

5020 Chip antenna

For Bluetooth / WLAN Applications

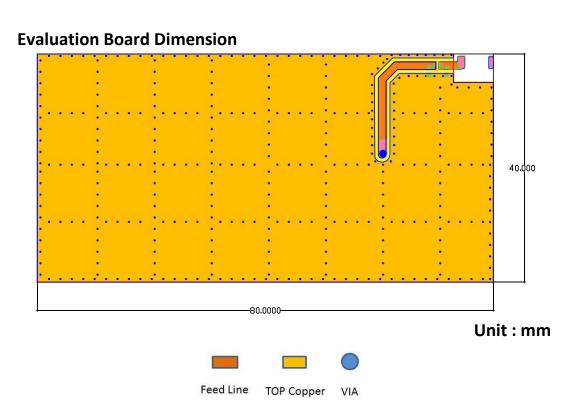
P/N: RANT5020F245M01

	Dimension (mm)				
L	5.02 ± 0.20				
W	2.02 ± 0.20				
Т	0.60 ± 0.20				

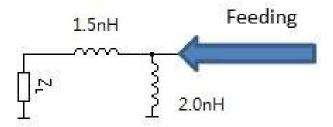
2.4GHz 5020 Chip Antenna: RANT5020F245M01 Part Number Information

RANT	<u>5020</u>	E	<u>245</u>	M	<u>01</u>
Α	В	С	D	Е	F

Α	Product Series	Antenna
В	Dimension L x W	5.0X2.0mm (+-0.2mm)
С	Material	High K material
D	Working Frequency	2.4 ~ 2.5GHz
Ε	Feeding mode	Monopole & Single Feeding
F	Antenna type	Type=01


1. Electrical Specification

Specification							
Part Number	RANT5020F245M01						
Central Frequency	2450	MHz					
Bandwidth	100 (Min.)	MHz					
Return Loss	-10 (Max)	dB					
Peak Gain	4.01	dBi					
Impedance	50	Ohm					
Operating Temperature	-40 ~ +85	°C					
Maximum Power	4	W					
Resistance to Soldering Heats	10 (@ 260°C)	sec.					
Polarization	Linear						
Azimuth Beamwidth	Omni-directional						
Termination	Cu / Sn (Leadless)						

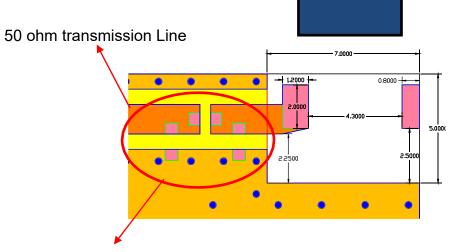

Remark : Bandwidth & Peak Gain was measured under evaluation board of next page

2.4GHz 5020 Chip Antenna: RANT5020F245M01

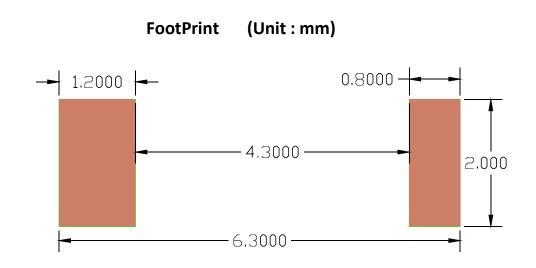
2. Recommended PCB Pattern

Suggested Matching Circuit

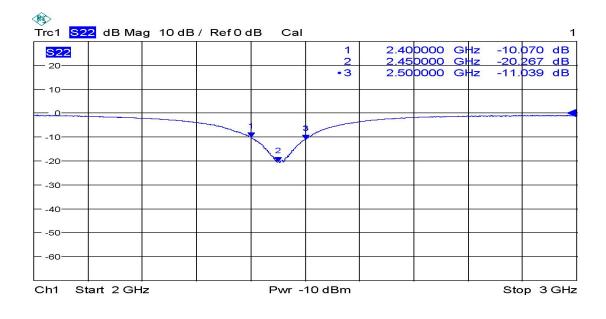
RAIN International Technology Co., Ltd. TEL: 13530576606 Add: 709, Building F, Yuxing Science and Technology Industrial Park, Nanchang Third Industrial Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen


第3页共10页

RAIN


2.4GHz 5020 Chip Antenna: RANT5020F245M01

Layout Dimensions in Clearance area (Size=7.0*5.0mm)


Matching Circuit

2.4GHz 5020 Chip Antenna: RANT5020F245M01 3.Measurement Results

Return Loss

2.4GHz 5020 Chip Antenna: RANT5020F245M01 **Radiation Pattern**

0.6

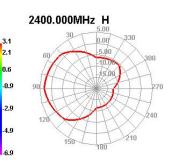
2.3

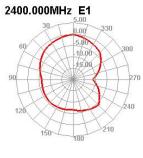
0.8

-0.7 -2.7 -4.7

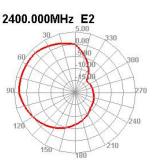
-6.7

3.5 2.5


1.0

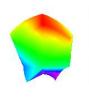

-0.5

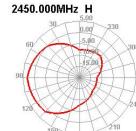
-2.5


-4.5

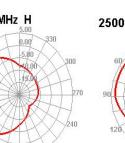
-6.5

2450.000MHz E1

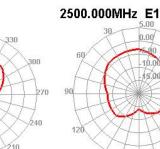

2450.000MHz E2

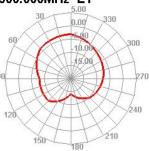

2

RAIN

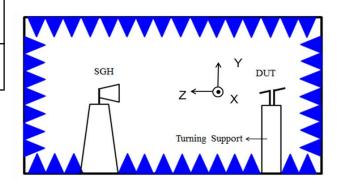

2450.000MHz

2500.000MHz


2500.000MHz H



n nn

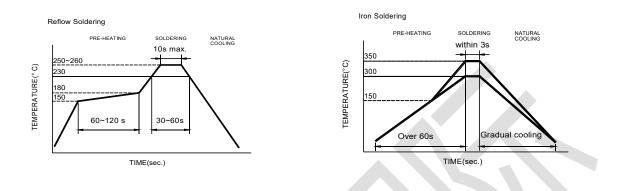

0.00

210

	Efficiency	Peak Gain		
2400MHz	77.56%	3.11dBi		

2.4GHz 5020 Chip Antenna: RANT5020F245M01

4. Reliability and Test Condictions

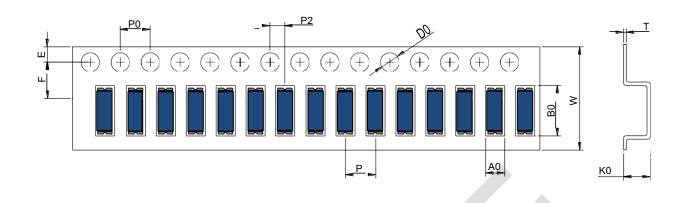

ITEM	REQUIRE	MENTS		TEST CONDITION
Solderability	2. No visible TEI	all exceed 90% covera mechanical damage MP (°C) 0°C 50°C 60s	4±1 sec.	Pre-heating temperature:150°C/60sec. Solder temperature:230±5°C Duration:4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin
Solder heat Resistance	2. Central Fre	mechanical damage eq. change :within ± 6% EMP (°C) 260°C 150°C	6 10=0.5 sec. sec	Pre-heating temperature:150°C/60sec. Solder temperature:260±5°C Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin
Component Adhesion (Push test)	1. No visible r	mechanical damage		The device should be reflow soldered(230±5°C for 10sec.) to a tinned copper substrate A dynometer force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the termination attached to component.
Component Adhesion (Pull test)	1. No visible	e mechanical damag	e	Insert 10cm wire into the remaining open eye bend ,the ends of even wire lengths upward and wind together. Terminal shall not be remarkably damaged.
Thermal shock	Thermal shock 1. No visible mechanical damage 2. Central Freq. change :within ±6% Phase Temperature(°C) 1 +85±5°C 30±3 2 Room Within 2 Room Within 3 -40±2°C 30±3 4 Room Within Temperature 3sec			+85°C=>30±3min -40°C=>30±3min Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to High Temperature	2. Central	le mechanical dan Freq. change :with pnnection or short	nin ±6%	Temperature: 85±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to Low Temperature	2. Central	le mechanical dan Freq. change :with onnection or short	nin ±6%	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Humidity	2. Central	le mechanical dan Freq. change :with onnection or short	nin ±6%	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.

RAIN International Technology Co., Ltd. TEL: 13530576606

Add: 709, Building F, Yuxing Science and Technology Industrial Park, Nanchang Third Industrial Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen RAIN

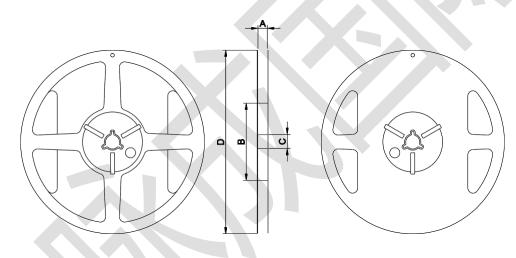
5. Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.


Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.

- Preheat circuit and products to 150°C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.


6.Packaging Information

◆ Tape Specification:

W	Ao	Во	Ко	Р	F	E	D	D1	Ро	P2	t
16.0	1.30	5.30	1.50	4.00	7.50	1.75	1.50	0.00	4.00	2.00	0.30
±0.30	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05

Reel Specification: (7", Φ180 mm)

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
12	12±1.0	60±2	13.5±0.5	178±2	5000

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40°C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.