

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202309148F02

TEST Report

GUANGZHOU SHUANG YI Electronic technology Co.Ltd Applicant:

Address of Applicant: 2FB100-103, NanFang Building, Xidi 2nd Road, Liwan District,

Guangzhou

Manufacturer: GUANGZHOU SHUANG YI Electronic technology Co.Ltd

Address of 2FB100-103, NanFang Building, Xidi 2nd Road, Liwan District,

Manufacturer: Guangzhou

Equipment Under Test (EUT)

Product Name: Bluetooth Speaker

A1 Model No.:

A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16, Series model:

> A17.A18.A19.A20.A21.A22.A23.A24.A25.A26.A27.A28.A29. A30,A31,A32,A33,A34,A35,A36,A37,A38,A39,A40,A41,A42, A43,A44,A45,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13, B14,B15,B16,B17,B18,B19,B20,B21,B22,B23,B24,B25,S1,S2, S3.S4.S5.S6.S7.S8.S9.S10.S11.S12.S13.S14.S15.S16.S17.

\$18,\$19,\$20,\$21,\$22,\$23,\$24,\$25,\$26,\$27,\$28,\$29,\$30

Trade Mark: Music Apollo

2BCVD-A1 FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Sep.08,2023

Date of Test: Sep.08,2023~Sep.14,2023

Date of report issued: Sep.14,2023

PASS * **Test Result:**

In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Sep.14,2023	Original

Tested/ Prepared By	Heber He	Date:	Sep.14,2023
	Project Engineer		
Check By:	Bruce Zhu	Date:	Sep.14,2023
	Reviewer		
Approved By :	Kevin Yang HT	Date:	Sep.14,2023
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT.	
7. TEST SETUP PHOTO	30
8 FUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	Disturbance 0.15~30MHz 2.66 dB (
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

4. General Information

4.1. General Description of EUT

	Control Decomplian of Edit				
Product Name:	Bluetooth Speaker				
Model No.:	A1				
Series model:	A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17, A18,A19,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,A30,A31, A32,A33,A34,A35,A36,A37,A38,A39,A40,A41,A42,A43,A44,A45,B1, B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17, B18,B19,B20,B21,B22,B23,B24,B25,S1,S2,S3,S4,S5,S6,S7,S8,S9,S 10,S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,S21,S22,S23, S24,S25,S26,S27,S28,S29,S30				
Test sample(s) ID:	HTT202309148-1(Engineer sample) HTT202309148-2(Normal sample)				
Operation frequency	2402~2480 MHz				
Number of Channels	40				
Modulation Type	GFSK				
Channel separation	2MHz				
Antenna Type:	PCB Antenna				
Antenna gain:	1.68dBi				
Power Supply:	DC 3.7V/1800mAh From Battery and DC 5V From External Circuit				
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A				

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

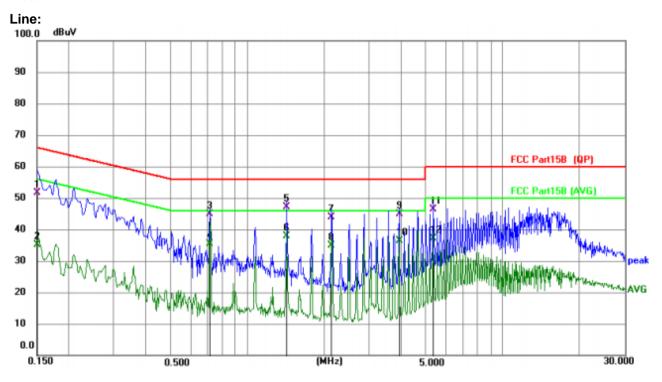
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

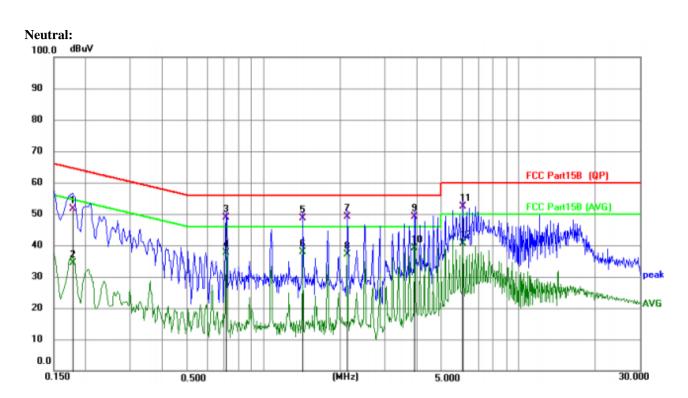
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data


6.1. Conducted Emissions

T (D)	500 D (45 0 0); 45 007				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	Frequency range (MHz)		(dBuV)		
		Quasi-peak			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 5-30	56 60	46 50		
	* Decreases with the logarithr		50		
Test setup:					
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Receiver Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted				
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details	5	Γ		
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz				
Test results:	PASS				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



Measurement data:

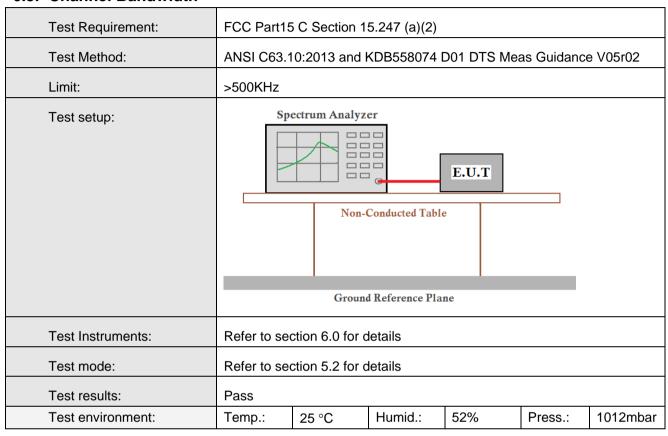
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1501	41.48	10.16	51.64	65.99	-14.35	QP
2	0.1501	24.86	10.16	35.02	55.99	-20.97	AVG
3	0.7125	34.48	10.34	44.82	56.00	-11.18	QP
4	0.7125	24.97	10.34	35.31	46.00	-10.69	AVG
5	1.4280	36.66	10.41	47.07	56.00	-8.93	QP
6 *	1.4280	27.46	10.41	37.87	46.00	-8.13	AVG
7	2.1433	33.37	10.41	43.78	56.00	-12.22	QP
8	2.1433	24.57	10.41	34.98	46.00	-11.02	AVG
9	3.9300	34.21	10.59	44.80	56.00	-11.20	QP
10	3.9300	25.73	10.59	36.32	46.00	-9.68	AVG
11	5.3563	35.66	10.61	46.27	60.00	-13.73	QP
12	5.3563	26.42	10.61	37.03	50.00	-12.97	AVG

MHz 0.1770 0.1770 0.7125	41.52 24.09	dB 10.19 10.19	dBuV 51.71	dBuV 64.63	dB -12.92	Detector
0.1770	24.09			64.63	-12.92	OP
		10.19				Q1
0.7125			34.28	54.63	-20.35	AVG
	38.60	10.39	48.99	56.00	-7.01	QP
0.7125	27.29	10.39	37.68	46.00	-8.32	AVG
1.4280	38.25	10.35	48.60	56.00	-7.40	QP
1.4280	27.59	10.35	37.94	46.00	-8.06	AVG
2.1390	38.82	10.41	49.23	56.00	-6.77	QP
2.1390	26.63	10.41	37.04	46.00	-8.96	AVG
3.9210	38.58	10.50	49.08	56.00	-6.92	QP
3.9210	28.70	10.50	39.20	46.00	-6.80	AVG
6.0674	41.71	10.63	52.34	60.00	-7.66	QP
6.0674	30.00	10.63	40.63	50.00	-9.37	AVG
	0.7125 1.4280 1.4280 2.1390 2.1390 3.9210 3.9210 6.0674	0.7125 38.60 0.7125 27.29 1.4280 38.25 1.4280 27.59 2.1390 38.82 2.1390 26.63 3.9210 38.58 3.9210 28.70 6.0674 41.71	0.7125 38.60 10.39 0.7125 27.29 10.39 1.4280 38.25 10.35 1.4280 27.59 10.35 2.1390 38.82 10.41 2.1390 26.63 10.41 3.9210 38.58 10.50 3.9210 28.70 10.50 6.0674 41.71 10.63	0.7125 38.60 10.39 48.99 0.7125 27.29 10.39 37.68 1.4280 38.25 10.35 48.60 1.4280 27.59 10.35 37.94 2.1390 38.82 10.41 49.23 2.1390 26.63 10.41 37.04 3.9210 38.58 10.50 49.08 3.9210 28.70 10.50 39.20 6.0674 41.71 10.63 52.34	0.7125 38.60 10.39 48.99 56.00 0.7125 27.29 10.39 37.68 46.00 1.4280 38.25 10.35 48.60 56.00 1.4280 27.59 10.35 37.94 46.00 2.1390 38.82 10.41 49.23 56.00 2.1390 26.63 10.41 37.04 46.00 3.9210 38.58 10.50 49.08 56.00 3.9210 28.70 10.50 39.20 46.00 6.0674 41.71 10.63 52.34 60.00	0.7125 38.60 10.39 48.99 56.00 -7.01 0.7125 27.29 10.39 37.68 46.00 -8.32 1.4280 38.25 10.35 48.60 56.00 -7.40 1.4280 27.59 10.35 37.94 46.00 -8.06 2.1390 38.82 10.41 49.23 56.00 -6.77 2.1390 26.63 10.41 37.04 46.00 -8.96 3.9210 38.58 10.50 49.08 56.00 -6.92 3.9210 28.70 10.50 39.20 46.00 -6.80 6.0674 41.71 10.63 52.34 60.00 -7.66

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

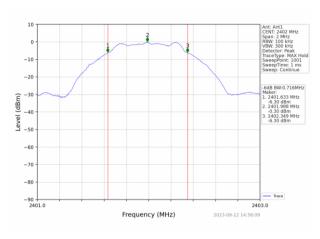
6.2. Conducted Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm							
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	emp.: 25 °C Humid.: 52% Press.: 1012mbar							

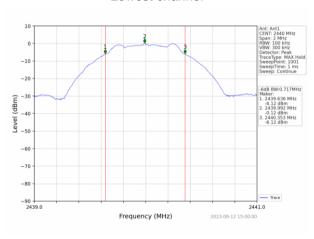
Measurement Data

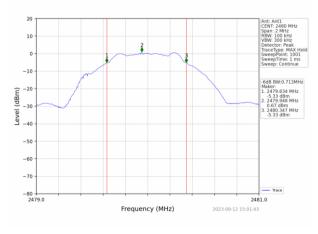
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	0.69		
Middle	0.84	30.00	Pass
Highest	1.60		

6.3. Channel Bandwidth



Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.716			
Middle	0.717	>500	Pass	
Highest	0.713			

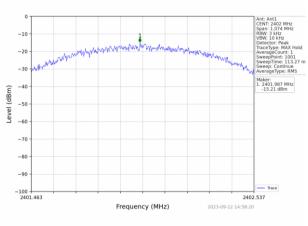

Test plot as follows:

Lowest channel

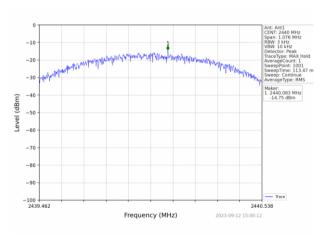
Middle channel

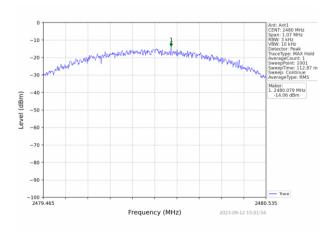
Highest channel

6.4. Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	8dBm/3kHz								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
To at least more and a	Defeate coefficie C.O.for details								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Measurement Data

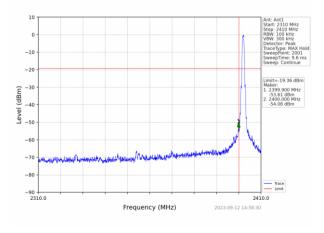

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-15.21			
Middle	-14.75	8.00	Pass	
Highest	-14.06			

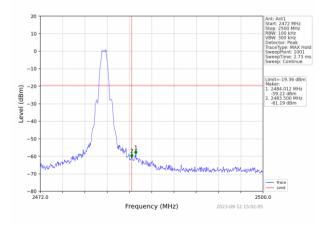

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

	0.5.1 Conducted Limssion Method									
Test Requirement:	FCC Part15	C Section 1	5.247 (d)							
Test Method:	ANSI C63.1	0:2013 and k	KDB558074	D01 DTS Mea	as Guidance	e V05r02				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to sec	ction 6.0 for d	letails							
Test mode:	Refer to see	ction 5.2 for d	letails							
Test results:	Pass	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Test plot as follows:

Lowest channel

Highest channel

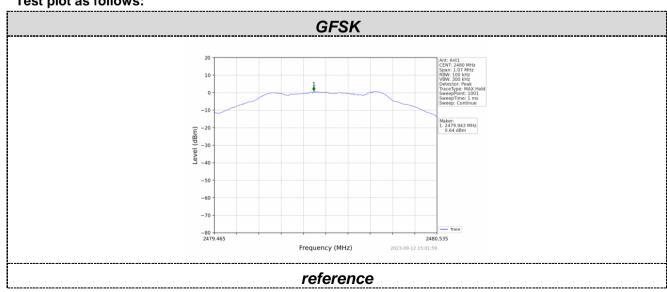
6.5.2 Radiated Emission Method

Test Requirement: FCC Part15	C Section 15	.209 and 15	.205							
•	ANSI C63.10:2013									
Test Frequency Range: All of the re	estrict bands w		only the wo	rst band's (2	2310MHz to					
	ent Distance: 3									
Receiver setup: Frequenc	Frequency Detector RBW VBW Va									
	Paak				Peak					
Above 1Gi	Hz RMS				verage					
Limit: Fre	equency	Limit (d	dBuV/m @3r		/alue					
	ve 1GHz	,	54.00	Av	verage					
Abo	ve IGHZ		74.00	F	Peak					
	Tum Table - Clm 4m >- Clm									
Test Procedure: 1. The EUT	- was placed a				ra abaya					
determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and then and the r the maxis 5. The test- Specified 6. If the em the limit s of the EU have 10c	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. 									
sheet. 7. The radia And foun	JT would be red margin would be margin would would margin measure at the X axis p	uld be re-tes od as specifi ments are p ositioning w	ted one by o ed and then erformed in a hich it is wor	ne using per reported in X, Y, Z axis	at did not ak, quasi- a data positioning.					
sheet. 7. The radia And foun worst cas	JT would be red margin would be margin would would margin measure at the X axis p	uld be re-tes od as specif ments are p positioning we corded in the	ted one by o ed and then erformed in a hich it is wor	ne using per reported in X, Y, Z axis	at did not ak, quasi- a data positioning.					
sheet. 7. The radia And foun worst cas Test Instruments: Refer to sec	JT would be red margin would be margin would average method ation measured the X axis page mode is red	uld be re-tes od as specif ments are p positioning w corded in the etails	ted one by o ed and then erformed in a hich it is wor	ne using per reported in X, Y, Z axis	at did not ak, quasi- a data positioning.					
sheet. 7. The radia And foun worst cas Test Instruments: Refer to sec	JT would be read B margin would be margin would average methot ation measured the X axis page mode is rection 6.0 for de	uld be re-tes od as specif ments are p positioning w corded in the etails	ted one by o ed and then erformed in a hich it is wor	ne using per reported in X, Y, Z axis	at did not ak, quasi- a data positioning.					

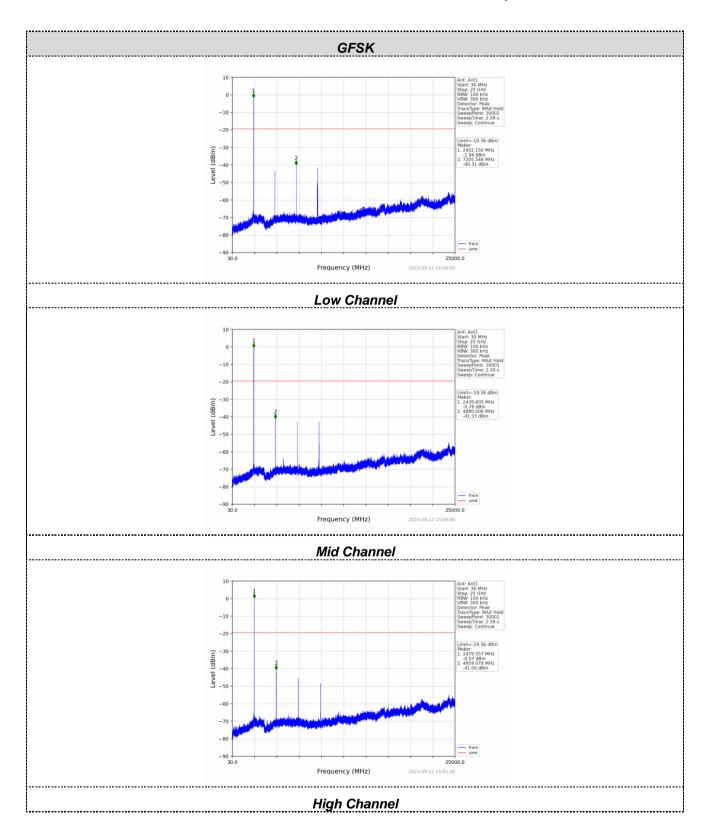
Measurement Data

Operation Mode: GFSK

Frequency(MHz):		24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.65	PK	74	13.35	62.04	27.2	4.31	32.9	-1.39
2390.00	44.96	AV	54	9.04	46.35	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ⁱ (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.01	PK	74	14.99	60.40	27.2	4.31	32.9	-1.39
2390.00	46.69	AV	54	7.31	48.08	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P olarity:		y: HORIZONTAL		۸L
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.99	PK	74	18.01	56.92	27.4	4.47	32.8	-0.93
2483.50	45.97	AV	54	8.03	46.90	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.26	PK	74	18.74	56.19	27.4	4.47	32.8	-0.93
2483.50	43.84	AV	54	10.16	44.77	27.4	4.47	32.8	-0.93

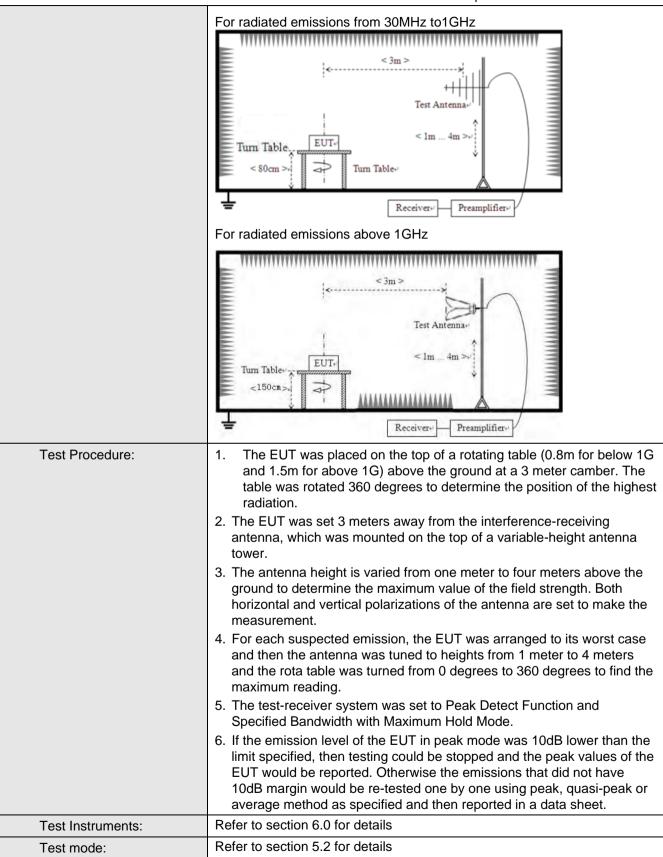


6.6. Spurious Emission


6.6.1 Conducted Emission Method

6.6.1 Conducted Emission Method								
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar							

Test plot as follows:



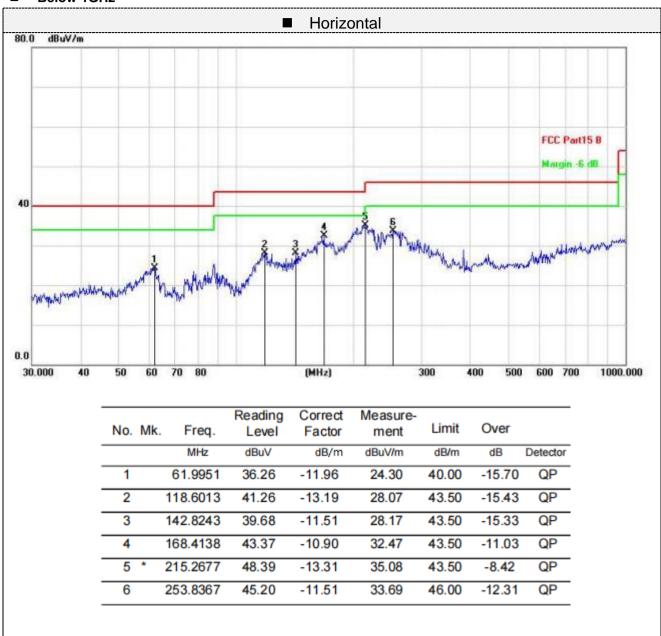
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector RBV		W VBW		Value		
	9KHz-150KHz	Qι	uasi-peak 2001		Hz 600Hz		z Quasi-peak		
	150KHz-30MHz	Qι	ıasi-peak	9KH	Ηz	30KH:	z Quasi-peak		
	30MHz-1GHz	Qι	ıasi-peak	120KHz		300KH	Iz Quasi-peak		
	Above 1GHz		Peak	1MI	Ηz	3MHz	z Peak		
	Above 1G112		Peak	1MHz		10Hz	Average		
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	lz	30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MH		200		QP		3m		
	960MHz-1GHz		500		QP		J		
	Above 1GHz		500			erage			
			5000 Peak						
Test setup:	For radiated emissic	ns fr	om 9kHz to	30MH	lz				
	For radiated emissions from 9kHz to 30MHz Compared to 30MHz								

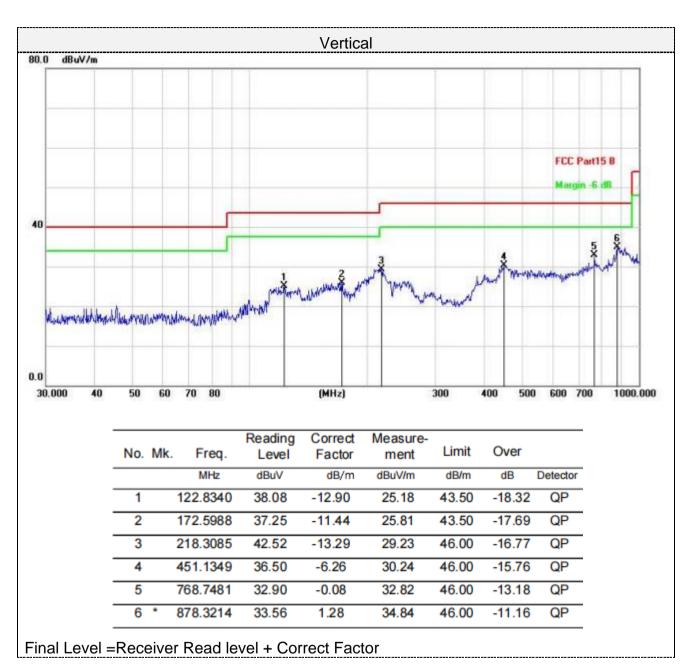
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.90	PK	74	15.10	53.20	31	6.5	31.8	5.7
4804.00	41.82	AV	54	12.18	36.12	31	6.5	31.8	5.7
7206.00	54.29	PK	74	19.71	41.64	36	8.15	31.5	12.65
7206.00	43.33	AV	54	10.67	30.68	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.94	PK	74	14.06	54.24	31	6.5	31.8	5.7
4804.00	43.59	AV	54	10.41	37.89	31	6.5	31.8	5.7
7206.00	53.63	PK	74	20.37	40.98	36	8.15	31.5	12.65
7206.00	44.05	AV	54	9.95	31.40	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.68	PK	74	14.32	53.52	31.2	6.61	31.65	6.16
4880.00	44.02	AV	54	9.98	37.86	31.2	6.61	31.65	6.16
7320.00	52.39	PK	74	21.61	39.44	36.2	8.23	31.48	12.95
7320.00	43.16	AV	54	10.84	30.21	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency	Emission Level (dBuV/m)		Limit M	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
(MHz)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	61.33	PK	74	12.67	55.17	31.2	6.61	31.65	6.16
4880.00	43.78	AV	54	10.22	37.62	31.2	6.61	31.65	6.16
7320.00	54.10	PK	74	19.90	41.15	36.2	8.23	31.48	12.95
7320.00	45.00	AV	54	9.00	32.05	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.73	PK	74	11.27	56.07	31.4	6.76	31.5	6.66
4960.00	41.75	AV	54	12.25	35.09	31.4	6.76	31.5	6.66
7440.00	53.26	PK	74	20.74	39.96	36.4	8.35	31.45	13.3
7440.00	44.65	AV	54	9.35	31.35	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	63.72	PK	74	10.28	57.06	31.4	6.76	31.5	6.66
4960.00	44.08	AV	54	9.92	37.42	31.4	6.76	31.5	6.66
7440.00	54.92	PK	74	19.08	41.62	36.4	8.35	31.45	13.3
7440.00	44.07	AV	54	9.93	30.77	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.68dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

