

Guangdong Shifeng Smart Technology Co., Ltd.

TEST REPORT

SCOPE OF WORK FCC TESTING- MODEL:1017326

REPORTNUMBER GZHH00534631-001

ISSUE DATE JUN 5, 2024

PAGES 24

DOCUMENT CONTROL NUMBER FCC ID 249_C © 2017 INTERTEK

Guangdong Shifeng Smart Technology Co., Ltd.

Application for Certification

FCC ID: 2BDBQSF2024F24GT

Toy RC Phantom Crawler

Model: 1017326 Additional Model No.: 101XXXX (where xxxx can be 0000-9999 which represent different customers)

Brand Name: Sharper Image

2.4GHz Transceiver

Report No.: GZHH00534631-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-23]

Prepared and Checked by:

Approved by:

Sign on file

Terry Tang Assistant Supervisor Ryan Chen Project Engineer Date: Jun 5, 2024

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017

Page:1 of 24

MEASUREMENT/TECHNICAL REPORT

This report concerns (che	eck one:)	Original Grant	<u>X</u> CI	ass II Cha	inge _					
Equipment Type: <u>DXX - I</u>	Part 15 Low P	ower Communica	tion Device T	ransmitter	-					
Deferred grant requested	l per 47 CFR (Yes							
Company Name agrees to notify the Commission by:										
	Transition Rules Request per 15.37? Yes No _X If no, assumed Part 15, Subpart C for intentional radiator – the new 47 CFR [10-1-23 Edition provision.									
Report prepared by:	101, 201, I Community People's Re	ting Services She Building B, No. 3 GuanHu Subdis public of China 6-755-86016288/8	308 Wuhe A strict, LongHu	venue, Zł ua District	hangk	0, 0				

Table of Contents

1.0 Summary of Test Result	4
2.0 General Description	5
2.1Product Description 2.2Related Submittal(s) Grants 2.3Test Methodology 2.4Test Facility	5 5
3.0 System Test Configuration	6
 3.1 Justification	6 6 6
4.0Emission Results	7
 4.1 Radiated Test Results	7 8 8
5.0 Equipment Photographs 1	5
6.0Product Labelling 1	5
7.0Technical Specifications1	5
8.0Instruction Manual 1	5
9.0Miscellaneous Information 1	6
9.1 Bandedge Plot19.220dB Bandwidth19.3Discussion of Pulse Desensitization19.4Calculation of Average Factor19.5 Emissions Test Procedures2	8 9 9
10.0 Test Equipment List	24

1.0 <u>Summary of Test Result</u>

Applicant: Guangdong Shifeng Smart Technology Co., Ltd. Applicant Address: North of Wenguan Road, Chenghua Street, Chenghai District Shantou City, Guangdong Province China

Manufacturer: Guangdong Shifeng Smart Technology Co., Ltd. Manufacturer Address: North of Wenguan Road, Chenghua Street, Chenghai District Shantou City, Guangdong Province China

MODEL:1017326

FCC ID: 2BDBQSF2024F24GT

Test Specification	Reference	Results
Transmitter Radiated Emission	15.249 &15.209 &15.205	Pass
Bandedge		
20dB Bandwidth	15.215(c)	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is a Toy RC Phantom Crawler operating at 2.4G Band. The EUT can be powered by DC 4.5V (3 x 1.5V AAA batteries).For more detail information pls. refer to the user manual.

The Model: 101XXXX (where xxxx can be 0000-9999 which represent different customers) is the same as the Model: 1017326 in hardware and electrical aspect. The difference in appearance and model number serves as marketing strategy.

Antenna Type: Integral antenna Modulation Type: GFSK Antenna Gain: 0dBi

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of controller unit for the Toy RC Phantom Crawler, and the corresponding car unit which associated with this EUT is subjected to FCC certification with FCC ID: 2BDBQSF2024F24GR.

2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch**and located at101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 4.5V (3 x 1.5V AAA batteries) during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section4.

The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories

No special accessories used.

3.4 Equipment Modification

Any modifications installed previous to testing by Guangdong Shifeng Smart Technology Co., Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

- 3.5 Measurement Uncertainty When determining the test conclusion, the Measurement Uncertainty of test has been considered.
- 3.6 Support Equipment List and Description

Description	Manufacturer	Model No.
//	//	//

4.0Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where $FS = Field Strength in dB\mu V/m$ $RA = Receiver Amplitude (including preamplifier) in dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB/m AG = Amplifier Gain in dB PD = Pulse Desensitization in dBAV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. This value in dBµV/m was converted to its corresponding level in μ V/m.

RA = $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS = $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions

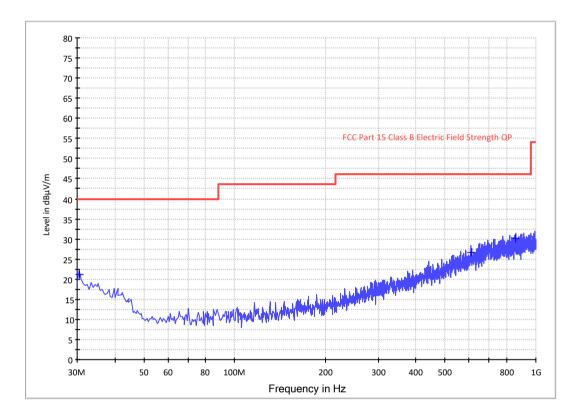
The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission at 829.330000 MHz

Judgement: Passed by 15.1 dB

TEST PERSONNEL:

Sign on file


Terry Tang, Assistant Supervisor Typed/Printed Name

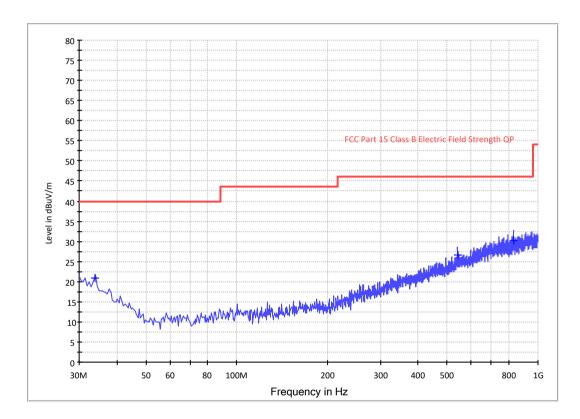
May 6, 2024 Date

Applicant: Guangdong Shifeng Smart Technology Co., Ltd.Date of Test: May 6, 2024Model:1017326Worst Case Operating Mode:Transmitting(2405.000MHz)

ANT Polarity: Horizontal

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
30.210000	21.7	1000.0	120.000	Н	15.5	18.3	40.0
611.02000	26.5	1000.0	120.000	Н	20.0	19.5	46.0
829.330000	30.9	1000.0	120.000	Н	24.7	15.1	46.0

Remark:


Remark:

- 1. Corr.(dB/m) = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

Applicant: Guangdong Shifeng Smart Technology Co., Ltd.Date of Test: May 6, 2024Model:1017326Worst Case Operating Mode:Transmitting(2405.000MHz)

ANT Polarity: Vertical

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
34.280000	21.7	1000.0	120.000	V	15.9	18.3	40.0
521.000000	22.5	1000.0	120.000	V	15.6	23.5	46.0
810.225000	30.1	1000.0	120.000	V	22.5	15.9	46.0

Remark:

- 1. Corr.(dB/m) = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

4.1.4 Transmitter Spurious Emissions (Radiated)

Worst Case Radiated Emission at 2400.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 5.6 dB

TEST PERSONNEL:

Sign on file

Terry Tang, Assistant Supervisor Typed/Printed Name

May 6, 2024 Date

Applicant: Guangdong Shifeng Smart Technology Co., Ltd.Date of Test: May 6, 2024Model:1017326Worst Case Operating Mode:Transmitting

Table 1

Radiated Emissions (2405.000 MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2405.000	90.2	36.7	28.1	81.6	114.0	-32.4
Horizontal	4810.000	50.4	36.7	35.5	49.2	74.0	-24.8

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Netat 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2405.000	90.2	36.7	28.1	30.2	51.4	94.0	-42.6
Horizontal	4810.000	50.4	36.7	35.5	30.2	19.0	54.0	-35.0

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: Guangdong Shifeng Smart Technology Co., Ltd.Date of Test: May 6, 2024Model:1017326Worst Case Operating Mode:Transmitting

Table 2

Radiated Emissions (2440.000 MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)				
Horizontal	2440.000	89.5	36.7	28.1	80.9	114.0	-33.1				
Horizontal	4880.000	51.3	36.7	35.5	50.1	74.0	-23.9				

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Netat 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2440.000	89.5	36.7	28.1	30.2	50.7	94.0	-43.3
Horizontal	4880.000	51.3	36.7	35.5	30.2	19.9	54.0	-34.1

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: Guangdong Shifeng Smart Technology Co., Ltd.Date of Test: May 6, 2024Model:1017326Worst Case Operating Mode:Transmitting

Table 3

Radiated Emissions (2475.000 MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)				
Horizontal	2475.000	87.8	36.7	28.1	79.2	114.0	-34.8				
Horizontal	4950.000	51.7	36.7	35.5	50.5	74.0	-23.5				

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Netat 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2475.000	87.8	36.7	28.1	30.2	49.0	94.0	-45.0
Horizontal	4950.000	51.7	36.7	35.5	30.2	20.3	54.0	-33.7

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf& internal photos.pdf.

6.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

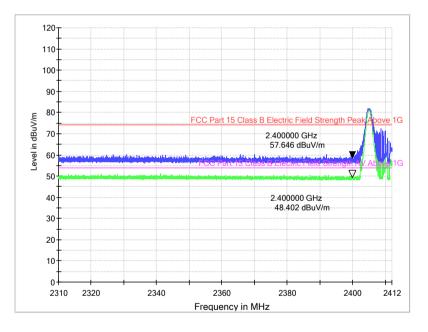
8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

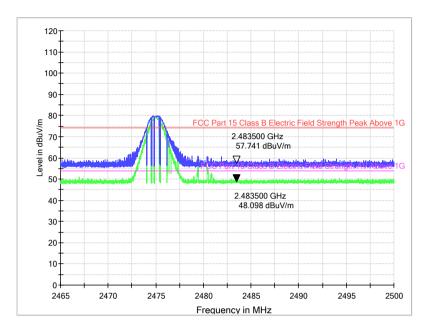

9.1Bandedge Plot

The test plots are attached as below. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

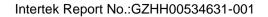
Restricted-band band-edge tests shall be performed as radiated measurements, i.e(Band-edge Plot).

(i) Lower channel 2405.000MHz:


Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2400.000	66.2	36.7	28.1	57.6	74.0	-16.4

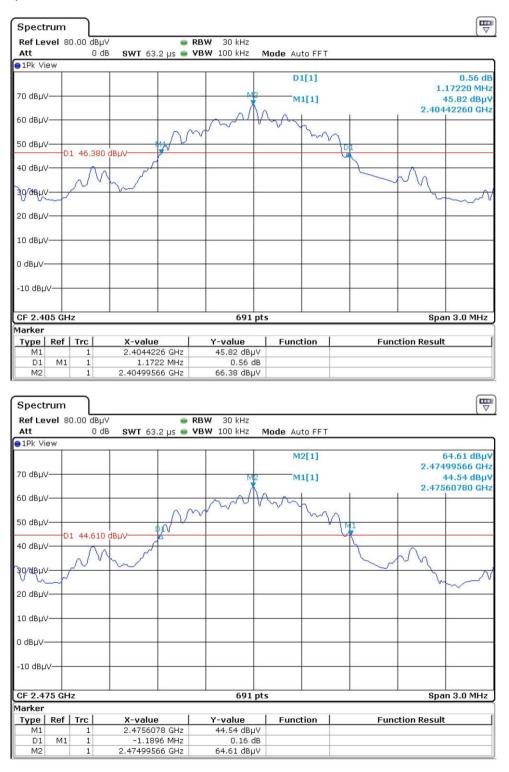
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizontal	2400.000	57.0	36.7	28.1	48.4	54.0	-5.6

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed $74dB\mu\nu/m$ (Peak Limit) and $54dB\mu\nu/m$ (Average Limit).


(ii) Upper channel 2475.000MHz:

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2483.500	65.4	36.8	29.1	57.7	74.0	-16.3

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizontal	2483.500	55.8	36.8	29.1	48.1	54.0	-5.9


The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dB μ v/m (Peak Limit) and 54dB μ v/m (Average Limit).

9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 0.1739ms for a digital "1" bit, as shown in the plots of Section9.4 With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB

9.4 Calculation of Average Factor

Averaging factor in $dB = 20 \log (duty cycle)$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 11.3333ms Effective period of the cycle = 0.1739ms x 2 + 0.00145ms =0.34925ms DC =0.34925ms / 11.3333ms =0.0308 or 3.08%

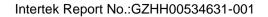
Therefore, the averaging factor is found by 20 log₁₀(0.0308) =-30.2dB

The test plots are attached as below.

Spectrum				
Ref Level 85.00 dBµV		W 3 MHz		(*)
Att 0 dB 🖷 SGL	SWT 100 ms 👄 VB	W 3 MHz		
1Pk Max				
00 db.4/				
80 dBµV				
70 dBµV				
, o dopt				
60 dBµV				
50 dBµV				
40 dBµV				
BBUCK Ala Harth More for all from	www.washaff.gabilitien	will be how we was a little for the second state of the second sta	http://www.com.com/adution/	www.www.www.www.www.www.www.
20 dBµV				
10 dBµV				
0 dBµV				
-10 dBµV				
50 				10.0(
CF 2.475 GHz		691 pts		10.0 ms/
Guardina				
Spectrum				
Ref Level 85.00 dBµV		¥7 3 MHz ¥7 3 MHz		
Ref Level 85.00 dBµV	● RBV SWT 20 ms ● VBV			
RefLevel 85.00 dBµV Att 0 dB @		V 3 MHz		
RefLevel 85.00 dBµ∨ Att 0 dB ∈ SGL			[1]	0.00 dB
Ref Level 85.00 dBµV Att 0 dB = SGL ● 1Pk Max	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV
Ref Level 85.00 dBµV Att 0 dB = SGL ● 1Pk Max		V 3 MHz		0.00 dB 11.3333 ms
Ref Level 85.00 dBµV Att 0 dB ● SGL ■ ■ ■ ■ ● 1Pk Max ■ ■ ■ ■ 80 dBµV ■ ■ ■ ■	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85.00 dBµV Att 0 dB ● SGL ■ ■ ■ ■ ● 1Pk Max ■ ■ ■ ■ 80 dBµV ■ ■ ■ ■	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85,00 dBµV Att 0 dB SGL ● 1Pk Max 80 dBµV 0 dB 70 dBµV 0 dBµV 0 dB 60 dBµV 0 dBµV 0 dB 0 dBµV 0 dB 0 dBµV 0 dB d	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85,00 dBµV Att 0 dB SGL 1Pk Max 80 dBµV 0 70 dBµV 0	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85,00 dBµV Att 0 dB SGL ● 1Pk Max 80 dBµV 0 dB 0 80 dBµV 0 dB	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85.00 dBµV Att 0 dB 0 SGL 0 dB 0 dB ● 1Pk Max 0 dB 0 dB 0 80 dBµV 0 dB 0 dBµV 0 dB 0 dBµV 0 dB 0 dBµV 0 dB dB dB dB dB d	9 SWT 20 ms - VBV	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBy 5 4903 ms
Ref Level 85.00 dBµV Att 0 dB SGL 9 1Pk Max 80 dBµV 90 <td>M1</td> <td>V 3 MHz D1</td> <td></td> <td>0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms</td>	M1	V 3 MHz D1		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 9 1Pk Max 80 dBµV 90 <td>M1</td> <td>V 3 MHz</td> <td></td> <td>0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms</td>	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 1Pk Max 80 dBµV 0 70 dBµV 0 60 dBµV 0 50 dBµV 0 40 dBµV 0 40 dBµV 0	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 9 1Pk Max 80 dBµV 90 <td>M1</td> <td>V 3 MHz</td> <td></td> <td>0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms</td>	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 1Pk Max 80 dBµV 0 70 dBµV 0 60 dBµV 0 50 dBµV 0 40 dBµV 0 20 dBµV 0	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 1Pk Max 80 dBµV 0 70 dBµV 0 60 dBµV 0 50 dBµV 0 40 dBµV 0 40 dBµV 0	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL IPk Max 80 dBµV Image: constraint of the second seco	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 1Pk Max 80 dBµV 0 70 dBµV 0 60 dBµV 0 50 dBµV 0 40 dBµV 0 20 dBµV 0	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms
Ref Level 85.00 dBµV Att 0 dB SGL 1Pk Max 0 dB 1Pk Max 80 dBµV 0 dB 70 dBµV 0 dB 0 70 dBµV 0 dB 0 60 dBµV 0 dB 0 50 dBµV 0 dB 0 40 dBµV 0 dB 0 20 dBµV 0 dB 0 10 dBµV 0 dB 0	M1	V 3 MHz		0.00 dB 11.3333 ms 68.11 dBµV 5.4203 ms

Spectrum													
Ref Level 8						N 3 MHz							
Att SGL	0 dB	s 🖷 SWT	20	ms 👄	VB	N 3 MHz							
91Pk Max													
80 dBµV							C	01[1]					0.00 dB
80 aBhA							D	M1[1]				1	173.9 μs 58.11 dBμV
70 dBµV		M	4						51 E	3			5.4203 ms
70 dbpv				11							ΠΓ	ור	
60 dBµV			Ш										
oc app.													
50 dBµV			#44										
40 dBµV			##										
AR ARMXWAR	- Bastlet with	AL INTRACTOR	Hu	Mapa	we had	A Man and Able	all a souther love of the sola M	allow dealer	unter hart and and	dillo	hu	U	wale by here is
Carlel and a march	on flat in an allan	nd lama as a		, MAY J	and m	Alma Ama Ana	100 marging ages 1	alom was a a	allow a low what	have the	.A	Pro	nomb a war
20 dBµV		<u> </u>	\rightarrow										
10 dBµV		<u> </u>	\rightarrow										
÷													
0 dBµV			\rightarrow					_					
-10 dBµV			\rightarrow						-				
10 A						6	od nte						0.0 mc/
CF 2.475 GH	z						91 pts						2.0 ms/
													m
Spectrum													
Ref Level 8. Att) • • SWT				3 MHz							
SGL	0 40		1 I	ns 🕳	YDY	3 19112							
1Pk Max													
												_	
00 d0:0/		<u> </u>					E	01[1]					-1.26 dB
80 dBµV			\neg									_	1.45 µs
			\neg					D1[1] M1[1]				(
80 dBµV												(1.45 µs 52.06 dBµV
70 dBµV					M1							(1.45 µs 52.06 dBµV
												C	1.45 µs 52.06 dBµV
70 dBµV												(1.45 µs 52.06 dBµV
70 dBµV												6	1.45 µs 52.06 dBµV
70 dBµV 60 dBµV 50 dBµV												(1.45 µs 52.06 dBµV
70 dBµV													1.45 µs 52.06 dBµV
70 dBµV 60 dBµV 50 dBµV 40 dBµV								мı[1]					1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV						LA de lui, ced th		мı[1]		N hi			1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV		hun				Mhindu		мı[1]	-	N/M			1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV	- Inchi/ang	hun				whinda		мı[1]	upartituti	Nim	<u>I</u>		1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV		hun				whyle		мı[1]	ujartutut	N/M	M		1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV	- Inchi/and	hand				Munda		мı[1]	warthat	Num	<u>I</u> WY		1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	- Inch / Mor	hand				MppMa		мı[1]	wanter	Num	<u>MM</u>		1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	- Inthe American	huun				Whyle		мı[1]	- Jardy M	N/IM			1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV		h Mul				Whyle		мı[1]	upurtu da al	Num			1.45 μs 52.06 dBμV 366.67 μs
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	- In the form	h-Mull				MppMa		мı[1]	- Jardy M	N/IM			1.45 μs 52.06 dBμV 366.67 μs

9.5 Emissions Test Procedures


The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Section9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section9.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used, RBW 3 MHz used for fundamental emission.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-12	BiConiLog Antenna	ETS	3142E	00166158	4-Aug-2021	4-Aug-2024
SZ185-04	EMI Receiver	R & S	ESR7	102466	10-Nov-2023	10-Nov-2024
SZ061-08	Horn Antenna	ETS	3115	00092346	5-Sep-2021	5-Sep-2024
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	18-May-2021	18-May-2024
SZ061-15	Double- Ridged Waveguide Horn Antenna	ETS	3116C-PA	00224718	6-Jul-2021	6-Jul-2024
SZ056-06	Spectrum Analyzer	R&S	FSV40	101101	13-Dec-2023	13-Dec-2024
SZ181-04	Preamplifier	Agilent	8449B	3008A024 74	23-Apr-2024	23-Apr-2025
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	12-Dec-2021	12-Dec-2024
SZ062-02	RF Cable	RADIALL	RG 213U		1-May -2024	1-Nov-2024
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		1-May -2024	1-Nov-2024
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		1-May -2024	1-Nov-2024
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		23-Apr-2024	23-Apr-2025