

FCC Test Report

Report No.: AGC14499240406FR01

FCC ID	:	2BCUQ-W710D
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	DECT IP Base Station
BRAND NAME	:	LINXVIL
MODEL NAME	:	W710D, W610DP, W710P, W610P
APPLICANT	:	Fanvil Link Technology Co., LTD
DATE OF ISSUE	:	Jun. 12, 2024
STANDARD(S)	:	FCC Part 15 Subpart D §15.323
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 12, 2024	Valid	Initial Release

Table of Contents

1. General Information	5
2. Product Information	
2.1 Product Technical Description	6
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Automatic Discontinuation of Transmission	7
2.6 Digital Modulation Techniques	
2.7 Special Accessories	
2.8 Equipment Modifications	
2.9 Antenna Requirement	
3. Test Environment	9
3.1 Address of The Test Laboratory	9
3.2 Test Facility	9
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	11
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. 26dB Emission Bandwidth & 99% Occupied Bandwidth	
6.1 Provisions Applicable	
6.2 Measurement Procedure	
6.3 Measurement Setup (Block Diagram of Configuration)	
6.4 Measurement Result	
7. Peak Transmit Power and Antenna Gain	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	
8. Power Spectral Density	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.2 Measurement Setup (Block Diagram of Configuration)	
8.3 Measurement Result	24
A la Devid Universitad Englaciona	00

	9.1 Provisions Applicable	. 26
	9.2 Measurement Procedure	. 26
	9.3 Measurement Setup (Block Diagram of Configuration)	. 26
	9.4 Measurement Result	. 27
10.	Out-of-Band Unwanted Emissions	. 29
	10.1 Provisions Applicable	. 29
	10.2 Measurement Procedure	. 29
	10.3 Measurement Setup (Block Diagram of Configuration)	. 29
	10.4 Measurement Result	. 30
11.	Radiated Emission	. 38
	11.1 Limits of Radiated Emission Test	. 38
	11.2 Measurement Procedure	. 38
	11.3 Measurement Setup (Block Diagram of Configuration)	. 40
	11.4 Measurement Result	. 41
12.	AC Power Line Conducted Emission	. 51
	12.1 Limits of Line Conducted Emission Test	. 51
	12.2 Measurement Setup (Block Diagram of Configuration)	. 51
	12.3 Preliminary Procedure of Line Conducted Emission Test	. 52
	12.4 Final Procedure of Line Conducted Emission Test	. 52
	12.5 Measurement Result	. 52
13.	Carrier Frequency Stability	. 57
	13.1 Provisions Applicable	. 57
	13.2 Measurement Procedure	. 57
	13.3 Measurement Setup (Block Diagram of Configuration)	. 57
	13.4 Measurement Result	. 58
14.	Specific Requirements for UPCS Device	. 60
	14.1 Monitoring Time Requirements	. 60
	14.2 Lowest Monitoring Threshold Requirements	. 61
	14.3 Acknowledgements and Transmission Duration Requirements	. 62
	14.4 Least Interfered Channel (LIC) Selection Requirements	. 63
	14.5 Random Waiting Requirements	. 64
	14.6 Monitoring Bandwidth Requirements	. 65
	14.7 Monitoring Antenna Requirements	. 66
	14.8 Dual Access Criteria Check Requirements	. 67
	14.9 Alternative Monitoring Interval for Co-Located Devices Requirements	. 68
	14.10 Frame Repetition Stability And Period And Jitter	. 69
Ар	pendix I: Photographs of Test Setup	. 70
Ар	pendix II: Photographs of Test EUT	. 70

1. General Information

Applicant	Fanvil Link Technology Co., LTD	
Address	A03, A08, 3rd Floor, Building 2, Daqian Industrial Plant, Zone 67, Xingdong Com munity, Xin'an Street, Bao'an District, Shenzhen, China	
Manufacturer	Fanvil Link Technology Co., LTD	
Address	A03, A08, 3rd Floor, Building 2, Daqian Industrial Plant, Zone 67, Xingdong Com munity, Xin'an Street, Bao'an District, Shenzhen, China	
Product Designation	DECT IP Base Station	
Brand Name	LINKVIL	
Test Model	W710D	
Series Model	W610DP, W710P,W610P	
Difference Description	Only the model names are different	
Date of receipt of test item	May 06, 2024	
Date of Test	May 06, 2024~Jun. 12, 2024	
Deviation from Standard	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Test Report Form No	AGCER-FCC-DECT-V1	

Note: The test results of this report relate only to the tested sample identified in this report.

Jack Gui (Project Engineer) Prepared By Jun. 12, 2024 (Project Engineer) in Lin **Reviewed By** Calvin Liu Jun. 12, 2024 (Reviewer)

Approved By

Max Zhang

Max Zhang Authorized Officer

Jun. 12, 2024

2. Product Information

2.1 Product Technical Description

Equipment Type	Fixed Part (FP)
Frequency Band	1920 MHz to 1930 MHz
Operation Frequency Range	1921.536 MHz to 1928.448 MHz
Hardware Version	V1.0
Software Version	T0.4.8.1.US
Type of Modulation	Digital (Gaussian Frequency Shift Keying)
Modulation Technique	GFSK
Number of channels	5 RF Channels, 5 \times 12 = 60 TDMA Duplex Channels
Channel Separation	1728 kHz
Emission Designator	F7D
Maximum Transmitter Power	17.84dBm for conducted power 20.34dBm for EIRP
Antenna Designation	Integral Antenna
Antenna Gain	2.5dBi
Power Supply	DC 5V from Adapter

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency
1920~1930MHz	0	1928.448 MHz
	1	1926.720 MHz
	2	1924.992 MHz
	3	1923.264 MHz
	4	1921.536 MHz
Note: All channels operation in the 1920-1930 MHz band, meeting the requirement of FCC 47 CFR Part 15.303		

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BCUQ-W710D**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
4	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
5	ANSI C63.17-2013	American National Standard Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices

2.5 Automatic Discontinuation of Transmission

Does the EUT transmit Control and Signaling Information?

🖂 Yes	🗌 No

Type of EUT:

Initiating Device

Responding Device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

No.	Test	EUT Reaction	Results
1	Power removed: EUT	A	Pass
2	Switch Off: EUT	N/A	Pass
3	Hook-On: EUT	N/A	Pass
4	Power Removed: Companion Device	В	Pass
5	Switch Off: Companion Device	В	Pass
6	Hook-On: Companion Device	В	Pass
Note:			

A - Connection breakdown, Cease of all transmissions

B - Connection breakdown, EUT transmits control and signaling information

C - Connection breakdown, Companion Device transmits control and signaling information

N/A : Not Applicable (EUT does not have On/Off switch and cannot perform Hook-On)

2.6 Digital Modulation Techniques

The test sample is an isochronous digital modulated device that operates in 1920-1930 MHz band. This device bases on DECT technology described in European Standards EN 300 175-2 and EN 300 175-3, now operating in frequency channels mentioned above.

The operating modes are MC/TDMA/TDD (Multi carrier / Time Division Multiple Access / Time Division Duplex) using Digital GFSK (Gaussian Frequency Shift Keying) modulation.

For further details see operational description provided by manufacturer.

2.7 Special Accessories

Not available for this EUT intended for grant.

2.8 Equipment Modifications

Not available for this EUT intended for grant.

2.9 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 2.5dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address:1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions	Extreme Conditions
Temperature range ($^\circ\!\!\mathbb{C}$)	15 - 35	-20 - 45
Relative humidity range	20 % - 75 %	20 % - 75 %
Pressure range (kPa)	86 - 106	86 - 106
Power supply DC 5V LV DC 4.25V/HV DC 5.75V		
Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.		

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 3.1 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 4.0 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.8 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$

3.5 List of Equipment Used

AGC-EM-A138

AGC-EM-A139

 \boxtimes

•	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-ER-E087	Spectrum Analyzer	KEYSIGHT	N9020B	MY56101792	2023-05-25	2025-05-24	
	AGC-ER-E087	Spectrum Analyzer	KEYSIGHT	N9020B	MY56101792	2024-05-23	2025-05-22	
	AGC-ER-E075	Small Environmental Tester	SH-242	ESPEC	93008290	2022-08-03	2024-08-02	
\boxtimes		Universal Switch Control Unit	Tonscend	JS	N/A	N/A	N/A	
	AGC-ER-E037	Signal Generator	Agilent	N5182A	MY50140530	2024-05-23	2025-05-22	
	AGC-ER-E040	Signal Generator	Agilent	N8257D	MY45141029	2023-03-03	2025-03-02	
\square	AGC-ER-E033	RF Test Plat (DECT)	RTX	RTX-2012-HS-RF	N/A	2022-08-04	2024-08-03	
		RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes		RF Connection Cable	N/A	2#	N/A	Each time	N/A	
•	Radiated Spuri		1	1				
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\square	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
	AGC-EM-E005	Wideband Antenna	SCHWARZBECH	VULB9168	/ULB9168-494	2023-01-05	2025-01-04	
\boxtimes	AGC-EM-E102	Broadband Ridged Horn Antenna	ETS	3117	00154520	2023-06-03	2025-06-02	
	AGC-EM-E082	Horn Antenna	SCHWARZBECH	K BBHA 9170	#768	2023-09-24	2025-09-23	
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
\boxtimes	AGC-EM-A116	Band Stop Filter (1850-1950MHz)	MICRO-TRONIC	S BRC50720	N/A	2024-05-23	2025-05-22	
1				-				

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

LM-XX-6-5W

LM-XX-6-5W

N/A

N/A

N/A

N/A

N/A

N/A

Eeatsheep

Eeatsheep

6dB Attenuator

6dB Attenuator

•	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02		
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27		
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08		
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02		
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27		

• Te:	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
\square	AGC-EM-S011	RSE Test System	Tonscend	TS ⁺ Ver2.1(JS36-RSE)	4.0.0.0			
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A			
\boxtimes	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			

4.System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

EUT		AE
	I I	

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement: Test Accessories Come From The Laboratory

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Huawei Notebook PC	Huawei	D15	/	2.2m unshielded

Test Accessories Come From The Manufacturer

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Adapter 1#	Gangqi	GQ07A-050100-DU	Input: AC 100-240V 50/60Hz, 0.3A Output: DC 5V 1A	1.0m unshielded
2	Adapter 2#	FRECOM	F05L5-050100SPAU	Input: AC 100-240V 50/60Hz, 0.2A Output: DC 5V 1A	1.0m unshielded

4.5 Summary of Test Results

No.	FCC Rules	Description of Test	Reference Method	Result
1	§15.203, §15.317	Antenna Equipment	Declaration & Visual inspection	Pass
2	§15.323 (c)(e)	Specific Requirements for Upcs Device	ANSI C63.17-2013 Clause 6.2, 7.3, 7.5, 8.1, 8.2, 8.3, 8.4 and Paragraph 4	Pass
3	§15.303	Channel Frequency	Declaration	Pass
4	§15.319 (b)	Digital Modulation Techniques	Declaration	Pass
5	§15.319 (f)	Automatic Discontinuation of Transmission	Manual evaluation	Pass
6	§15.319(c)(e), §15.31(e)	Peak Transmit Power and Antenna Gain	ANSI C63.17-2013 Clause 6.1.2	Pass
7	§15.323 (a)	26dB Emission Bandwidth & & & & & & & & & & & & & & & & & & &	ANSI C63.17-2013 Clause 6.1.3 or 7.4	Pass
8	§15.319 (d)	Power Spectral Density	ANSI C63.17-2013 Clause 6.1.5	Pass
9	§15.323 (d)	In-Band Emission	ANSI C63.17-2013 Clause 6.1.6.1	Pass
10	§15.323 (d)	Out-of-Band Emission	ANSI C63.17-2013 Clause 6.1.6.2	Pass
11	§15.323 (f)	Carrier Frequency Stability	ANSI C63.17-2013 Clause 6.2.1	Pass
12	§15.319(g), §15.323(d) §15.209(a), §15.109(a)	Radiated Emission	ANSI C63.10-2013 Clause 11.11 & Clause 11.12	Pass
13	§15.207, §15.315	AC Power Line Conducted Emission	ANSI C63.10-2013 Section 6.2	Pass

Note:

1) N/A: In this whole report not applicable.

2) Not required if the Conducted Out-of-Band Emissions test is passed, and assessed in the FCC 47 CFR Part 15B test report.

5. Description of Test Modes

Summary table of Test Cases				
Test Here	Modulation			
iest tieffi	DECT-Fixed Part/GFSK			
Radiated & Conducted Test Cases	Mode 1: UPCS TX CH00_1921.536 MHz (Connect the adapter) Mode 2: UPCS TX CH02_1924.992 MHz (Connect the adapter) Mode 3: UPCS TX CH04_1928.448 MHz (Connect the adapter)			
AC Conducted Emission	Mode 1: UPCS connects to PC to Transmit Data (Powered by adapter 1#) Mode 2: UPCS connects to PC to Transmit Data (Powered by adapter 2#)			
Note:				

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

6. 26dB Emission Bandwidth & 99% Occupied Bandwidth

6.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:

Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less than 2.5 MHz. The power level shall be as specified in § 15.319(c), but in no event shall the emission bandwidth be less than 50 kHz

6.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.2

1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

2. The EUT shall transmit in a burst mode (shall not be configured to transmit continuously) so that transient effects associated with the burst edges are captured by the emission bandwidth measurement.

3. Use the following spectrum analyzer settings:

a) Set RBW: Approximately 1% of the emission bandwidth (a rough estimate may be obtained from peak power level measurement, or use manufacturer's declared value).

- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Center frequency: Nominal center frequency of channel.
- d) Span: \geq 2 \times the expected emission bandwidth.
- e) Sweep time: Coupled to frequency span and RBW.
- f) Amplitude scale: Log.
- g) Detection: Peak detection with maximum hold enabled.

4. Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth

6.3 Measurement Setup (Block Diagram of Configuration)

6.4 Measurement Result

Test Channel	Test Frequency (MHz)	Occupied Bandwidth (MHz)	EBW (MHz)	EBW Limits	Pass or Fail
0	1928.448	1.1997	1.306	50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<>	Pass
2	1924.992	1.1811	1.274	50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<>	Pass
4	1921.536	1.1858	1.310	50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<>	Pass

Test Graphs of Occupied Bandwidth and -26dB Bandwidth

7. Peak Transmit Power and Antenna Gain

7.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

7.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.2

RBW	≥ Emission bandwidth
Video bandwidth	≥RBW
Span	Span Zero
Center frequency	Nominal center frequency of transmit carrier
Amplitude scale	Log (linear may be used if analyzer has sufficient linear dynamic range and accuracy)
Detection	Peak detection
Trigger Video	Trigger Video
Sweep rate	Sufficiently rapid to permit the transmit pulse to be resolved accurately

7.3 Measurement Setup (Block Diagram of Configuration)

7.4 Measurement Result

Calculation of Peak Transmit Power Limit (P _{max}):						
\square	P _{max} = \$	5*log ₁₀ B-10	When G _A ≤ 3dBi			
	$P_{max} = 5*log_{10}B$	-10 dBm-(G _A - 3dBi)	When G _A > 3dBi			
Whore	G _A	= EUT Gain: 2.5 dBi				
where,	В	= Measured Emission Bandwidth (Hz)				
Calculation of I	EIRP Limit:					
	EIRP _{EUT}	$\leq P_{max} + g, G_A > g (g=3dBi)$				
	EIRP _{EUT}	$\leq P_{max} + G_A, G_A \leq g (g=3dBi)$				

Test Channel	Test Frequency (MHz)	Maximum Antenna Gain (dBi)	EBW (MHz)	Maximum Conducted Peak Transmit Power (dBm)	Limits (dBm)	Pass / Fail
0	1928.448		1.306	17.84	≤20.58	Pass
2	1924.992	2.5	1.274	17.58	≤20.53	Pass
4	1921.536		1.310	17.14	≤20.59	Pass

Test Channel	Test Frequency (MHz)	Maximum Conducted Peak Transmit Power (dBm)	Maximum Antenna Gain (dBi)	E.I.R.P. (dBm)	Limits (dBm)	Pass / Fail
0	1928.448	17.84		20.34	≤23.08	Pass
2	1924.992	17.58	2.5	20.08	≤23.03	Pass
4	1921.536	17.14		19.64	≤23.09	Pass

Spectrum Analyzer 1 Swept SA	Spectrum An Occupied BV	alyzer 2 V		+				
KEYSIGHT Input: RF RL Coupling: DC Align: Auto/No RF	nput Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl	ist Avg Type f Avg Hold Low Trig: Vide k: Off	e: Log-Power l:>100/100 eo	1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ P N N N N N	4 1	
1 Spectrum v			Ref Lvi C	offset 11.23 dB			М	kr1 3.780 µs
Scale/Div 10 dB			Ref Leve	I 30.00 dBm				17.84 dBm
20.0 1								
10.0								
0.00								
-10.0								
-20.0								TRIG LVL
-30.0								Wearenially
-40.0								
-50.0								
-60.0								
Center 1.928448000 GHz Res BW 3.0 MHz			#Video	BW 50 MHz			Sweep 4	Span 0 Hz 20 µs (20000 pts)
1 7 7 1 ?	May 28, 2024 11:37:15 AM							
Test	_Graph_	UPCS_	ANT1	CH00 (SFSK	Peak Po	ower	
	•							
Spectrum Analyzer 1 Swept SA	Spectrum An Occupied BV	alyzer 2 V		+				
Spectrum Analyzer 1 Swept SA KEYSIGHT RL Coupling: DC as	Spectrum Ar Occupied BV nput Z: 50 Ω Corr Corr	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of	+ ist Avg Type f Avg Hold	e: Log-Power :>100/100	1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩	4	
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF R L Coupling: DC Algn: Auto/No RF	Spectrum Ar Occupied BV nput Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Traci	t Avg Type f Avg Holc Low Trig: Vid k: Off	e: Log-Power :>100/100 eo	123456 M W W W W P N N N N N	ł	
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto/No RF 2 1 Spectrum Scale/Div 10 dB	Spectrum Ar Occupied BV nput Z: 50 Q Corr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref LvI O Ref Leve	+ st Avg Type f Avg[Hoic Low Trig: Vide k: Off vffset 11.23 dB 130.00 dBm	9: Log-Power :>100/100 eo	1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ P N N N N N	M	κr1 3.864 μs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Coupling: DC Algn: Auto/No RF 2V 1 Spectrum Scale/Div 10 dB	Spectrum Ar Occupied BV nput Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Halyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref LvI C Ref Leve	+ Avg Type f AvgHold Low Trig: Vid k: Off Offset 11.23 dB 1 30.00 dBm	9: Log-Power I:≥100/100 20	123456 MWWWWW PNNNNN	, MI	kr1 3.864 μs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto/No RF 2 Scale/Div 10 dB 20 0	Spectrum Ar Occupied Bv nput Z: 50 Ω Corr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tract Ref LvI O Ref Leve	+ Avg Typp f Avg Hol Low Trig: Vid fffset 11.23 dB I 30.00 dBm	2: Log-Power 1:>100/100 20	123456 MWWWWW PNNNNN	i MI	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Cupling: DC Algn: Auto/No RF ZV 1 Spectrum Scale/Div 10 dB Log 20 0 10 0	Spectrum An Occupied BV nput 7:50 Q Corr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref LvI C Ref Leve	+ AvgType f AvgHolc Low Trg: Vide k: Off Viffset 11.23 dB I 30.00 dBm	2: Log-Power 1>100/100 30	123456 MWWWWW PNNNNN	/ MI	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Cuping: DC Align: Auto/No RF Scale/Div 10 dB Log 20 0 10 0	Spectrum Ar Occupied BV nput Z: 50 Q Corr Corr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref LvI C Ref Leve	+ Avg Typp t AvgHoic Low Trig Vid k Off Trig Vid hfiset 11.23 dB 1 30.00 dBm		1 2 3 4 5 6 M W W W W W P N N N N N	й МІ ———————————————————————————————————	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto/No RF Scale/Div 10 dB Log 20 0 10 0 -10 0 -20 0	Spectrum Ar Occupied BV onr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tract Ref Lvi C Ref Leve	+ AvgType f AvgHolc Low Trg Vid k: Off I 30.00 dBm	2: Log-Power I>100/100 200	1 2 3 4 5 6 M W W W W W P N N N N N	/ MI	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Coupling: DC Align: Auto/No RF Scale/Div 10 dB Log 20 0 -10 0 -20 0 -30 0	Spectrum Ar Occupied BV Opt 250 Q Corr CCorr Freq Ref. Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Traci Ref Lvi C Ref Leve	+ Avg[Hold Low Trig: Vid k: Off Trig: Vid pffset 11.23 dB I 30.00 dBm	5: Log-Power 1:>100/100 20	1 2 3 4 5 6 M W W W W P N N N N N	μ ΜΙ Δ	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Cupling: DC Align: Auto/No RF V Scale/Div 10 dB 20 0 1 Spectrum 20 0 -10 0 -20 0 -20 0 -40 0	Spectrum Ar Occupied BV onr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Traci Ref LvI C Ref Leve	+ Avg Typp Low Trig: Vid widthold the termination of termi	E Log-Power >100/100 30	1 2 3 4 5 6 M w w w w w P N N N N N		kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto/No RF Scale/Div 10 dB Log 20 0 1 Spectrum • Scale/Div 10 dB Log 20 0 -20 0 -30 0 -40 0 -50 0	Spectrum An Occupied BV Corr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tract Ref Leve	+ Avg Type T AvgHold Low Trg: Vid Nffset 11.23 dB I 30.00 dBm	b: Log-Power I>100/100 20	1 2 3 4 5 6 M W W W W P N N N N N P N N N N N	Image: Section of the sectio	Kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Scale/Div 10 dB Log 20.0 1 Spectrum Scale/Div 10 dB Log 20.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0	Spectrum Ar Occupied BV onr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref Lvi C Ref Leve	+ Avg Typp Low Trg. Vid k. Off Trg. Vid 130.00 dBm	:: Log-Power I:>100/100 20	1 2 3 4 5 6 M W W W W W P N N N N N N N N N	і мі і і і і і і і і і і і і і і і і і	kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Cupling: DC Algn: Auto/No RF 200 200 200 200 200 200 200 20	Spectrum Ar Occupied BV Opr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: 01 IF Gain: Sig Tracl Ref LvI C Ref Leve	+ Avg Typp f AvgHolo Low Trig: Vid ffset 11.23 dB 1 30.00 dBm	E. Log-Power >100/100 30	1 2 3 4 5 6 M W W W W W P N N N N N 		Kr1 3.864 µs 17.58 dBm
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF RL Coupling: DC Align: Auto/No RF Scale/Div 10 dB Log 20 0 10 0 -10 0 -20 0 -30 0 -40 0 -60 0 Center 1.924992000 GHz Res EW 3.0 MHz	Spectrum Ar Occupied BV nput Z 50 Ω Corr Corr req Ref. Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Tracl Ref Leve	+ Avg Typer T AvgTyper T AvgTyper T AvgHoto Trig: Vid Nffset 11.23 dB 130.00 dBm BW 50 MHz	: Log-Power IS>100/100 20	1 2 3 4 5 6 M W W W W P N N N N N N N N N	MI	cr1 3.864 µs 17.58 dBm ТТЮС LVL ТТЮС LVL Span 0 Hz 20 µs (2000 pts)
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Cupling: DC Align: Auto/No RF 20 20 20 20 20 20 20 20 20 20	Spectrum Ar Occupied BV Dorr CCorr Freq Ref: Int (S)	alyzer 2 V #Atten: 30 dB Preamp: Off	PNO: Fa Gate: Of IF Gain: Sig Traci Ref LvI C Ref LvI C	+ Avg Typp Low Trig: Vid K. Off I 30.00 dBm BW 50 MHz	E: Log-Power >100/100 30	1 2 3 4 5 6 M W W W W W P N N N N N N N N N	MI	kr1 3.864 µs 17.58 dBm 17.58

Test Graphs of Peak Transmit Power

8. Power Spectral Density

8.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(d) for specification details:

Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

8.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.5

RBW	3 kHz
Video bandwidth	≥ 3*RBW
Span	Span Zero
Center frequency	Nominal center frequency of transmit carrier
Amplitude scale	RMS
Detection	Sample detection and averaged for a minimum of 100 sweeps
Trigger Video	External or internal
Sweep Time	For burst signals, sufficient to include essentially all of the maximum length burst at the output of a 3 kHz filter (e.g., maximum input burst duration plus 600µs). For continuous signals, 20ms.

8.2 Measurement Setup (Block Diagram of Configuration)

8.3 Measurement Result

Test Channel	Test Frequency (MHz)	Power density (dBm/3kHz)	Power density (mW/3kHz)	Limit (mW/3kHz)	Pass or Fail
0	1928.448	-5.20	0.30	≤3	Pass
2	1924.992	-5.76	0.27	≤3	Pass
4	1921.536	-5.91	0.26	≤3	Pass

Test Graphs of Power Spectral Density

9. In-Band Unwanted Emissions

9.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.323(d) for specification details:

Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator shall be at least 60 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

9.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.6.1

RBW	Approximately 1% of the Emission bandwidth (B)
Video bandwidth	≥ 3*RBW
Span	Approximately equal to 3.5 B
Center frequency	Nominal center frequency of transmit carrier
Detection	Peak detection and max hold enabled
Amplitude scale	Log
Sweep Time	The sweep time shall be sufficiently slow that the swept frequency rate shall not exceed one RBW per three transmit bursts.
Number of sweeps	Sufficient to stabilize the trace

9.3 Measurement Setup (Block Diagram of Configuration)

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

9.4 Measurement Result

10. Out-of-Band Unwanted Emissions

10.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.323(d) for specification details:

a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band

edges, respectively, the measured emission level shall not exceed -9.5 dBm.

b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges,

respectively, the measured emission level shall not exceed -29.5 dBm.

c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.

10.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.6.2

RBW	Approximately 1% of the Emission bandwidth (B)
Video bandwidth	≥ 3*RBW
Span	Approximately equal to 3.5 B
Center frequency	Nominal center frequency of transmit carrier
Detection	Peak detection and max hold enabled
Amplitude scale	Log
Sweep Time	The sweep time shall be sufficiently slow that the swept frequency rate shall not exceed one RBW per three transmit bursts.
Number of sweeps	Sufficient to stabilize the trace

10.3 Measurement Setup (Block Diagram of Configuration)

10.4 Measurement Result

ctrum Analyzer Spectrum Analyzer 2 Occupied BW Spectrum Analyzer 3 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Power Trig: Free Run #Atten: 10 dB Preamp: Off PNO: Fast Gate: Off IF Gain: Low Sig Track: Off **1** 2 3 4 5 6 W W W W W W KEYSIGHT Input: RF Align: Auto PNNNN Da Mkr1 30.0 MHz Spectrum Ref Lvi Offset 11.23 dB Ref Level 11.23 dBm -59.65 dBm Scale/Div 10 dB DL1 -39.50 dB 1 Y My Arthy . B. Loo ha dadaadd Start 0.0300 GHz #Res BW 20 kHz #Video BW 62 kHz Stop 1.9150 GHz Sweep ~4.52 s (1001 pts) 📲 🏷 (~ 🗖 ? May 28, 2024 💬 Test Graph UPCS ANT1 CH00 GFSK Emissions Band 1 oectrum Analyzer vept SA Spectrum Analyzer 3 Swept SA Spectrum Analyzer 2 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off Avg Type: Log-Power Avg|Hold:>100/100 Trig: Free Run KEYSIGHT Input: RF 123456 M W W W W W #Atten: 10 dB Preamp: Off \mathbf{P} PNNNN DI PASS Mkr1 1.919 290 GHz 1 Spectrum Ref LvI Offset 11.23 dB Ref Level 11.23 dBm -66.41 dBm Scale/Div 10 dB Trace 1 Pass Start 1.915000 GHz #Video BW 62 kHz Stop 1.920000 GHz Sweep 11.9 ms (1001 pts) #Res BW 20 kHz ? Jun 04, 2024 **1** 7 7 Test_Graph_UPCS_ANT1_CH00_GFSK_ Emissions Band 2

Test Graphs of Out-of-Band Unwanted Emissions

pectrum Analyzer 2 wept SA ectrum Analyzer 1 ept SA Spectrum Analyzer 3 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Pow Avg|Hold:>100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 10 dB Preamp[:] Off Best Wide Off **M** ₩ ₩ ₩ ₩ ₩ PNNNN DASS Mkr1 1.930 180 GHz Ref LvI Offset 11.23 dB Ref Level 11.23 dBm Scale/Div 10 dB -39.10 dBm Trace 1 Pass mullery My port mor my Manakal person for the person of the p #Video BW 62 kHz Start 1.930000 GHz #Res BW 20 kHz Stop 1.935000 GHz Sweep 11.9 ms (1001 pts) Test_Graph_UPCS_ANT1_CH00_GFSK_ Emissions Band 3 oectrum Analyzer 1 wept SA • + KEYSIGHT Input: RF Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Power Avg|Hold:>100/100 Trig: Free Run Atten: 10 dB Preamp: Off PNO: Fast Gate: Off **1** 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ \mathbf{r} IF Gain: Low Sig Track: Off PNNNN LXI Mkr1 2.122 GHz 1 Spectrum Ref LvI Offset 11.23 dB Ref Level 11.23 dBm ale/Div 10 dB -51.21 dBm DL1 -39.50 dB #Video BW 62 kHz Start 1.935 GHz Res BW 20 kHz Stop 7.000 GHz Sweep ~12.3 s (1001 pts) May 29, 2024 5 3 XX Test_Graph_UPCS_ANT1_CH00_GFSK_ Emissions Band 4

KEYSIGHT Input: RF RL Align: Aut N	: DC to/No RF	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 10 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: I Avg Hold:> Trig: Free F	.og-Power 100/100 Run	1 2 3 4 5 6 M₩₩₩₩₩₩ P N N N N N		
1 Spectrum	7			Ref LvI Offset	11.23 dB			Mkr1	18.973 GH
1.23									
8.77									
18.8									
28.8									
38.8									DL1 -39.50 c
48.8									
58.8									
68.8	al	al table areas	A		Millionan Differenties A	L. LOAD WAR		and and standing of the	م الم المريانية المري المريانية المريانية ال
78.8	and a state of the	Provide and the second s	«Ingelessive School and allered	-vorrefected of the second	7 . and a subday	n na an	-leternet and a state of the st		
tart 7.000 GHz Res BW 20 kHz				#Video BW 6	2 KHZ			Sweep ~	Stop 20.000 G 31.8 s (1001 p
1 7 7 1	ר ?	May 29, 2024							
Те	est G	ranh LIE				/ -			
			100_AN		J_GFSP	(_ En	hissions E	Sand 5	
pectrum Analyzer 1 wept SA		Spectrum Ar Swept SA	nalyzer 2	Spectro Swept	U_GFSP um Analyzer 3 SA	(_ En	hissions E	Band 5	
pectrum Analyzer 1 wept SA (EYSIGHT Input: RF (L	DC to/No RF	Spectrum Ar Swept SA Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off)_GFSf um Analyzer 3 SA Avg Type: I Avg[Hold: 1 Trig: Free F	og-Power /100 Run	12 3 4 5 6 MWWWWW	sand 5	
pectrum Analyzer 1 wept SA EYSIGHT Input: RF Coupling: Align: Aut Spectrum cale/Div 10 dB	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	HAtten: 10 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off Ref Level 11.22)_GFSf um Analyzer 3 SA Avg Type: I Avg[Hold 1 Trig: Free F	K_ Enr .og-Power /100 Run	12 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 GI -72.25 dB
pectrum Analyzer 1 wept SA EYSIGHT Input: RF Coupling: Align: Aut Spectrum cale/Div 10 dB	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Q Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gain: Low Sig Track: Off Ref LvI Offset Ref Level 11.23	J_GFSP Jam Analyzer 3 SA Avg Type: I AvgIHold: 1 Trig: Free F 11.23 dB 3 dBm	<u>.og</u> -Power /100 Run	1 2 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 G -72.25 dE
ectrum Analyzer 1 wept SA EYSIGHT Input: RF Coupling: Align: Auf Spectrum cale/Div 10 dB	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Q Corr Corr Freq Ref: Int (S)	#Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gain Low Sig Track: Off Ref LvI Offset Ref Level 11,2	D_GFSP um Analyzer 3 SA Avg Type: I Avg Hold: 1 Trig: Free F 11.23 dB 3 dBm	Cog-Power /100 Run	1 2 3 4 5 6 MWWWWW P N N N N N	Mkr1	1.911 2 G -72.25 dE
pectrum Analyzer 1 wept SA EYSIGHT Input: RF Coupling Align: Au Spectrum cale/Div 10 dB	DC to/No RF	Spectrum Ar swept SA input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Halyzer 2 #Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gan. Low Sig Track Off Ref LvI Offset Ref Level 11.2	J_GFSP Im Analyzer 3 SA Avg Type 1 Avg[Hold 1 Trig: Free F 11.23 dB 3 dBm	Cog-Power /100 Run	1 2 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 G -72.25 dE
pectrum Analyzer 1 wept SA EEYSIGHT Input: RF Coupling Align: Au Spectrum cale/Div 10 dB	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Q (Corr CCorr Freq Ref: Int (S)	Halyzer 2 #Atten: 10 dB Preamp. Off	PNO Fast Gate Off IF Gain: Low Sig Track: Off Ref Level 11:2	J_GFSP Jam Analyzer 3 SA Avg Type: I AvgHold: 1 Trig: Free F 11.23 dB 3 dBm	Cog-Power /100 Run	1 2 3 4 5 6 MWWWWWW PNNNNN	Mkr1	1.911 2 GI -72.25 dE
Pectrum Analyzer 1 wept SA EYSIGHT Input: RF Coupling Align: Auf Spectrum cale/Div 10 dB .23 .77 18.8 .88	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Q Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp. Off	PNO: Fast Gate Off IF Gain: Low Sig Track: Off Ref Level 11.22	D_GFSP Jam Analyzer 3 SA Avg Type 1 Avg]Hold 1 Trig: Free F	Cog-Power /100 Run	1 2 3 4 5 6 MWWWWWW P N N N N N	Mkr1	1.911 2 Gi -72.25 dE
pectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Align: Au Spectrum scale/Div 10 dB 09 1.23 8.77 18.8 28.8 38.8	DC to/No RF	Spectrum Ar Swept SA (Input Z. 50 Q Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gan. Low Sig Track Off Ref LvI Offset Ref Level 11.22	J_GFSP Im Analyzer 3 SA Avg Type 1 Avg Hold 1 Trig: Free F	.og-Power /100 Run	1 2 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 GI -72.25 dB
pectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Align: Au Spectrum Secale/Div 10 dB 1.23 8.77 18.8 28.8 38.8 48.8	DC to/No RF	Spectrum Ar Swept SA Input Z: 50 Q Corr CCorr Freq Ref: Int (S)	Halyzer 2 #Atten: 10 dB Preamp. Off	PNO Fast Gate Off IF Gain Low Sig Track: Off Ref LvI Offset Ref Level 11.2	J_GFSP m Analyzer 3 SA Avg Type: I Avg[Hold: 1 Trig: Free F 11.23 dB 3 dBm	og-Power /100 Run	1 2 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 Gi -72.25 dE
pectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Algn: Au ST Scale/Div 10 dB 0 123 8.77 18.8 38.8 38.8 48.8 58.8 58.8 58.8 58.8 58.8 58.8 5	DC to/No RF	Spectrum Ar Swept SA Corr CCorr Freq Ref: Int (S)	Alten: 10 dB Preamp. Off	PNO Fast Gate Off IF Gain Low Sig Track: Off Ref Level 11.21	J_GFSP Jam Analyzer 3 SA Avg Type: I Avg Hold: 1 Trig: Free F 11.23 dB 3 dBm	og-Power /100 Run	1 2 3 4 5 6 MWWWWWW PNNNNN	Mkr1	1.911 2 GI -72.25 dB
spectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Align: Au Scale/Div 10 dB -0 g 1.23 8.77 18.8 38.8 48.8 58.8 68.8	DC to/No RF	Spectrum Ar Swept SA (Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp. Off	PNO: Fast Gate Off IF Gan: Low Sig Track: Off Ref Level 11.22	D_GFSP Jm Analyzer 3 SA Avg Type 1 Avg]Hold 1 Trig: Free F	og-Power /100 tun	1 2 3 4 5 6 MWWWWW PNNNNN	Mkr1	1.911 2 GI -72.25 dB
pectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Align: Au Spectrum Spectrum Scale/Div 10 dB O 1.23 8.77 18.8 28.8 38.8 48.8 58.8	DC to/No RF	Input Z. 50 Q Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gan Low Sig Track Off Ref Level 11.2	D_GFSP Im Analyzer 3 SA Avg Type: I AvgHold: 1 Trig: Free F 11.23 dB 3 dBm	.og-Power /100 Run	I 2 3 4 5 6 M WW WW W P N N N N N	Mkr1	1.911 2 GI -72.25 dB
spectrum Analyzer 1 wept SA KEYSIGHT Input: RF Coupling Align: Au Spectrum Spectrum Spectrum Sale/Div 10 dB Coupling 1.23 8.77 18.8 28.8 38.8 48.8 58.8	DC to/No RF	Input Z. 50 Q Corr Corr Corr Corr Corr Corr Corr	#Atten: 10 dB Preamp: Off	PNO Fast Gate Off IF Gan Low Sig Track Off Ref LvI Offset Ref Level 11.2	D_GFSP	.og-Power /100 Run	I 2 3 4 5 6 M WW WW W P N N N N N	Mkr1	1.911 2 GF -72.25 dB DL1-39.50 d
pectrum Analyzer 1 wept SA KEYSIGHT Input RF Coupling Align: Au Social/Div 10 dB 1 23 8.77 18.8 28.8 39.8 58.		Jun 04, 2024	Alter: 10 dB Preamp: Off	PNO Fast Gate. Off IF Gain: Low Signark. Off Ref Level 11.21	D_GFSP Im Analyzer 3 SA Avg Type: I AvgHold: 1 Trig: Free F 11.23 dB 3 dBm 3 dBm 4 dBm	og-Power /100 Run		Mkr1	1.911 2 GJ -72.25 dB

Report No.: AGC14499240406FR01 Page 33 of 70

ectrum Analyzer 1 ept SA pectrum Analyzer 2 wept SA Spectrum Analyzer 3 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Pow Avg|Hold:>100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 10 dB Preamp[:] Off Best Wide Off **M** ₩ ₩ ₩ ₩ ₩ PNNNN DI PASS Mkr1 1.919 845 GH Ref LvI Offset 11.23 dB Ref Level 11.23 dBm Scale/Div 10 dB -62.46 dBm Trace 1 Pass ano mander Wall Mark mau ᡪᠰ᠋ᠯᢞᠰᡡᢦᢧᠮᠵᠰᢧᡟ www #Video BW 62 kHz Stop 1.920000 GHz Sweep 11.9 ms (1001 pts) Start 1.915000 GHz #Res BW 20 kHz Test_Graph_UPCS_ANT1_CH02_GFSK_ Emissions Band 2 Spectrum Analyzer 2 Swept SA Spectrum Analyzer 3 Swept SA Spectrum Analyzer 1 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Pow Avg|Hold:>100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 10 dB Preamp: Off NO: Best Wide ate: Off **1** 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ Gain: Low Track: Off PNNNN Date PASS 1 Spectrum Mkr1 1.931 710 GHz Ref LvI Offset 11.23 dB Ref Level 11.23 dBm cale/Div 10 dB -61.09 dBm Trace 1 Pass Ø Marshamous white af a 1 mallworth c al marke Monas Start 1.930000 GHz #Res BW 20 kHz Stop 1.935000 GHz Sweep 11.9 ms (1001 pts) #Video BW 62 kHz Jun 04, 2024 💬 **1** 7 7 JE 🕃 🗄 沃 Test_Graph_UPCS_ANT1_CH02_GFSK_ Emissions Band 3

Report No.: AGC14499240406FR01 Page 36 of 70

pectrum Analyzer 2 wept SA ectrum Analyzer 1 ept SA Spectrum Analyzer 3 Swept SA + Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Pow Avg|Hold:>100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 10 dB Preamp[:] Off Best Wide Off **M** ₩ ₩ ₩ ₩ ₩ PNNNN DASS Mkr1 1.932 545 GH Ref LvI Offset 11.23 dB Ref Level 11.23 dBm Scale/Div 10 dB -65.27 dBm Trace 1 Pass ~mlthnulWharf www.f.M.w.www.m.m.m.m.m.m.m.m. Mr. M. M. M. M. Mar Marken ᡊᡃ᠋ᡧ᠋ᡅ᠆ᡙᢇ᠋᠕ᢆᡙᠬᡔ᠕ᡊᡙ᠕᠕᠕ᡊ᠇᠇᠇ᠬᡀ᠆ᡗᡁᡟᢔ᠋ᢩ᠕ᠰᠰᡐ᠕ ᡩᡙᢇ᠋ᡝᡀᡊᡅᢪ Start 1.930000 GHz #Res BW 20 kHz #Video BW 62 kHz Stop 1.935000 GHz Sweep 11.9 ms (1001 pts) Jun 04, 2024 ょう Test_Graph_UPCS_ANT1_CH04_GFSK_ Emissions Band 3 oectrum Analyzer 1 wept SA • + KEYSIGHT Input: RF Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Avg Type: Log-Power Avg|Hold:>100/100 Trig: Free Run Atten: 10 dB Preamp: Off PNO: Fast Gate: Off **1** 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ \mathbf{r} IF Gain: Low Sig Track: Off PNNNN LXI Mkr1 2.305 GHz -58.06 dBm 1 Spectrum Ref LvI Offset 11.23 dB Ref Level 11.23 dBm ale/Div 10 dB DL1 -39.50 dB 0 hours . Hilling #Video BW 62 kHz Start 1.935 GHz Res BW 20 kHz Stop 7.000 GHz Sweep ~12.3 s (1001 pts) May 29, 2024 5 3 Test_Graph_UPCS_ANT1_CH04_GFSK_ Emissions Band 4

11. Radiated Emission

11.1 Limits of Radiated Emission Test

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for

maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP
Start - Stop Frequency	1GHz~26.5GHz
Start ~Stop T lequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP

11.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

11.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

EUT	DECT IP Base Station	Mode	I Name W	710D	
Temperature	25° C	Relati	ve Humidity 55	5.4%	
Pressure	960hPa	Test V	/oltage D	DC 5V from adapter 1#	
Test Mode	Mode 1	Anten	ina H	orizontal	
72.0 dBuV/m					
32 -8		Note the second se		Limit:	
30.000 40	50 60 70 80	(MHz)	300 400 500 60	0 700 1000.000	
No. Mk.	Reading Freq. Level	Correct Measu Factor ment	re- Limit Over	r	
	MHz dBuV	dB dBuV/n	n dBuV/m dB	Detector	
1	45.3755 7.33	13.52 20.85	40.00 -19.1	5 peak	
2	104.5361 7.89	16.25 24.14	43.50 -19.3	6 peak	
3	138.3873 7.64	15.30 22.94	43.50 -20.5	6 peak	
4	223.7334 8.11	14.59 22.70	46.00 -23.3	0 peak	
5	440.1963 6.43	25.09 31.52	46.00 -14.4	8 peak	
6 *	900.1474 7.31	31.78 39.09	46.00 -6.91	peak	

Radiated Emission from 30MHz to 1000MHz

RESULT: PASS

EUT	DECT IP Base Station	Model Name		W710D	
Temperature	25° C	Relative H	lumidity	55.4%	
Pressure	ressure 960hPa		Test Voltage		DC 5V from adapter 1#
Test Mode	st Mode 1		Antenna		Vertical
72.0 dBuV/m					
					Limit: — Margin: —
	3	5			A A
32 2	M. X.	Allh.		1 11 Martin and Jose	provide a service of the service of
Way Marken Land	Month Mark Much	1 Mma	the higher white	Linkslaway	
· · · · · · · · · · · · · · · · · · ·		(*** ***	Mulusian		
-8					
30.000 40 50	0 60 70 90	(MHz)	300	400 500	600 700 1000.000
	Reading	Correct	Measure-		
No. Mk.	Freq. Level	Factor	ment	Limit C	Over
	MHz dBuV	dB	dBuV/m	dBuV/m	dB Detector
1 ;	33.0950 14.46	14.62	29.08	40.00 -1	0.92 peak
2 3	38.8878 14.18	16.53	30.71	40.00 -	9.29 peak
3 (62.8708 16.06	17.07	33.13	40.00 -	6.87 peak
4 8	85.8984 15.33	16.10	31.43	40.00 -	8.57 peak
5 * 14	47.9214 18.59	18.20	36.79	43.50 -	6.71 peak
6 94	45.4397 8.11	30.78	38.89	46.00 -	7.11 peak

EUT	DECT IP Base Station		Model Name V		W71	0D		
Temperature	9	25° C			Relative H	Relative Humidity		%
Pressure		960hPa			Test Volta	ige	DC 5	V from adapter 2#
Test Mode		Mode 1			Antenna		Horiz	zontal
72.0 72.0 32 -8 30.0	dBuV/m	50 60 70	ao Reading Level	а марализа (МНга) Соггест Factor	Antenna Antenna 300 Measure- ment	400 500 Limit (n:
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
-	1	39.7146	5.62	13.78	19.40	40.00 -2	0.60	peak
-	2	108.6470	7.75	16.29	24.04	43.50 -1	9.46	peak
-	3	139.3613	7.78	15.24	23.02	43.50 -2	0.48	peak
	4	223.7334	9.11	14.59	23.70	46.00 -2	2.30	peak
-	5	454.3100	6.86	24.60	31.46	46.00 -1	4.54	peak
-	6*	890.7278	7.14	30.64	37.78	46.00 -	8.22	peak

EUT	DECT IP Base Station	n	Model Nam	ne	W710D
Temperature	25° C		Relative Humidity 55.4%		55.4%
Pressure	960hPa		Test Voltag	je	DC 5V from adapter 2#
Test Mode	Mode 1		Antenna		Vertical
72.0 dBuV/m		MM			
30.000 40 5	0 60 70 90	(MHz)	300	400 500	600 700 1000.000
No. Mk.	Reading Freq. Level	Factor	measure- ment	Limit (Over
	MHz dBuV	dB	dBuV/m	dBuV/m	dB Detector
1	32.5198 14.91	14.43	29.34	40.00 -1	10.66 peak
2	38.8878 14.25	16.53	30.78	40.00 -	9.22 peak
3	62.8708 15.15	17.07	32.22	40.00 -	7.78 peak
4 * 1	47.9214 19.63	18.20	37.83	43.50 -	5.67 peak
5 2	23.7334 9.71	16.37	26.08	46.00 -1	19.92 peak
6 4	41.7426 6.12	26.02	32.14	46.00 -1	13.86 peak

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.

Radiated	Emission	Above	1GHz
luanatea	LIIII33IOII	A8010	

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3856.896	49.63	0.11	49.74	74.00	-24.26	Peak
3856.896	42.23	0.11	42.34	54.00	-11.66	AVG
5785.344	48.77	2.45	51.22	74.00	-22.78	Peak
5785.344	40.35	2.45	42.8	54.00	-11.2	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3856.896	50.11	0.11	50.22	74.00	-23.78	Peak	
3856.896	42.05	0.11	42.16	54.00	-11.84	AVG	
5785.344	49.74	2.45	52.19	74.00	-21.81	Peak	
5785.344	40.51	2.45	42.96	54.00	-11.04	AVG	
Remark:							
Factor = Anter	Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
3849.984	50.51	0.12	50.63	74.00	-23.37	Peak		
3849.984	40.25	0.12	40.37	54.00	-13.63	AVG		
5774.976	49.05	2.46	51.51	74.00	-22.49	Peak		
5774.976	38.77	2.46	41.23	54.00	-12.77	AVG		
Remark:								
Factor = Anter	Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3849.984	49.89	0.12	50.01	74.00	-23.99	Peak
3849.984	41.15	0.12	41.27	54.00	-12.73	AVG
5774.976	50.18	2.46	52.64	74.00	-21.36	Peak
5774.976	39.81	2.46	42.27	54.00	-11.73	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3843.072	50.14	0.13	50.27	74.00	-23.73	Peak
3843.072	40.39	0.13	40.52	54.00	-13.48	AVG
5764.608	51.22	2.51	53.73	74.00	-20.27	Peak
5764.608	38.77	2.51	41.28	54.00	-12.72	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 1#
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3843.072	49.89	0.13	50.02	74.00	-23.98	Peak	
3843.072	41.25	0.13	41.38	54.00	-12.62	AVG	
5764.608	50.36	2.51	52.87	74.00	-21.13	Peak	
5764.608	39.84	2.51	42.35	54.00	-11.65	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Radiated	Emission	Above	1GHz
i la alacoa	LIIII33IOII	10010	

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3856.896	49.87	0.11	49.98	74.00	-24.02	Peak
3856.896	41.36	0.11	41.47	54.00	-12.53	AVG
5785.344	50.34	2.45	52.79	74.00	-21.21	Peak
5785.344	39.71	2.45	42.16	54.00	-11.84	AVG
Remark:						-
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3856.896	50.14	0.11	50.25	74.00	-23.75	Peak
3856.896	40.36	0.11	40.47	54.00	-13.53	AVG
5785.344	51.39	2.45	53.84	74.00	-20.16	Peak
5785.344	40.17	2.45	42.62	54.00	-11.38	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3849.984	50.49	0.12	50.61	74.00	-23.39	Peak	
3849.984	40.31	0.12	40.43	54.00	-13.57	AVG	
5774.976	49.78	2.46	52.24	74.00	-21.76	Peak	
5774.976	40.51	2.46	42.97	54.00	-11.03	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3849.984	51.02	0.12	51.14	74.00	-22.86	Peak
3849.984	41.36	0.12	41.48	54.00	-12.52	AVG
5774.976	48.56	2.46	51.02	74.00	-22.98	Peak
5774.976	40.37	2.46	42.83	54.00	-11.17	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3843.072	50.14	0.13	50.27	74.00	-23.73	Peak	
3843.072	40.39	0.13	40.52	54.00	-13.48	AVG	
5764.608	51.22	2.51	53.73	74.00	-20.27	Peak	
5764.608	38.77	2.51	41.28	54.00	-12.72	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT	DECT IP Base Station	Model Name	W710D
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V from adapter 2#
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3843.072	48.77	0.13	48.9	74.00	-25.10	Peak	
3843.072	42.05	0.13	42.18	54.00	-11.82	AVG	
5764.608	49.38	2.51	51.89	74.00	-22.11	Peak	
5764.608	38.96	2.51	41.47	54.00	-12.53	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Note:

The amplitude of other spurious emissions from 1G to 20 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin=Measure result-Limit. The "Factor" value can be calculated automatically by software of measurement system.

12. AC Power Line Conducted Emission

12.1 Limits of Line Conducted Emission Test

Frequency	Maximum RF Line Voltage			
Frequency	Q.P. (dBµV)	Average (dBµV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2 Measurement Setup (Block Diagram of Configuration)

12.3 Preliminary Procedure of Line Conducted Emission Test

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5 Measurement Result

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

AC Power Line Conducted Emission Test							
Test Mode	Mode 1			LIS	N line	Hot	t Side
Leve	el [dBµV]						
80			 				
70			i			i – i – i– – – – – –	i
60 50							
40			⊺-⊢ 			 -+-	
30	Mmmmm						
20	An moundary	+ I F - I					
10				and the second			
0		+	 1-+			 -+-	
-10	50k 300k 400	k 600k 800k	1M	2M 3M	4M 5M 6M 8	M 10M	20M 30M
			Freq	uency [Hz]			
x x x M	IES agc_fin						
		DECIT		£;			
MEAS	OREMENT	RESULT	agc_	111.			
2024/	/5/17 10:5	57					
Fi	requency	Level	Transd	Limit	Margin	Detec	tor Line
	MHz	dBµV	dB	dBµV	dB		
	150000		<i>c</i> 1		0.1 4		
(0.158000	44.20	6.1	66	21.4	QP	N
(0.206000	38.30	6.1	63	25.1	QP	N
10	0.434000	33.20	0.1	57	22.0	QP OP	IN N
10	9.300000	32.00	7.1	60	20.0	QP QP	N
20	0.118000	31.70	7.1	60	28.3	0P	N
20		51.70	/.1	00	20.0	×-	
MEAS	SUREMENT	RESULT	: "agc_	fin2"			
2024/	/5/17 10:5	57					
Fi	requency	Level	Transd	Limit	Margin	Detec	tor Line
	MHz	dBµV	dB	dBµV	dB		
C	0.170000	24.80	6.1	55	30.2	AV	N
0	0.354000	21.30	6.1	49	27.6	AV	Ν
0	0.414000	25.50	6.1	48	22.1	AV	N
0	0.434000	33.30	6.1	47	13.9	AV	N
0	0.922000	18.60	6.2	46	27.4	AV	N
21	L.342000	20.50	7.3	50	29.5	AV	N

MEASUREMENT RESULT: "agc_fin"

2024/5/17 11:14

24/3/1/ 11.	14					
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.154000	39.10	6.1	66	26.7	QP	Ν
0.434000	35.20	6.1	57	22.0	QP	N
19.498000	31.80	7.1	60	28.2	QP	Ν
19.534000	31.90	7.1	60	28.1	QP	N
19.846000	31.70	7.1	60	28.3	QP	Ν
20.046000	31.20	7.1	60	28.8	QP	Ν

MEASUREMENT RESULT: "agc fin2"

2024/5/17 11:	14					
Frequency	Level	Transd	Limit	Margin	Detector	Line
MHz	dBµV	dB	dBµV	dB		
0.162000	24.40	6.1	55	31.0	AV	N
0.410000	26.20	6.1	48	21.4	AV	N
0.430000	33.10	6.1	47	14.2	AV	N
1.198000	19.50	6.2	46	26.5	AV	N
8.602000	19.40	6.6	50	30.6	AV	N
21.286000	21.10	7.3	50	28.9	AV	N

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

13. Carrier Frequency Stability

13.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ±10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to + 45 °C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

13.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.2.1

13.3 Measurement Setup (Block Diagram of Configuration)

13.4 Measurement Result

• Carrier Frequency Stability over Time at Nominal Temperature:

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.993573	6.9	1.5	2.80	
1921.538456	6.1	2.3	2.00	±10
1928.449426	6.0	1.4	2.39	±10

Note 1: Max Dev. (ppm) = [(Max. Diff. - Min. Diff.) / Average Mean Carrier Freq.]*10⁶

• Carrier Frequency Stability over Time at Nominal Temperature:

Voltage	Measured Carrier	Difference	Deviation	Limit
(V)	Frequency (MHz)	(kHz)	(ppm)	(ppm)
	1924.9936	1.6	0.83	
5.00	1921.5381	2.1	1.09	
	1928.4492	1.2	0.62	
4.25	1924.9958	3.8	1.97	
	1921.5385	2.5	1.30	±10
	1928.4496	1.6	0.83	
	1924.9943	2.3	1.19	
5.75	1921.5387	2.7	1.41	
	1928.4499	1.9	0.99	

Note 1: Difference (kHz) = Measured Carrier Freq. - Carrier Freq.

Note 2: Deviation (ppm) = [Difference (kHz) / Carrier Freq.] x 10⁶

Temperature	Measured Carrier	Difference	Deviation	Limit
(°°)	Frequency (MHz)	(kHz)	(ppm)	(ppm)
	1924.9936	Ref	Ref	
T = +20°C	1921.5381	Ref	Ref	
	1928.4492	Ref	Ref	
T = -20°C	1924.9957	3.7	1.92	
	1921.5383	2.3	1.20	±10
	1928.4496	1.6	0.83	
T = +45°C	1924.9963	4.3	2.23	
	1921.5384	2.4	1.25	
	1928.4493	1.3	0.67	

• Carrier Frequency Stability over Temperature:

Note 1: Set the Measured Carrier Frequency (MHz) $T = +20^{\circ}C$ as Ref Level

Note 2: Difference (kHz) = Measured Carrier Freq. $T = -20^{\circ}C$ - Measured Carrier Freq. $T = +20^{\circ}C$ or Measured Carrier Freq. $T = +45^{\circ}C$ - Measured Carrier Freq. $T = +20^{\circ}C$

Note 3: Deviation (ppm) = [Difference (kHz) / Carrier Freq.] x 10^{6} .

14. Specific Requirements for UPCS Device

14.1 Monitoring Time Requirements

According to the requirements of FCC Part 15.323(c)(1) as follows:

Immediately prior to initiating transmission, devices must monitor the combined time and spectrum window in which they intend to transmit. For a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.

14.1.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.4, 7.5

14.1.2 Measurement Setup

13.1.2 Measurement Result

Initial transmit channel and Interferer level	Final transmit Channel	Results
Apply the interference on f1 at level TU+UM, and no interference on f2. Initiate transmission and verify thetransmission on f2.	f2	Pass
Apply the interference on f2 at level TU+UM, at the same time, no interference on f1. After about 20ms, initiate transmission and verify the transmission on f1.	f1	Pass

14.2 Lowest Monitoring Threshold Requirements

According to the requirements of FCC Part 15.323(c)(2) as follows:

The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

14.2.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.1

14.2.2 Measurement Result

Not Applicable

14.3 Acknowledgements and Transmission Duration Requirements

According to the requirements of FCC Part 15.323(c)(3)(4) as follows:

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.

14.3.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.2.1& 8.2.2.

14.3.2 Measurement Result

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
Initial transmission without acknowledgements	Not applicable for EUT that transmits control and signaling information	N/A
Transmission time after loss of acknowledgements	10.0	Pass

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
Transmission duration on same time and frequency window	Only for initiating device that controls which time slot is used	N/A

14.4 Least Interfered Channel (LIC) Selection Requirements

According to the requirements of FCC Part 15.323(c)(5) as follows:

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices If access to spectrum is not available as determined by the above, and a minimum of 40 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power determined for the emission bandwidth may be accessed.

Calculation of monitoring threshold limits for isochroous devices:

Lowest threshold: TL = -174+10Log10B + Mu + PMAX-PEUT(dBm)

Upper threshold: TU = -174+10Log10B + Mu + PMAX-PEUT(dBm)

Where: B=Emission bandwidth (Hz)

Mu=dB the threshold may exceed thermal noise (30 for TL& 50 for TU)

PMAX=5*Log10B-10(dBm)

PEUT=Transmitted power (dBm)

Monitor	В	Mυ	PMAX	PEUT	Threshold
Threshold	(MHz)	(dB)	(dBm)	(dBm)	(dBm)
TL	1.274	30	20.53	17.84	-80.26
TU	1.274	50	20.53	17.84	-60.26

The EUT must not transmit until the interference level is less than or equal to: Measured Threshold Level \leq TU Where: TU=Upper threshold level

14.4.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.2& 7.3.3& 7.3.4.

14.4.2 Measurement Result

Monitor threshold	Measured Threshold Level	Limit (dBm)
Lowest Threshold (dBm)	N/A	-80.26
Upper Threshold (dBm)	N/A	-60.26

Note: N/A Not applicable - EUT which supports at least of 40 duplex system access channels and implements Least Interfered Channel (LIC) algorithm is permitted to use an upper monitoring threshold.

14.5 Random Waiting Requirements

According to the requirements of FCC Part 15.323(c)(6) as follows:

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same window after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

14.5.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.1.3.

14.5.2 Measurement Result

Not Applicable

Note: The manufacturer declares that this provision is not utilized by the EUT.

14.6 Monitoring Bandwidth Requirements

According to the requirements of FCC Part 15.323(c)(7) as follows:

The monitoring system bandwidth must be equal to or greater than the occupied bandwidth of the intended transmission. Note: Testing of the monitoring system bandwidth is not required if the designed bandwidth from the manufacturer is available and given in the test report.

The maximum reaction time of the monitor shall be less than 50*SQRT{1.25/EBW or OBW[MHz]} µs for signals at the applicable threshold level but shall not be required to be less than 50µs.

If a signal of 6 dB or more above the threshold level is detected, the maximum reaction time shall be 35*SQRT{1.25/EBW or OBW[MHz]} µs but shall not be required to be less than 35µs.

14.6.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.5.

14.6.2 Measurement Result

Test Equation (µs)	EBW (MHz)	Pulse width(µs)	Limit (us)	Result
50 (1.25/B) ^{1/2}	1.310	48.84	50	Pass
25 (1.25/B) ^{1/2}	1.310	24.42	35	Pass

14.7 Monitoring Antenna Requirements

According to the requirements of FCC Part 15.323(c)(8)(9) as follows:

The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

14.7.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 paragraph 4.

14.7.2 Measurement Result

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

14.8 Dual Access Criteria Check Requirements

According to the requirements of FCC Part 15.323(c)(10) as follows:

A device initiating a communication (hereafter called an initiating device) may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows.

If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window.

If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting in the receive time and spectrum window monitored by the initiating device.

14.8.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.3.1&8.3.2.

14.8.2 Measurement Result

EUT that do NOT implements the LIC procedure:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict	
b) EUT is restricted to a single carrier <i>f1</i> for TDMA	ELIT oon tronomit	Deee	
systems. The Test is Pass if EUT can transmit	EUT can transmit	Fd55	
c) d) Interference at level TL+ UM on all timeslots except			
one receive slot where interference is at least	No connection possible	N/A	
10 dB below TL			
e) f) Interference at level TL+ UM on all timeslots except			
one transmit slot where interference is at least	No connection possible	N/A	
10 dB below TL			

EUTs that implements the LIC procedure:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
b) EUT is restricted to a single carrier <i>f1</i> for TDMA	ELIT oon tronomit	Dooo
systems. The Test is Pass if EUT can transmit	EUT can transmit	F855
c) d) Transmission on interference-free receive	Connected on the target Rx	Dooo
time/spectrum window	window and its duplex mate.	F855
e) f) Transmission on interference-free transmit	Connected on the target Tx	Daga
time/spectrum window	window and its duplex mate.	

14.9 Alternative Monitoring Interval for Co-Located Devices Requirements

According to the requirements of FCC Part 15.323(c)(11) as follows:

An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within 1 m) transmitter of the same system, may monitor the portions of the time and spectrum window in which they are to receive over a period of at least 10 ms.

The monitored time and spectrum window must total at least 50% of the 10 ms frame interval and the monitored spectrum must be within 1.25 MHz of the centre frequency of channel(s) already occupied by that device or co-located cooperating devices.

If the access criteria are met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

14.9.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.4.

14.9.2 Measurement Result

Note: The manufacturer declares that this provision is not utilized by the EUT.

14.10 Frame Repetition Stability And Period And Jitter

According to the requirements of FCC Part 15.323(c)(13) as follows:

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

14.10.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 6.2.2&6.2.3

14.10.2 Measurement Setup

14.10.3 Measurement Result

Carrier Frequency	Carrier Frequency Frame Jitter (us)					
(MHz)	min	mean	max	∆min	∆max	Limit of \triangle
1924.992	-0.82	0	0.92	-0.82	0.87	±25

Report No.: AGC14499240406FR01 Page 70 of 70

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC14499240406AP03

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC14499240406AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.