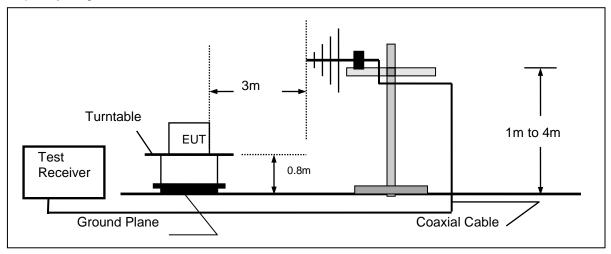
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Fina	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1635	10.05	26.78	36.83	65.28	28.45	13.28	23.33	55.28	31.95	PASS
2	0.33	9.86	28.17	38.03	59.45	21.42	13.14	23.00	49.45	26.45	PASS
3	0.744	10.09	26.90	36.99	56.00	19.01	12.50	22.59	46.00	23.41	PASS
4	1.464	10.14	26.19	36.33	56.00	19.67	15.77	25.91	46.00	20.09	PASS
5	3.3315	10.20	20.66	30.86	56.00	25.14	8.37	18.57	46.00	27.43	PASS
6	5.73	10.21	19.34	29.55	60.00	30.45	6.07	16.28	50.00	33.72	PASS

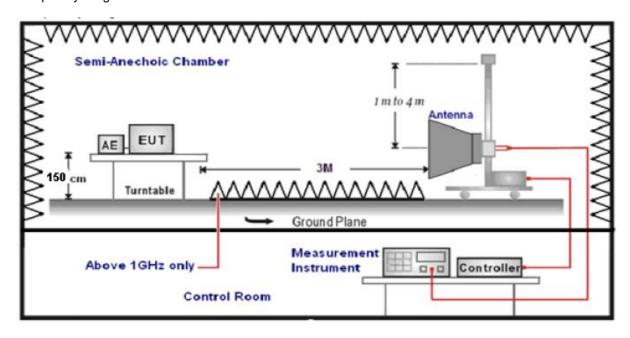
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA23120700701 Page 13 of 28


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA23120700701 Page 14 of 28

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360° C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
101.12 1001.12	Average Value: RBW=1MHz/VBW=10Hz,	1 oan
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: CTA23120700701 Page 15 of 28

TEST RESULTS

Remark:

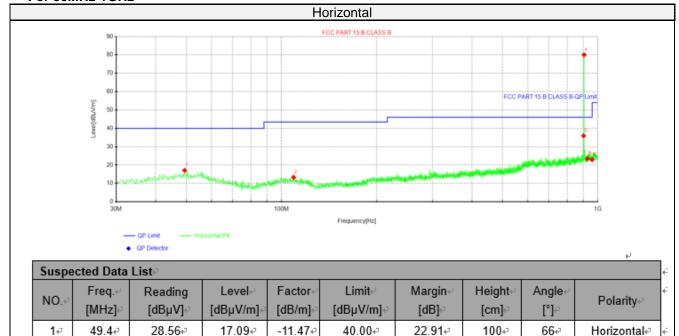
- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

2₽

3₽

4₽


109.176

902₽

908.4₽

928₽

960₽

43.50₽

46.00₽

94.00₽

46.00₽

54.00₽

30.16₽

10.07₽

13.97₽

22.53₽

31.03₽

100₽

100₽

100↩

100₽

100₽

3₽

354₽

3₽

181₽

260₽

Horizontal₽

Horizontal₽

Horizontal₽

Horizontal₽

Horizontal₽

Page 16 of 28

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

-13.65₽

-2.28₽

-2.25₽

-2.08₽

-1.76₽

13.34₽

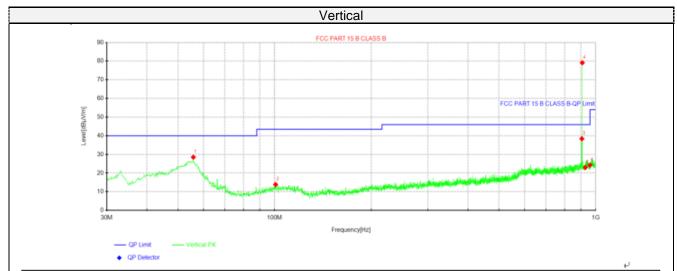
35.93₽

80.03₽

23.47₽

22.97₽

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)


26.99₽

38.21₽

82.28₽

25.55₽

24.73₽

Suspe	Suspected Data List										
NO -	Freq.⊌	Reading	Level⊍	Factor∉	Limit⊬	Margin∉	Height∉	Angle∉	Dalasitus		
NO.₽	[MHz]∂	[dBµV]₽	[dBµV/m]∂	[dB/m]∂	[dBµV/m]₽	[dB]∂	[cm]⊬	[°]	Polarity∂		
1₽	55.8262₽	40.66₽	28.52₽	-12.14₽	40.00₽	11.48₽	100₽	134₽	Vertical₽		
2₽	100.688	27.23₽	13.87₽	-13.36₽	43.50₽	29.63₽	100₽	202₽	Vertical₽		
3₽	902₽	40.66₽	38.41₽	-2.25₽	46.00₽	7.59₽	100₽	0∢⊃	Vertical∉		
4₽	908.4₽	81.37₽	79.14₽	-2.23₽	94.00₽	14.86₽	100₽	24□	Vertical₽		
5₽	928₽	25.06₽	22.98₽	-2.08₽	46.00₽	23.0242	100₽	12₽	Vertical₽		
6₽	960₽	26.02₽	24.26₽	-1.76₽	54.00₽	29.74₽	100₽	180₽	Vertical∉		

- Note:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA23120700701 Page 18 of 28

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):		908	3.40	Pola	arity:	Н	IORIZONTA	\L	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1816.80	41.39	PK	114	72.61	53.67	25.53	3.56	41.37	-12.28
1816.80	37.06	AV	94.00	56.94	49.34	25.53	3.56	41.37	-12.28
2725.20	41.73	PK	74.00	32.27	50.86	28.39	4.52	42.04	-9.13
2725.20	28.19	ΑV	54.00	25.81	37.32	28.39	4.52	42.04	-9.13

Frequency(MHz):		908	3.40	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1816.80	38.96	PK	114.00	75.04	51.24	25.53	3.56	41.37	-12.28
1816.80	34.63	AV	94.00	59.37	46.91	25.53	3.56	41.37	-12.28
2725.20	39.30	PK	74.00	34.70	48.43	28.39	4.52	42.04	-9.13
2725.20	25.76	AV	54.00	28.24	34.89	28.39	4.52	42.04	-9.13

Report No.: CTA23120700701 Page 19 of 28

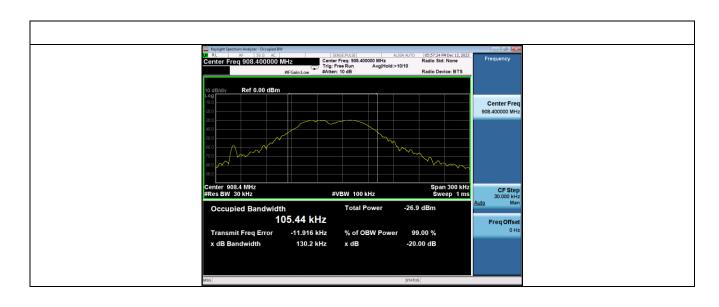
4.3. 20dB bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


Occupied Bandwidth is defined as the average power emitted out-of-band below its lower frequency limit or above the upper frequency limit is each equal to 0.5% of the total average power of a given emission. **LIMIT**

N/A

TEST RESULTS

М	odulation	Channel	20dB bandwidth (kHz)	Result
	ASK	1	130.2	PASS

Note: 1.The test results including the cable lose.

Report No.: CTA23120700701 Page 20 of 28

4.4. Antenna Requirement

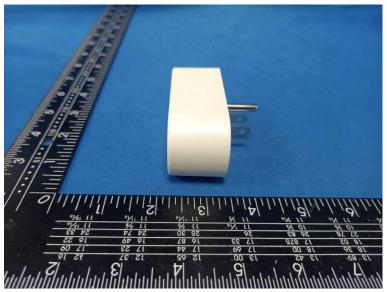
Standard Applicable

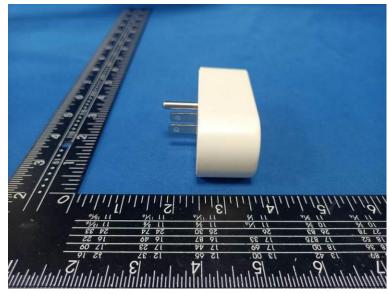
According to RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

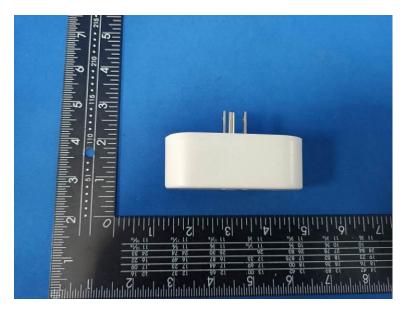
Antenna Information

The directional gains of antenna used for transmitting is 0.00dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

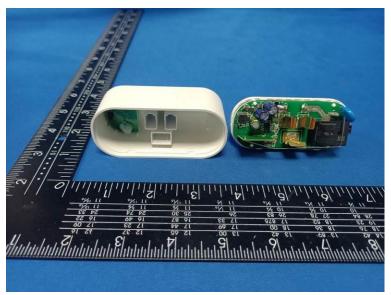
5. Test Setup Photos of the EUT

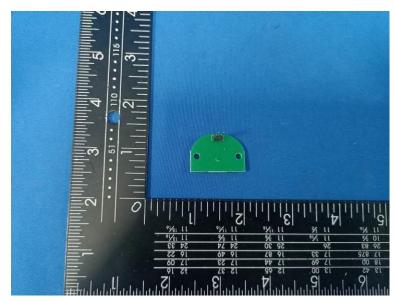


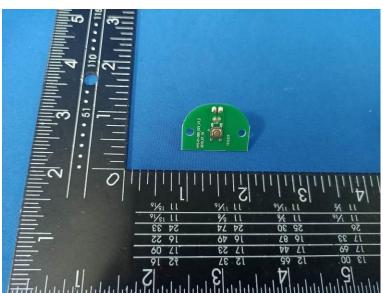

6. Photos of the EUT

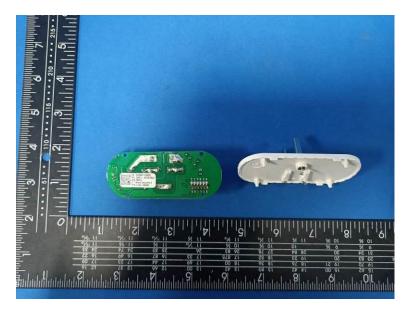


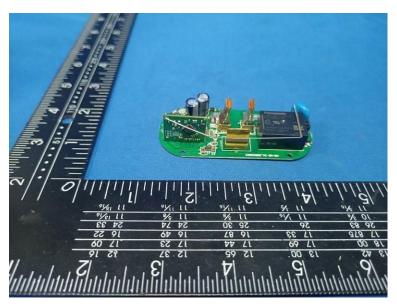
Report No.: CTA23120700701 Page 23 of 28

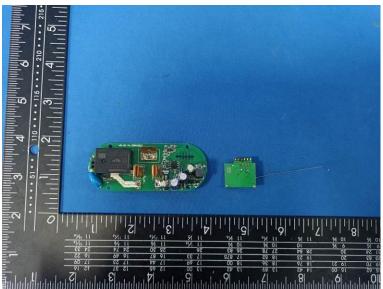


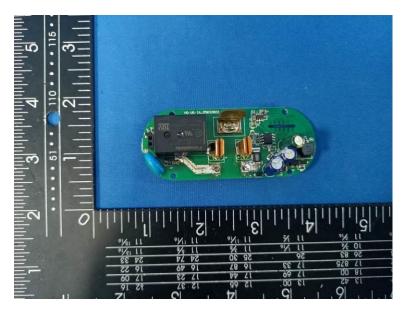


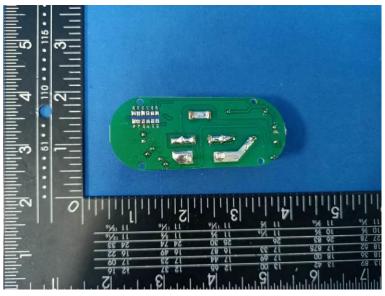

Report No.: CTA23120700701 Page 24 of 28

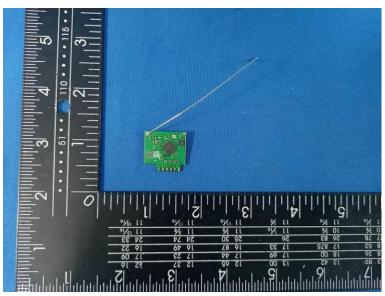


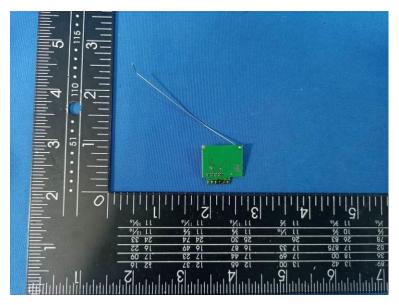


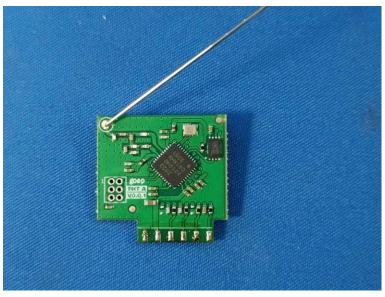












Report No.: CTA23120700701 Page 28 of 28

.....End of Report.....