

FCC Test Report

Report No: FCS202308240W01

Issued for

Applicant:	Shenzhen Baixingcheng Technology Co., LTD
Address:	206, No.8 Shengtai Road, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen
Product Name:	Smart watch
Brand Name:	N/A
Model Name:	LC16
Series Model:	LC17, LC18, LC19,LC21,LC22,LC23,LC25,LC26,LC28
FCC ID:	2BCWB-LC16
Add: Room 105 Floor Bad	ed By: Flux Compliance Service Laboratory o hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan 769-27280901 http://www.FCS-lab.com

TEST RESULT CERTIFICATION

Applicant's Name:	Shenzhen Baixingcheng Technology Co., LTD
Address	206, No.8 Shengtai Road, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen
Manufacture's Name:	Shenzhen Baixingcheng Technology Co., LTD
Address	206, No.8 Shengtai Road, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen
Product Description	
Product Name:	Smart watch
Brand Name	N/A
Model Name:	LC16
Series Model	LC17, LC18, LC19,LC21,LC22,LC23,LC25,LC26,LC28
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests.: Aug 28, 2023 ~ Aug 31, 2023

Date of Issue.....: Aug 31, 2023

Test Result..... Pass

Scott shen Tested by : (Scott Shen) Dukellan Reviewed by (Duke Qian) Approved by

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	.11
2.4 EQUIPMENTS LIST	.12
3 CONDUCTED EMISSION MEASUREMENT	14
4. 20 DB BANDWIDTH	18
4.1 Limit	.18
4.2 Test Procedure	18
4.3 Test setup	18
4.4 Test results	18
4.5 Original Test Data	.19
5. CONDUCTED OUTPUT POWER	.20
5.1 LIMIT	20
5.3 TEST SETUP	20
5.5 TEST RESULTS	.20
6 NUMBER OF HOPPING CHANNEL	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	
5.3 TEST SETUP	21
6.4 EUT OPERATION CONDITIONS	21
6.5 TEST RESULTS	.22
7. BAND EDGE AND SPURIOUS(CONDUCTED)	23
7.1 LIMIT	23
7.2 TEST PROCEDURE	23
7.3 TEST SETUP	23
7.4 TEST RESULTS	
7.5 Original test data	

Table of Contents

Page

7.6 For Hopping Band edge	27
8. RADIATED EMISSION MEASUREMENT	
8.1 RADIATED EMISSION LIMITS	
8.2 TEST PROCEDURE	
8.3 TESTSETUP	
8.4. TEST RESULTS	
8.5 (30MHZ-1000MHZ)	
8.6 ABOVE 1GHZ	
8.7 RADIATED BAND EDGE DATA	
9. AVERAGE TIME OF OCCUPANCY	
9.1 LIMIT	
9.2 TEST PROCEDURE	
9.3 TEST SETUP	
9.4 TEST RESULTS	40
9.5 ORIGINAL TEST DATA	40
10. HOPPING CHANNEL SEPARATION MEASUREMEN	
10.1 LIMIT	
10.2 TEST PROCEDURE	
10.3 TEST SETUP	
10.4 EUT OPERATION CONDITIONS	
10.5 TEST RESULTS	43
11. ANTENNA REQUIREMENT	44
11.1 STANDARD REQUIREMENT	
11.2 RESULT	

Revision History

Rev.	Issue Date	Effect Page	Contents
00 Aug 31, 2023		N/A	N/A

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247 (b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	
15.247(a)(1)(i)	Number of Hopping Frequency	PASS	
15.247(a)(1)(i)	Dwell Time	PASS	
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory			
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan			
Telephone:	+86-769-27280901			
Fax: +86-769-27280901				
Laboray Accreditation	Laboray Accreditations			
FCC Test Firm Registration Number: 514908 CNAS Number: L15566 Designation number: CN0127 A2LA accreditation number: 5545.01 ISED Number: 25801				

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	±4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
7	All emissions,radiated 1GHz -18GHz	±4.66 dB
8	All emissions,radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth	4(%)

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart watch			
Trade Name	N/A			
Model Name	LC16			
Series Model	LC17, LC18, LC19,LC21,LC22,LC23,LC25,LC26,LC28			
Model Difference The above product with same circuit, PCB layout, e parts, materials and wiring structures, Appearance shi materials of decorative accessories is same, the difference is the model name.				
Channel List	Please refer to the Note 2.			
Operation frequency	2402MHz-2480MHz			
Modulation:	GFSK			
Channel number	79 CH			
Transmitter rate:	1MHz			
Power Supply	Input:DC 5V 1A			
Battery	DC 3.7V 1500mAh			
Report number	FCS202308240W01			
Hardware version number V1.0				
Software version number	V1.0			
Connecting I/O Port(s)	Please refer to the User's Manual			

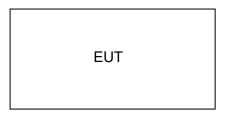
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
				*****			į
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

3. Table for Filed Antenna


Ant.	Brand	Model Name	Antenna Ivne I		Gain (dBi)	NOTE
1	NA	N/A	Internal Antenna	N/A	-0.58	Antenna

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the BT_Tool.exe

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Hopping GFSK

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

5. The Classic Bluetooth EDR function and Bluetooth LE function is turned off through software control. Using only the Classic Bluetooth BDR function.

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	adapter	XIAOMI	AD652G	N/A	Test use

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note	Manufacturer
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	eceiver R&S ESRP 3 FCS		FCS-E001	2022.08.30	2023.08.29
			100 2001	2023.08.29	2024.08.28
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022.08.30	2023.08.29
			100 2012	2023.08.29	2024.08.28
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022.08.30	2023.08.29
				2023.08.29	2024.08.28
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022.08.30	2023.08.29
Bliog / Internite	SOLUM ALEBEON	VOLD 0100	100 2002	2023.08.29	2024.08.28
Horn Antenna		FCS-E003	2022.08.30	2023.08.29	
	Horn Antenna SCHWARZBECK BBHA 9120D		100 2000	2023.08.29	2024.08.28
SHF-EHF Horn	A-INFO LB-180400-KF F		FCS-E018	2022.08.30	2023.08.29
Antenna (18G-40GHz)			FC3-E010	2023.08.29	2024.08.28
Pre-Amplifier(0.1M-3G	EMCI	EM330N	FCS-E004	2022.08.30	2023.08.29
Hz)	2	2		2023.08.29	2024.08.28
Pre-Amplifier	N/A	TSAMP-0518SE	FCS-E014	2022.08.30	2023.08.29
(1G-18GHz)				2023.08.29	2024.08.28
Pre-Amplifier	TERA-MW	TRLA-0400	FCS-E019	2022.08.30	2023.08.29
(18G-40GHz)				2023.08.29	2024.08.28
Temperature &	HTC-1	victor	FCS-E005	2022.08.30	2023.08.29
Humidity				2023.08.29	2024.08.28
Testing Software		EZ-EMC(Ve	er.STSLAB 03A	1 RE)	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESPI	FCS-E020	2022.08.30 2023.08.29	2023.08.29 2024.08.28	
LISN	R&S	ENV216	FCS-E007	2022.08.30 2023.08.29	2023.08.29 2024.08.28	
LISN	ETS	3810/2NM	FCS-E009	2022.08.30 2023.08.29	2023.08.29 2024.08.28	
Temperature & Humidity	HTC-1	victor	FCS-E008	2022.08.30 2023.08.29	2023.08.29 2024.08.28	
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)					

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2022.08.30	2023.08.29	
,				2023.08.29	2024.08.28	
Spectrum Analyzer	Agilent	E4447A MY50180039	2022.08.30	2023.08.29		
opeou un Analyzei	, ignorit		MT 00 100000	2023.08.29	2024.08.28	
Spectrum Analyzer	R&S	FSV-40	101499	2022.08.30	2023.08.29	
	1.0.0	101499		2023.08.29	2024.08.28	
Power Sensor	Agilent	UX2021XA	FCS-E021	2022.08.30	2023.08.29	
	, .g	•••••••		2023.08.29	2024.08.28	
Testing Software		EZ-EMC(Ver.STSLAB 03A1 RE)				

3 CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

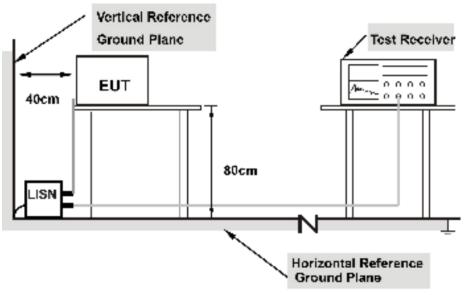
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

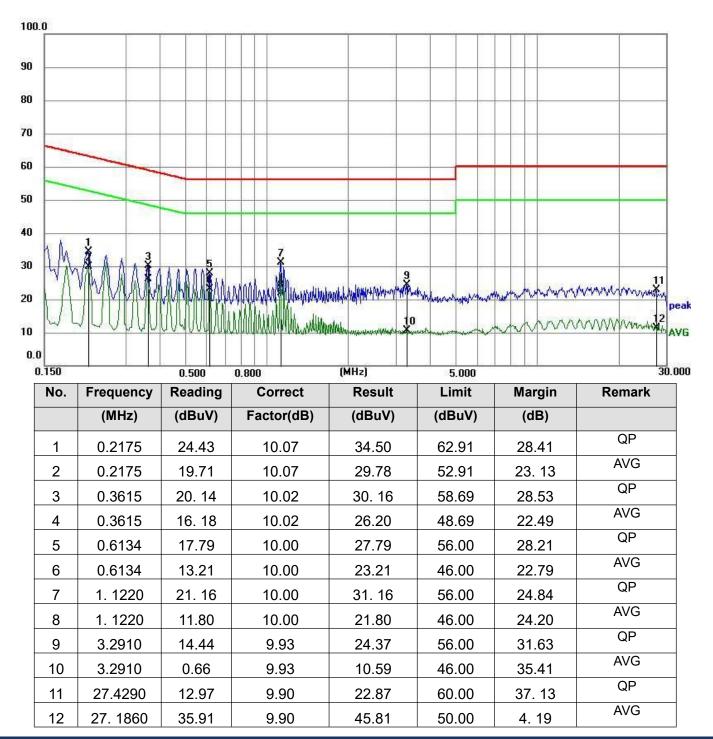
3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP



Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(worst mode)	Test Voltage:	DC 5V by adapter
Result:	L	Result:	Pass

Flux Compliance Service Laboratory

Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

Tempe	erature:	ture: 25℃			Relative Humidity: 50%			
Test M	ode:	GFSK(wors	t mode)	Test Volt	Test Voltage: DC 5V by adapte			
Result	:	Ν		Result:		Pass		
th	NA A	5	7					
.0		0.500	0.800	(MHz)			а.4. М.	
.0	Frequency	Reading	0.800 Correct	(MHz) Result	5.000	Margin	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
0.150	Frequency (MHz)		0.800	(MHz)			Remark	
0.150		Reading	0.800 Correct	(MHz) Result	5.000	Margin	Remark	
0.150 No.	(MHz)	Reading (dBuV)	0.800 Correct Factor(dB)	(MHz) (MHz) Result (dBuV)	5.000 Limit (dBuV)	Margin (dB)	QP AVG	
0.150 No.	(MHz)	Reading(dBuV)28. 11	0.800 Correct Factor(dB) 10.07	(MHz) (MHz) (dBuV) 38. 18	5.000 Limit (dBuV) 65.06	Margin (dB) 26.88	QP AVG QP	
0.150 No. 1 2	(MHz) 0. 1680 0. 1680	Reading (dBuV) 28. 11 2.84	0.800 Correct Factor(dB) 10.07 10.07	(MHz) (MHz) (dBuV) 38. 18 12.91	5.000 Limit (dBuV) 65.06 55.06	Margin (dB) 26.88 42. 15	AVG AVG	
0.150 No. 1 2 3	(MHz) 0. 1680 0. 1680 0.2220	Reading (dBuV) 28. 11 2.84 25.09	0.800 Correct Factor(dB) 10.07 10.07 10.05	(MHz) (MHz) Result (dBuV) 38. 18 12.91 35. 14	5.000 Limit (dBuV) 65.06 55.06 62.74	Margin (dB) 26.88 42.15 27.60	QP AVG QP	
0.150 No. 1 2 3 4	(MHz) 0. 1680 0. 1680 0.2220 0.2220	Reading (dBuV) 28. 11 2.84 25.09 13.68	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05	(MHz) (MHz) Result (dBuV) 38. 18 12.91 35. 14 23.73	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74	Margin (dB) 26.88 42.15 27.60 29.01	AVG AVG	
0.150 No. 1 2 3 4 5	(MHz) 0. 1680 0. 1680 0.2220 0.2220 0.5415 0.5415	Reading (dBuV) 28. 11 2.84 25.09 13.68 18.93 13.04	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05 10.05	(MHz) Result (dBuV) 38. 18 12.91 35. 14 23.73 28.93	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74 52.74	Margin (dB) 26.88 42.15 27.60 29.01 27.07	Remark QP AVG QP AVG QP	
0 0.150 No. 1 2 3 4 5 6 7	(MHz) 0. 1680 0. 1680 0.2220 0.2220 0.5415 0.5415 1. 1265	Reading (dBuV) 28. 11 2.84 25.09 13.68 18.93 13.04 21.31	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05 10.00 10.00 10.00 9.99	[MHz] Result (dBuV) 38. 18 12.91 35. 14 23.73 28.93 23.04 31.30	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74 56.00 46.00 56.00	Margin (dB) 26.88 42.15 27.60 29.01 27.07 22.96 24.70	AVG AVG AVG AVG	
0 0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0. 1680 0. 1680 0.2220 0.2220 0.5415 0.5415 1. 1265 1. 1265	Reading (dBuV) 28. 11 2.84 25.09 13.68 18.93 13.04 21.31 5.07	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05 10.00 10.00 9.99 9.99	(MHz) (MHz) Result (dBuV) 38. 18 12.91 35. 14 23.73 28.93 23.04 31.30 15.06	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74 56.00 46.00 46.00	Margin (dB) 26.88 42.15 27.60 29.01 27.07 22.96 24.70 30.94	AVG QP AVG QP AVG QP AVG	
0 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0. 1680 0. 1680 0.2220 0.2220 0.5415 0.5415 1. 1265 1. 1265 3.0075	Reading (dBuV) 28. 11 2.84 25.09 13.68 18.93 13.04 21.31 5.07 14.78	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05 10.00 10.00 9.99 9.99 9.99 9.94	(MHz) Result (dBuV) 38. 18 12.91 35. 14 23.73 28.93 23.04 31.30 15.06 24.72	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74 52.74 56.00 46.00 56.00 46.00	Margin (dB) 26.88 42.15 27.60 29.01 27.07 22.96 24.70 30.94 31.28	Remark QP AVG QP AVG QP AVG QP AVG	
1 2 3 4 5 6 7 8	(MHz) 0. 1680 0. 1680 0.2220 0.2220 0.5415 0.5415 1. 1265 1. 1265	Reading (dBuV) 28. 11 2.84 25.09 13.68 18.93 13.04 21.31 5.07	0.800 Correct Factor(dB) 10.07 10.07 10.05 10.05 10.00 10.00 9.99 9.99	(MHz) (MHz) Result (dBuV) 38. 18 12.91 35. 14 23.73 28.93 23.04 31.30 15.06	5.000 Limit (dBuV) 65.06 55.06 62.74 52.74 56.00 46.00 46.00	Margin (dB) 26.88 42.15 27.60 29.01 27.07 22.96 24.70 30.94	Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP	

Remark:

1. All readings are Quasi-Peak and Average values

17

4. 20 DB BANDWIDTH

4.1 Limit

	FCC Part15	(15.247) , Subpar	C
Section	Test Item	Limit	Frequency Range (MHz)
15.247a(1)	20dB bandwidth	N/A	2400-2483.5

4.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

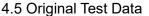
(2) Set the spectrum analyzer as follows

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth :30KHz
RBW	For 99% Bandwidth :1% to 5% of the occupied bandwidth
	For 20dB Bandwidth : ≥3 × RBW
VBW	For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

(3) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator

- (4) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (5) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

4.3 Test setup



Spectrum Analyzer

4.4 Test results

TestMode	Channel (MHz)	99%OBW(MHz)	20dB Bandwidth (MHz)	Verdict
Lowest	2402MHz	0.812	0.890	Pass
Middle	2441MHz	0.812	0.824	Pass
Highest	2480MHz	0.812	0.818	Pass

5. CONDUCTED OUTPUT POWER

5.1 LIMIT

FCC Part 15 Subpart C								
Section	Test Item	Limit	Frequency Range					
15.247(b)(1)	Peak output power	Power <1W(30dBm)	2400-2483.5					

1.Connect each EUT's antenna output to power sensor by RF cable and attenuator

2.Measure the PK output power of each antenna port by power sensor.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	3.17	30	Pass
Middle	2441MHz	2.83	30	Pass
Highest	2480MHz	3.82	30	Pass

6 NUMBER OF HOPPING CHANNEL

6.1 LIMIT

FCC Part 15.247,Subpart C RSS-247 Issue 2								
Section	Test Item	Limit	FrequencyRange (MHz)	Result				
15.247 (a)(1)(iii) RSS-247	Number of Hopping Channel	>15	2400-2483.5	PASS				

6.2 TEST PROCEDURE

a The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto

5.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 3.7V

Keysight R L	Spectr	rum An RF	alyzer - Swept SA 50 Ω AC	CORREC	SE	NSE:PULSE	AI	IGN AUTO			
	Fre		44175000	0 GHz	PNO: Fast Gain:Low	100	Run	Avg Type:	Log-Pwr	1	ACE 1 2 3 4 5 YPE M WWW DET P P P P P
) dB/di			offset 0.5 dB 14.24 dBm						Mkr	2 2.479 90 3	09 5 GH .84 dBr
>9 .24 .76 .78 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8 .5.8											
art 2. Res B					#VB	W 300 kHz			Sweej	Stop 2.4 0 8.000 ms	18350 GH (1001 pt
Image: N N 1 N 2 N 3 4 5 6 7 8	TRC 1	SCL f f		(1 920 5 GHz 9 909 5 GHz		dBm dBm	ICTION FUNC	TION WIDTH	F	UNCTION VALUE	
9 0 1						m					

7. BAND EDGE AND SPURIOUS(CONDUCTED)

7.1 LIMIT

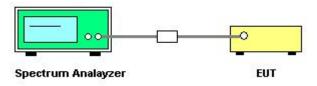
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

7.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center		
	frequency		
RBW:	100kHz		
VBW:	300kHz		
Span	1.5times the DTS bandwidth		
Detector Mode:	Peak		
Sweep time:	auto		
Trace mode	Max hold		


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Number of measurement points Detector Mode:	≥span/RBW Peak
	•

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.3 TEST SETUP

7.4 TEST RESULTS

Eut set mode	CH or Frequency	Result
GFSK	CH1	Pass
	CH79	Pass

7.5 Original test data

CH1 2402MHZ

	RF	50 Ω AC COR	REC SE	NSE:PULSE	ALIGN AUTO	1	
enter	Freq 2.3	375000000 GH	Z PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Lo	og-Pwr	TYPE MWWW DET P P P P
0 dB/di		ffset 0.5 dB).96 dBm				Mkr2 2.39 -5	99 90 GH 4.22 dBn
1.04					8		
0.0		0.					1
0.0							-20.04 dE
0.0						10 N	
0.0					()12	.N"	ma
0.0	an and trates does	notice the second	her of a shade adapt on the	work why have the marked	- maria menter the	venterendeller for	and the
0.0							
0.0						8	
		• 622					
	.30000 G		#VB	W 300 kHz		Sweep 14.40 m	2.45000 GH is (1001 pts
	SW 100 kl	lz					
Res B	BW 100 ki	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
Res B KR MOD 1 N 2 N	3W 100 ki		GHz -51.17	dBm	FUNCTION WIDTH	FUNCTION VALUE	
Res B 1 N 2 N 3 4	BW 100 kl	× 2.398 85	GHz -51.17	dBm	FUNCTION WIDTH	FUNCTION VALUE	
Res B 1 N 2 N 3 4 5 6	BW 100 kl	× 2.398 85	GHz -51.17	dBm	FUNCTION WIDTH	FUNCTION VALUE	
Res B <u>KR MOD</u> 1 N 2 N 3 4 5 6 7 8	BW 100 kl	× 2.398 85	GHz -51.17	dBm	FUNCTION WIDTH	FUNCTION VALUE	
Res B KR MOD 1 N 2 N 3 4 5 6 6 7 8 9 0	BW 100 kl	× 2.398 85	GHz -51.17	dBm	FUNCTION MIDTH	FUNCTION VALUE	
Res B 1 N 2 N 3 4 5 6 7 8 9	BW 100 kl	× 2.398 85	GHz -51.17	dBm	FUNCTION WIDTH	FUNCTION VALUE	

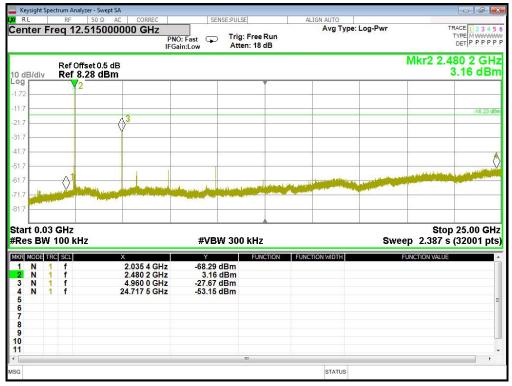
CH79 2480MHZ

Keysight R L	Spect	RF	halyzer - Swept SA 50 Ω AC CORREC		SENSE:PULS	E	ALIGN AUTO		_	
enter	Fre	q 2	.505000000 GHz	PNO: Fast IFGain:Low	Trig	Free Run en: 30 dB		pe: Log-Pwr	т	RACE 1 2 3 4 5 TYPE MWWW DET P P P P P
dB/div			Dffset 0.5 dB 13.77 dBm						Mkr2 2.48 -5	4 00 GH 3.53 dBr
9 77 —										
.2		-								-16.23 dE
.2										
2	800 N.	- 0							-	
2 2	n him	malla.					www.www.	_		
2		¥.	wellington and an and the second			openio di sociali	and the second sec			and a second second
2		3	<u> </u>							6
art 2. es Bl				#	VBW 300	kHz		Swee	Stop 2 p 14.40 m	.58000 GH s (1001 pt
R MODE N	TRC	SCL f	X 2.483 55 G		.63 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
Ň	1	f	2.484 00 G		.53 dBm					
						m				F
3							STATUS			

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

Spurious emissions

Low Channel 30MHz-25GHz


Middle Channel 30MHz-25GHz

Page 26 of 44

High Channel 30MHz-25GHz

7.6 For Hopping Band edge

The section Analyzer - Swept SA LXI RL RF 50 Ω A0 ALIGN A Center Freq 2.440000000 GHz Avg Type: Log-Pwr TRACE 1 2 3 4 5 0 TYPE M WWWW DET P P P P P Trig: Free Run #Atten: 30 dB PNO: Fast Mkr4 2.574 12 GHz -54.51 dBm Ref Offset 0.5 dB Ref 14.22 dBm 10 dB/div Log 4.22 -5.78 -15.78 dB -25.8 -35.8 03 Ø² -45.8 \Diamond^1 Ø -55.8 -65.8 -75.8 Start 2.3000 GHz #Res BW 100 kHz Stop 2.5800 GHz Sweep 26.80 ms (1001 pts) #VBW 300 kHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE x 2.340 60 GHz 2.399 96 GHz 2.483 68 GHz 2.574 12 GHz -54.71 dBm -54.86 dBm -54.01 dBm -54.51 dBm 1 2 3 4 5 6 7 8 9 10 11 NNNN ff STATUS ŝG

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	· · · · · · · · · · · · · · · · · · ·	/
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

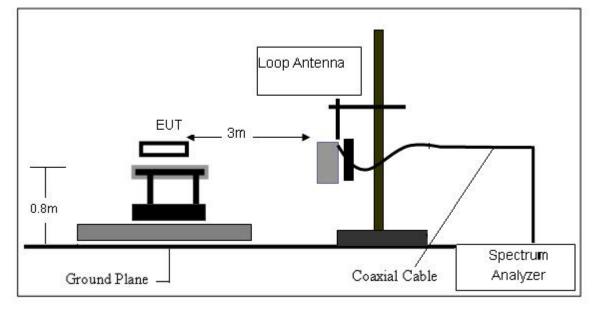
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz

For Band edge

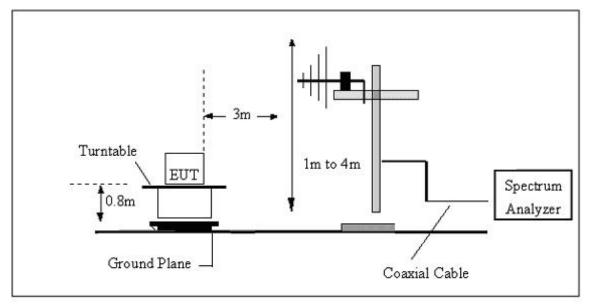
Spectrum Parameter	Setting			
Detector	Peak/AV			
Start/Stop Frequency	Lower Band Edge: 2300 to 2403 MHz			
	Upper Band Edge: 2479 to 2500 MHz			
RB / VB (emission in restricted band) PK=1MHz / 1MHz, AV=1 MHz / 10 Hz			
Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV			
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP			
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV			
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

8.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

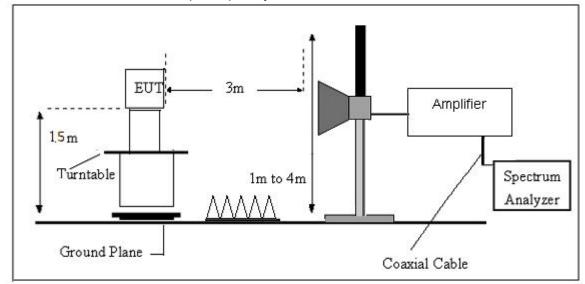

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 31 of 44

(C) Radiated Emission Test-Up Frequency Above 1GHz

8.4. TEST RESULTS

(9KHz-30MHz)

Temperature:	nperature: 22.7°C F		61%
Test Voltage:	DC 3.7V	Test Mode:	GFSK(worst mode)

Freq.	Reading	Limit	Margin	State	Test Result
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	iesi kesuli
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

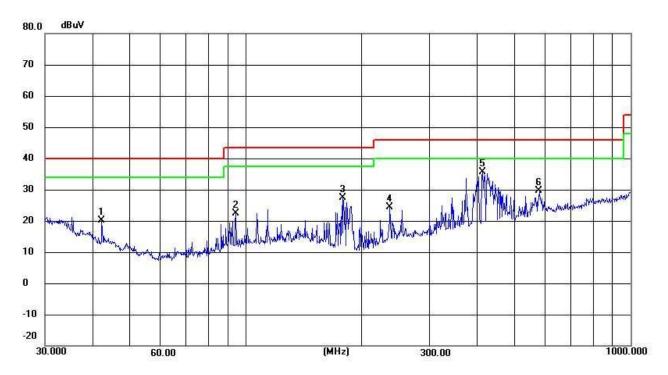
Limit line = specific limits (dBuv) + distance extrapolation factor.

8.5 (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	50.2324	30.11	-17.97	12.14	40.00	-27.86	QP
2	157.0074	53.85	-32.24	21.61	43.50	-21.89	QP
3	181.2834	61.47	-32.22	29.25	43.50	-14.25	QP
4	255.6231	55.96	-32. 14	23.82	46.00	-22.18	QP
5	429.5228	70.01	-31.97	38.04	46.00	-7.96	QP
6	711.6734	57.82	-31.62	26.20	46.00	-19.80	QP

Note: 1. Margin = Result (Result = Reading + Factor)–Limit


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Flux Compliance Service Laboratory

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	42.1542	34.92	-14.74	20.18	40.00	-19.82	QP
2	94.0979	54.76	-32.29	22.47	43.50	-21.03	QP
3	178.7584	59.67	-32.22	27.45	43.50	-16.05	QP
4	236.6447	56.44	-32. 16	24.28	46.00	-21.72	QP
5	411.8240	67.67	-31.99	35.68	46.00	-10.32	QP
6	578.6699	61.46	-31.80	29.66	46.00	-16.34	QP

Note: 1. Margin = Result (Result =Reading + Factor)–Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

■ 8.6 ABOVE 1GHZ

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	42.00	31.78	8.60	32.09	50.29	74.00	-23.71	Vertical
7206.00	34.28	36.15	11.65	32.00	50.08	74.00	-23.92	Vertical
9608.00	31.86	37.95	14.14	31.62	52.33	74.00	-21.67	Vertical
12010.00	*					74.00	3	Vertica
14412.00	*					74.00		Vertical
4804.00	45.76	31.78	8.60	32.09	54.05	74.00	-19.95	Horizontal
7206.00	37.88	36.15	11.65	32.00	53.68	74.00	-20.32	Horizontal
9608.00	34.42	37.95	14.14	31.62	54.89	74.00	-19.11	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.44	31.78	8.60	32.09	36.73	54.00	-17.27	Vertical
7206.00	22.96	36.15	11.65	32.00	38.76	54.00	-15.24	Vertical
9608.00	23.70	37.95	14.14	31.62	44.17	54.00	-9.83	Vertica
12010.00	*					54.00	s	Vertica
14412.00	*					54.00	0 0	Vertical
4804.00	32.32	31.78	8.60	32.09	40.61	54.00	-13.39	Horizontal
7206.00	23.56	36.15	11.65	32.00	39.36	54.00	-14.64	Horizontal
9608.00	23.14	37.95	14.14	31.62	43.61	54.00	-10.39	Horizonta
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Middle CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	37.65	31.85	8.67	32.12	46.05	74.00	-27.95	Vertical
7323.00	32.38	36.37	11.72	31.89	48.58	74.00	-25.42	Vertical
9764.00	29.73	38.35	14.25	31.62	50.71	74.00	-23.29	Vertical
12205.00	*	8	8			74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	38.89	31.85	8.67	32.12	47.29	74.00	-26.71	Horizonta
7323.00	31.46	36.37	11.72	31.89	47.66	74.00	-26.34	Horizontal
9764.00	28.05	38.35	14.25	31.62	49.03	74.00	-24.97	Horizontal
12205.00	*					74.00		Horizonta
14646.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4882.00	26.30	31.85	8.67	32.12	34.70	54.00	-19.30	Vertica
7323.00	22.16	36.37	11.72	31.89	38.36	54.00	-15.64	Vertica
9764.00	20.85	38.35	14.25	31.62	41.83	54.00	-12.17	Vertical
12205.00	*					54.00		Vertica
14646.00	*		2			54.00		Vertica
4882.00	32.51	31.85	8.67	32.12	40.91	54.00	-13.09	Horizonta
7323.00	24.38	36.37	11.72	31.89	40.58	54.00	-13.42	Horizonta
9764.00	20.80	38.35	14.25	31.62	41.78	54.00	-12.22	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Flux Compliance Service Laboratory

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	38.16	31.93	8.73	32.16	46.66	74.00	-27.34	Vertical
7440.00	33.70	36.59	11.79	31.78	50.30	74.00	-23.70	Vertical
9920.00	31.04	38.81	14.38	31.88	52.35	74.00	-21.65	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertica
4960.00	39.79	31.93	8.73	32.16	48.29	74.00	-25.71	Horizonta
7440.00	32.46	36.59	11.79	31.78	49.06	74.00	-24.94	Horizonta
9920.00	31.96	38.81	14.38	31.88	53.27	74.00	-20.73	Horizonta
12400.00	*					74.00		Horizonta
14880.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	29.70	31.93	8.73	32.16	38.20	54.00	-15.80	Vertical
7440.00	24.08	36.59	11.79	31.78	40.68	54.00	-13.32	Vertical
9920.00	22.27	38.81	14.38	31.88	43.58	54.00	-10.42	Vertica
12400.00	*					54.00	8 8	Vertica
14880.00	*		3			54.00	93 - Q3	Vertical
4960.00	32.36	31.93	8.73	32.16	40.86	54.00	-13.14	Horizonta
7440.00	24.13	36.59	11.79	31.78	40.73	54.00	-13.27	Horizonta
9920.00	23.74	38.81	14.38	31.88	45.05	54.00	-8.95	Horizontal
12400.00	*					54.00		Horizonta
14880.00	*					54.00		Horizonta

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

8.7 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)

Peak value:

Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
40.57	27.59	5.38	30.18	43.36	74.00	-30.64	Horizontal
54.23	27.58	5.39	30.18	57.02	74.00	-16.98	Horizontal
40.30	27.59	5.38	30.18	43.09	74.00	-30.91	Vertical
53.41	27.58	5.39	30.18	56.20	74.00	-17.80	Vertical
	Level (dBuV) 40.57 54.23 40.30	Level (dBuV) Factor (dB/m) 40.57 27.59 54.23 27.58 40.30 27.59	Level (dBuV)Factor (dB/m)Loss (dB)40.5727.595.3854.2327.585.3940.3027.595.38	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)40.5727.595.3830.1854.2327.585.3930.1840.3027.595.3830.18	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dBuV/m)40.5727.595.3830.1843.3654.2327.585.3930.1857.0240.3027.595.3830.1843.09	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dBuV/m)Limit Line (dBuV/m)40.5727.595.3830.1843.3674.0054.2327.585.3930.1857.0274.0040.3027.595.3830.1843.0974.00	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dB)Limit Line (dBuV/m)Limit (dB)40.5727.595.3830.1843.3674.00-30.6454.2327.585.3930.1857.0274.00-16.9840.3027.595.3830.1843.0974.00-30.91

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.30	27.59	5.38	30.18	35.09	54.00	-18.91	Horizontal
2400.00	39.47	27.58	5.39	30.18	42.26	54.00	-11.74	Horizontal
2390.00	32.13	27.59	5.38	30.18	34.92	54.00	-19.08	Vertical
2400.00	41.41	27.58	5.39	30.18	44.20	54.00	-9.80	Vertical

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.75	27.53	5.47	29.93	46.82	74.00	-27.18	Horizontal
2500.00	44.93	27.55	5.49	29.93	48.04	74.00	-25.96	Horizontal
2483.50	43.52	27.53	5.47	29.93	46.59	74.00	-27.41	Vertical
2500.00	42.16	27.55	5.49	29.93	45.27	74.00	-28.73	Vertical

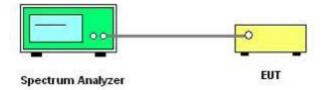
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.59	27.53	5.47	29.93	36.66	54.00	-17.34	Horizontal
2500.00	32.81	27.55	5.49	29.93	35.92	54.00	-18.08	Horizontal
2483.50	34.03	27.53	5.47	29.93	37.10	54.00	-16.90	Vertical
2500.00	34.97	27.55	5.49	29.93	38.08	54.00	-15.92	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

9. AVERAGE TIME OF OCCUPANCY

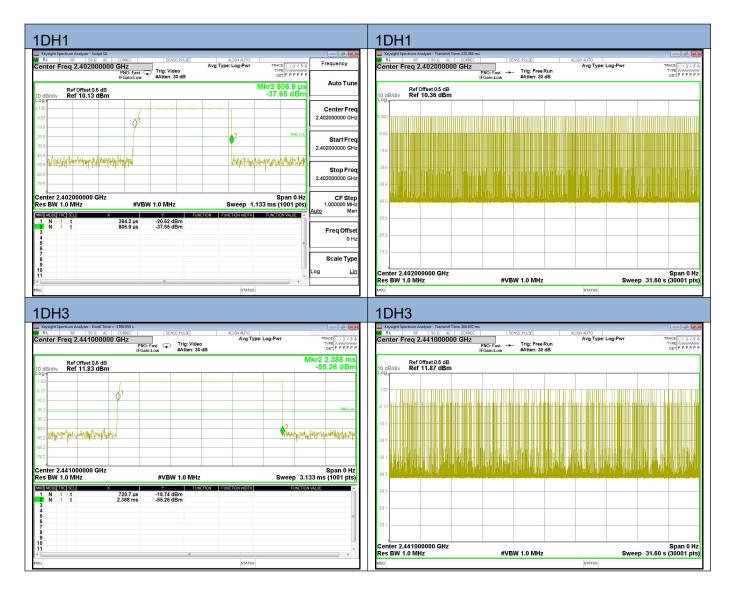

9.1 LIMIT

	FCC F	Parti 5 (15.247), Su	bpart C
Section	Test Item	Limit	Frequency Range (MHz)
15.247(a)(1)	Average Time of Occupancy	0.4 sec	2400-2483.5

9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37x31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06x31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12x31.6 = 320.

9.3 TEST SETUP



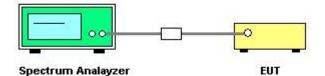
9.4 TEST RESULTS

	AVERAGE_TIME_OF_OCCUPANCY									
CONDITION	MODE	FREQUENCY	PULSE	AVERAGE TIME	LIMIT	BURST	RESULTS			
		(MHZ)	TIME	OF OCCUPANCY	(MS)	NUMBER				
			(MS)	(MS)						
NVNT	1DH1	2402	0.423	135.264	400	320	PASS			
NVNT	1DH3	2441	1.667	265.037	400	160	PASS			
NVNT	1DH5	2480	2.92	321.200	400	110	PASS			

9.5 ORIGINAL TEST DATA

R L	ight Spe	ctrum Ana RF	lyzer - Dwell Tim 50 Ω AC	e = -1066.623 s CORREC		VSE:PULSE					6
	er Fi		18000000		SEP			ALIGN AUTO Avg Type: L	.og-Pwr		ACE 1 2 3 4 5
orne		09 2	1000000	PN	D: Fast 😱 ain:Low	Trig: Vide #Atten: 30	o dB				DET P P P P P
0 dB/	(div		ffset 0.5 dB I 3.79 dBm								3.512 m 1.55 dBr
ogy											
3.79 -			1								
5.21 -			1								
6.2			Y								
6.2 6.2											TRIGTLY
6.2										2	
10.2	APPROX	white	Laker								Manufalov
6.2										1	
6.2											
		80000 .0 MHz	0000 GHz		#VB	N 1.0 MH:	,		Sweep	4.000 ms	Span 0 H (1001 pts
		C SCL		(Y			UNCTION WIDTH		ICTION VALUE	(
1 M	N 1	t		592.0 µs 3.512 ms	-19.91	dBm					
3 4				0.012 1113	-02.001	ubiii					
5											
6											
8											
789											

10. HOPPING CHANNEL SEPARATION MEASUREMEN


10.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting				
Attenuation	Auto				
Span Frequency	> 20 dB Bandwidth or Channel Separation				
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)				
VB	100 kHz (20dB Bandwidth) /100 kHz (Channel Separation)				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

10.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement
- 10.3 TEST SETUP

10.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 3.7V

Modulation	Frequency (MHz)	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	1DH1	2402	1.000	0.59	Pass
GFSK	1DH3	2441	1.004	0.55	Pass
	1DH5	2480	1.000	0.55	Pass

11. ANTENNA REQUIREMENT

11.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 RESULT

The antennas used for this product are Internal antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is -0.58dBi.

XXXXXEND OF THE REPORTXXXXX