

TEST REPORT

Applicant Name: Address:

Report Number:

FCC ID:

IC:

Fanvil Link Technology Co.,LTD A03, A08, 3rd Floor, Building 2, Daqian Industrial Plant, Zone 67, Xingdong Community, Xin'an Street, Bao'an District, Shenzhen ,China 2401U79863E-RFC 2BCUQ-V62W 32680-V62W

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type:	IP Phone
Model No.:	V62W
Multiple Model(s) No.:	V61W
Trade Mark:	Fanvil
Trade Mark: Date Received:	Fanvil 2024/06/11

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Sojo. ano

Jojo Guo RF Engineer

Approved By:

Vanal Wang

Nancy Wang RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF009

Page 1 of 102

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	11
TEST EQUIPMENT LIST	12
FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- RF EXPOSURE	13
Applicable Standard	
Result.	
RSS-102 ISSUE 5 § 2.5.2 - EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION	15
Applicable Standard	
Result	15
FCC §15.203 & RSS-GEN §6.8 - ANTENNA REQUIREMENT	16
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) & RSS-GEN § 8.8 - AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	17
EUT SETUP	17
	17 17
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION	17 17 17 18
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA	17 17 17 18 18
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS	17 17 18 18 18
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS APPLICABLE STANDARD	17 17 18 18 18 29 29
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS APPLICABLE STANDARD EUT SETUP	17 17 18 18 18 29 29 29
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS Applicable Standard EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE	17 17 18 18 29 29 29 30 31
EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION TEST DATA FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS APPLICABLE STANDARD EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17 17 17 18 18 29 29 29 30 31 31

TR-EM-RF009

FCC §15.247(A) (1) & RSS-247 § 5.1 (B) - CHANNEL SEPARATION TEST	50
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	51
FCC §15.247(A) (1) & RSS-247 § 5.1 (A), RSS-GEN § 6.7 - 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	52
Applicable Standard	52
Test Procedure	
Тезт Дата	53
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - QUANTITY OF HOPPING CHANNEL TEST	54
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	55
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	56
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	57
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	58
Applicable Standard	58
Test Procedure	
Теят Dата	59
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	60
APPLICABLE STANDARD	60
Test Procedure	
TEST DATA	61
EUT PHOTOGRAPHS	62
TEST SETUP PHOTOGRAPHS	63
APPENDIX	64
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
Appendix C: Maximum Conducted Output Power	
Appendix D: Carrier Frequency Separation Appendix E: Time of occupancy	
APPENDIX E: TIME OF OCCUPANCY APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX F: NUMBER OF HOFFING CHANNELS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	t Number Description of Revision	
0	2401U79863E-RFC	Original Report	2024/08/05

TR-EM-RF009

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	V62W, V61W	
FVIN	Test rf telnet	
Product	IP Phone	
Tested Model		
	V62W	
Multiple Model(s)	V61W	
Frequency Range	Bluetooth: 2402-2480MHz	
Transmit Power	6.32dBm	
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK	
Antenna Specification [#]	5.1dBi (provided by the applicant)	
Voltage Range	DC 5V from adapter or DC 48V from POE	
Sample serial number	For Model: V62W: 2MMX-3 for Conducted and Radiated Emissions 2MMX-1 for RF Conducted Test For Model: V61W: 2MMX-8 for Conducted and Radiated Emissions (Assigned by BACL, Shenzhen)	
Sample/EUT Status	Good condition	
Adapter Information	Adapter 1 Model: F05L5-050100SPAU Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A, 5.0W Adapter 2 Model: DCT06W050100US-D0 Input: AC 100-240V, 50/60Hz, 200mA Output: DC 5.0V, 1.0A	
	Is are electrically identical with the test model except for model name, button, button	
	Please refer to the declaration letter ^{$\#$} for more detail, which was provided by	
manufacturer.		

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

TR-EM-RF009

Measurement Uncertainty

Parameter			Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF output power, conducted		conducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	Power Lines Conducted 9kHz-150kHz		3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MH	z~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)
	30M	Hz~200MHz (Vertical)	4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MH	z~1000MHz (Horizontal)	4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200M	Hz~1000MHz (Vertical)	5.05dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
Humidity			$\pm 1\%$
Supply voltages		ges	$\pm 0.4\%$

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

"Moba Xterm [#]" exercise software was used and the power level is default [#]. The power level was provided by the applicant.

Special Accessories

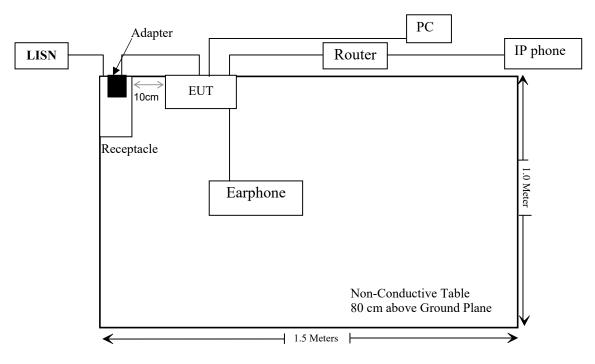
No special accessory.

Equipment Modifications

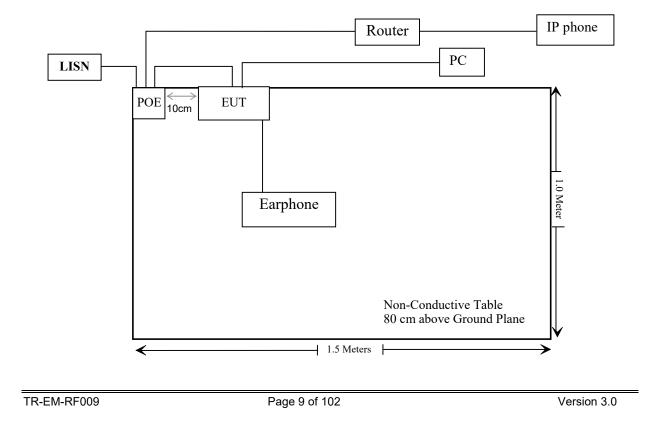
No modification was made to the EUT tested.

Support Equipment List and Details

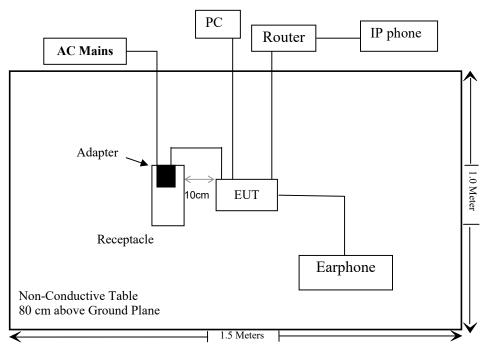
Manufacturer	Description	Model	Serial Number
BULL	Receptacle	GN-415K	5503290068073
Grandstream	IP Phone	GXV3480	T11223323B898
N/A	Earphone1	N/A	N/A
N/A	Earphone2	N/A	N/A
HIKVISION	Router	DS-3WR03	10021642429
Lenovo	РС	TIANYI510Pro-18ICB	R3NO28B21001

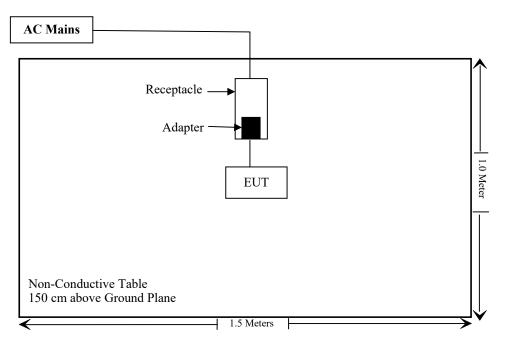

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielded un-detachable AC cable	1.2	Receptacle	LISN/Mains
Un-shielded un-detachable DC cable	1.5	Adapter	EUT
Un-shielded detachable RJ45 cable	8.0	Router	EUT
Un-shielded detachable RJ45 cable	8.0	РС	EUT
Un-shielded detachable RJ45 cable	1.0	Router	IP Phone


Block Diagram of Test Setup

For conducted emission:


For adapter:


For POE:

For radiated emission below 1GHz:

For radiated emission above 1GHz:

TR-EM-RF009

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) & §2.1091	RSS-102 Issue 5 § 2.5.2	RF Exposure & Exemption Limits for Routine Evaluation – RF Exposure Evaluation	Compliant
FCC §15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d)	RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1)	RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1)	RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	RSS-247 § 5.5	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emission Test						
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15		
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
		Radiated Emiss	ion Test				
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15		
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20		
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13		
Unknown	Cable	Chamber Cable 1	F-03-EM236	2024/05/21	2025/05/20		
Unknown	Cable	XH500C	J-10M-A	2024/05/21	2025/05/20		
A.H.System	Pre-amplifier	PAM-1840VH	190	2023/08/02	2024/08/01		
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17		
SNSD	2.4G Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2023/08/03	2024/08/02		
Unknown	RF Cable	KMSE	0735	2023/10/08	2024/10/07		
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17		
Unknown	RF Cable	UFA147	219661	2023/10/08	2024/10/07		
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25		
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26		
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR		
		RF Conducte	d Test				
Rohde &Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15		
Tonscend	RF control Unit	JS0806-2	19D8060154	2023/09/06	2024/09/05		
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091- RF EXPOSURE

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table 1 to § $1.1307(b)(3)(i)(C)$ - Single RF Sources Subject to Routine Environmental Evaluation		
RF Source frequency (MHz)	Threshold ERP (watts)	
0.3-1.34	1,920 R ² .	
1.34-30	3,450 R ² /f ² .	
30-300	3.83 R ² .	
300-1,500	0.0128 R ² f.	
1,500-100,000	19.2R ² .	

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

 $\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{i=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$

Report No.: 2401U79863E-RFC

Result

For worst case:

Mode	Frequency (MHz)	Tune up conducted power [#]		enna in [#]	ERP		Evaluation Distance	ERP Limit
		(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(m)	(mW)
BT	2402-2480	6.5	5.1	2.95	9.45	8.81	0.2	768

Note 1: The tune-up power and antenna gain was declared by the applicant.

Note 2: 0dBd=2.15dBi.

Note 3: The BT and wifi cannot transmit at same time.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

RSS-102 Issue 5 § 2.5.2 - EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 Issue 5 § (2.5.2):

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows: • below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);

• at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where *f* is in MHz; • at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);

device is equal to or less than 0.6 W (adjusted for tune-up tolerance); • at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; • at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Result

Calculated Data:

The max tune-up conducted output power is 6.5 dBm, antenna gain is 5.1dBi. Time-averaged maximum e.i.r.p. of the device is 6.5dBm + 5.1dBi = 11.6dBm = 0.014 W

The worst case is f = 2402 MHz: The limit is $1.31 \times 10^{-2} f^{0.6834}$ W=2.68W

0.014W<2.68W

Note: The BT and wifi cannot transmit at same time.

So the RF Exposure evaluation can be exempted.

FCC §15.203 & RSS-GEN §6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

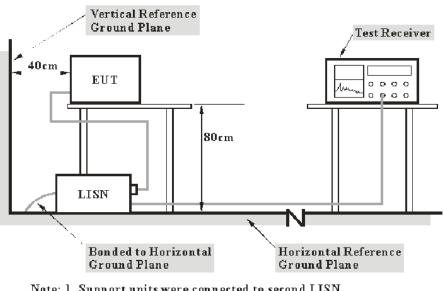
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached for Bluetooth and the maximum antenna gain[#] is 5.1dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain [#]	Impedance	Frequency Range		
Integral	5.1dBi	50Ω	2.4~2.5GHz		

Result: Compliant


TR-EM-RF009

FCC §15.207 (a) & RSS-GEN § 8.8 - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

TR-EM-RF009

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

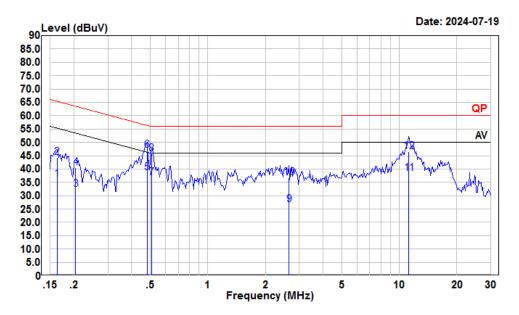
Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

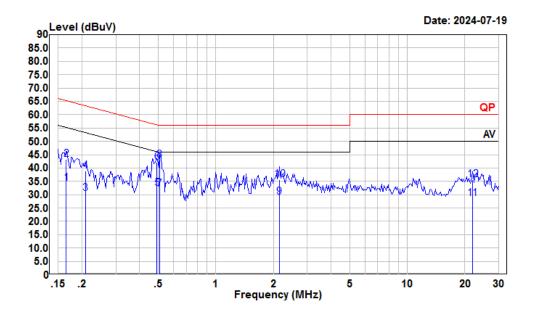
Test Data


Environmental Conditions

Temperature:	25°C
Relative Humidity:	75 %
ATM Pressure:	101 kPa

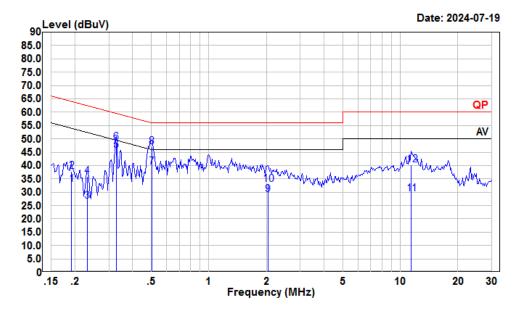
The testing was performed by Macy Shi from 2024-07-19 to 2024-08-01.

EUT operation mode: Transmitting (maximum output power mode 8DPSK, Low Channel)


For Model: V62W For Adapter 1 AC 120V/60 Hz, Line

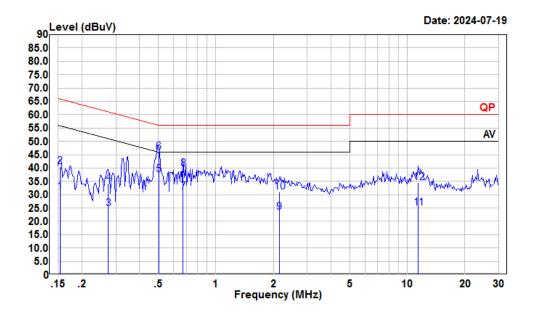
Line
2401U79863E-RF
Macy.shi
BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.16	15.17	36.15	10.87	10.11	55.30	-19.15	Average
2	0.16	23.41	44.39	10.87	10.11	65.30	-20.91	QP
3	0.20	11.57	32.45	10.79	10.09	53.45	-21.00	Average
4	0.20	19.55	40.43	10.79	10.09	63.45	-23.02	QP
5	0.48	17.99	38.63	10.51	10.13	46.32	-7.69	Average
6	0.48	26.40	47.04	10.51	10.13	56.32	-9.28	QP
7	0.51	16.11	36.75	10.50	10.14	46.00	-9.25	Average
8	0.51	25.12	45.76	10.50	10.14	56.00	-10.24	QP
9	2.65	6.00	26.65	10.48	10.17	46.00	-19.35	Average
10	2.65	16.16	36.81	10.48	10.17	56.00	-19.19	QP
11	11.20	17.52	38.33	10.60	10.21	50.00	-11.67	Average
12	11.20	25.62	46.43	10.60	10.21	60.00	-13.57	QP


AC 120V/60 Hz, Neutral

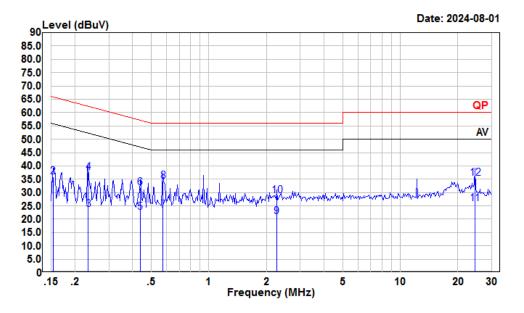
Condition:	Neutral
Project :	2401U79863E-RF
tester :	Macy.shi
Note :	BT

	Read		LISN	Cable	Limit	0ver	
Freq	Level	Level	Factor	Loss	Line	Limit	Remark
MHZ	dBuV	dBuV	dB	dB	dBuV	dB	
0.17	13.50	34.14	10.53	10.11	55.21	-21.07	Average
0.17	22.51	43.15	10.53	10.11	65.21	-22.06	QP
0.21	9.98	30.48	10.41	10.09	53.27	-22.79	Average
0.21	18.43	38.93	10.41	10.09	63.27	-24.34	QP
0.49	11.45	32.28	10.69	10.14	46.14	-13.86	Average
0.49	21.31	42.14	10.69	10.14	56.14	-14.00	QP
0.51	11.35	32.19	10.70	10.14	46.00	-13.81	Average
0.51	22.08	42.92	10.70	10.14	56.00	-13.08	QP
2.14	8.66	29.24	10.40	10.18	46.00	-16.76	Average
2.14	15.11	35.69	10.40	10.18	56.00	-20.31	QP
21.83	7.62	28.46	10.66	10.18	50.00	-21.54	Average
21.83	14.72	35.56	10.66	10.18	60.00	-24.44	QP
	MHz 0.17 0.17 0.21 0.21 0.49 0.49 0.51 0.51 2.14 2.14 2.14 21.83	Freq Level MHz dBuV 0.17 13.50 0.17 22.51 0.21 9.98 0.21 18.43 0.49 11.45 0.49 21.31 0.51 11.35 0.51 22.08 2.14 8.66 2.14 15.11 21.83 7.62	Freq Level Level MHz dBuV dBuV 0.17 13.50 34.14 0.17 22.51 43.15 0.21 9.98 30.48 0.21 18.43 38.93 0.49 11.45 32.28 0.49 21.31 42.14 0.51 12.08 42.92 2.14 8.66 29.24 2.14 15.11 35.69 21.83 7.62 28.46	Freq Level Level Factor MHz dBuV dBuV dB 0.17 13.50 34.14 10.53 0.17 22.51 43.15 10.53 0.21 9.98 30.48 10.41 0.21 18.43 38.93 10.41 0.49 11.45 32.28 10.69 0.49 21.31 42.14 10.69 0.51 11.35 32.19 10.70 0.51 22.08 42.92 10.70 2.14 8.66 29.24 10.40 2.14 15.11 35.69 10.40 21.83 7.62 28.46 10.66	Freq Level Factor Loss MHz dBuV dBuV dB dB 0.17 13.50 34.14 10.53 10.11 0.17 22.51 43.15 10.53 10.11 0.21 9.98 30.48 10.41 10.09 0.21 18.43 38.93 10.41 10.09 0.49 11.45 32.28 10.69 10.14 0.49 21.31 42.14 10.69 10.14 0.51 11.35 32.19 10.70 10.14 0.51 22.08 42.92 10.70 10.14 0.51 22.08 42.92 10.70 10.14 0.51 22.08 42.92 10.70 10.14 2.14 8.66 29.24 10.40 10.18 2.1.83 7.62 28.46 10.66 10.18	Freq Level Factor Loss Line MHz dBuV dBuV dB dBuV dB dBuV 0.17 13.50 34.14 10.53 10.11 55.21 0.17 22.51 43.15 10.53 10.11 65.21 0.21 9.98 30.48 10.41 10.09 53.27 0.21 18.43 38.93 10.41 10.09 63.27 0.49 11.45 32.28 10.69 10.14 46.14 0.49 21.31 42.14 10.69 10.14 46.14 0.49 21.31 42.14 10.69 10.14 46.00 0.51 12.08 42.92 10.70 10.14 46.00 0.51 22.08 42.92 10.70 10.14 56.00 2.14 8.66 29.24 10.40 10.18 46.00 2.183 7.62 28.46 10.66 10.18 50.00	Freq Level Factor Loss Line Limit MHz dBuV dBuV dB dB dBuV dB 0.17 13.50 34.14 10.53 10.11 55.21 -21.07 0.17 22.51 43.15 10.53 10.11 65.21 -22.06 0.21 9.98 30.48 10.41 10.09 53.27 -22.79 0.21 18.43 38.93 10.41 10.09 63.27 -24.34 0.49 11.45 32.28 10.69 10.14 46.14 -13.86 0.49 21.31 42.14 10.69 10.14 56.14 -14.00 0.51 11.35 32.19 10.70 10.14 46.00 -13.81 0.51 22.08 42.92 10.70 10.14 56.00 -13.08 2.14 8.66 29.24 10.40 10.18 46.00 -16.76 2.14 15.11 35.69 10.40


For Adapter 2 AC 120V/60 Hz, Line

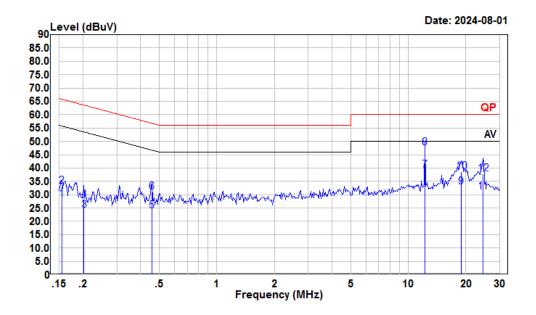
Condition	:	Line
Project	:	2401U79863E-RF
tester	:	Macy.shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.19	12.06	32.97	10.82	10.09	53.98	-21.01	Average
2	0.19	16.94	37.85	10.82	10.09	63.98	-26.13	QP
3	0.23	5.74	26.57	10.75	10.08	52.39	-25.82	Average
4	0.23	15.12	35.95	10.75	10.08	62.39	-26.44	QP
5	0.33	24.93	45.69	10.64	10.12	49.49	-3.80	Average
6	0.33	27.92	48.68	10.64	10.12	59.49	-10.81	QP
7	0.50	18.90	39.54	10.50	10.14	46.00	-6.46	Average
8	0.50	26.51	47.15	10.50	10.14	56.00	-8.85	QP
9	2.03	8.35	29.13	10.59	10.19	46.00	-16.87	Average
10	2.03	12.09	32.87	10.59	10.19	56.00	-23.13	QP
11	11.44	8.63	29.44	10.60	10.21	50.00	-20.56	Average
12	11.44	19.34	40.15	10.60	10.21	60.00	-19.85	QP


AC 120V/60 Hz, Neutral

Condition:	Neutral
Project :	2401U79863E-RF
tester :	Macy.shi
Note :	BT

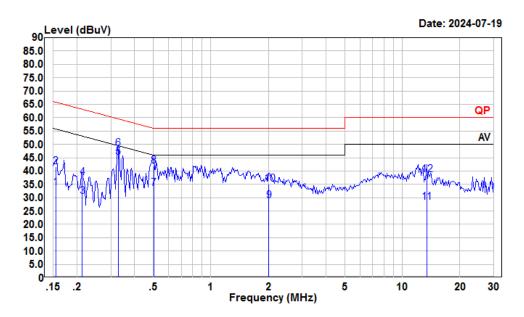
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	10.41	31.13	10.59	10.13	55.82	-24.69	Average
2	0.15	19.67	40.39	10.59	10.13	65.82	-25.43	QP
3	0.27	4.22	24.81	10.50	10.09	50.98	-26.17	Average
4	0.27	13.70	34.29	10.50	10.09	60.98	-26.69	QP
5	0.50	16.68	37.52	10.70	10.14	46.00	-8.48	Average
6	0.50	25.19	46.03	10.70	10.14	56.00	-9.97	QP
7	0.68	10.30	31.14	10.70	10.14	46.00	-14.86	Average
8	0.68	18.80	39.64	10.70	10.14	56.00	-16.36	QP
9	2.14	2.90	23.48	10.40	10.18	46.00	-22.52	Average
10	2.14	10.32	30.90	10.40	10.18	56.00	-25.10	QP
11	11.44	4.02	25.03	10.80	10.21	50.00	-24.97	Average
12	11.44	13.45	34.46	10.80	10.21	60.00	-25.54	QP


For POE AC 120V/60 Hz, Line

Condition:	Line
Project :	2401U79863E-RF
tester :	Macy.shi
Note :	ВТ

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV		dB	dB		dB	
1	0.15	10.01	31.03	10.89				Avenage
_					10.13			Average
2	0.15	14.77	35.79	10.89	10.13	65.82	-30.03	QP
3	0.23	2.88	23.71	10.75	10.08	52.30	-28.59	Average
4	0.23	16.57	37.40	10.75	10.08	62.30	-24.90	QP
5	0.44	1.95	22.60	10.54	10.11	47.11	-24.51	Average
6	0.44	11.06	31.71	10.54	10.11	57.11	-25.40	QP
7	0.58	2.68	23.30	10.50	10.12	46.00	-22.70	Average
8	0.58	13.53	34.15	10.50	10.12	56.00	-21.85	QP
9	2.26	0.35	21.08	10.55	10.18	46.00	-24.92	Average
10	2.26	8.19	28.92	10.55	10.18	56.00	-27.08	QP
11	24.53	4.92	25.81	10.70	10.19	50.00	-24.19	Average
12	24.53	14.34	35.23	10.70	10.19	60.00	-24.77	QP

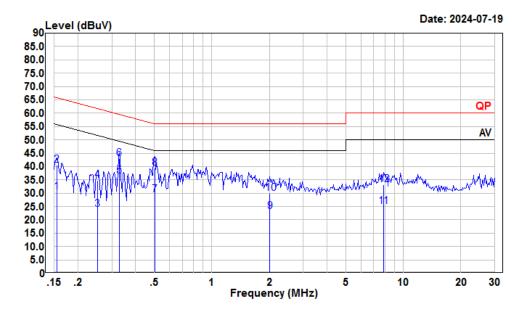
AC 120V/60 Hz, Neutral


Condition	:	Neutral
Project	:	2401U79863E-RF
tester	:	Macy.shi
Note	:	BT

	Read		LISN	Cable	Limit	0ver	
Freq	Level	Level	Factor	Loss	Line	Limit	Remark
				<u> </u>			
MHz	dBuV	dBuV	dB	dB	dBuV	dB	
0.15	7.62	28.32	10.58	10.12	55.74	-27.42	Average
0.15	12.45	33.15	10.58	10.12	65.74	-32.59	QP
0.20	3.81	24.30	10.40	10.09	53.54	-29.24	Average
0.20	7.58	28.07	10.40	10.09	63.54	-35.47	QP
0.46	3.20	23.99	10.67	10.12	46.76	-22.77	Average
0.46	10.24	31.03	10.67	10.12	56.76	-25.73	QP
12.19	18.08	39.09	10.80	10.21	50.00	-10.91	Average
12.19	26.56	47.57	10.80	10.21	60.00	-12.43	QP
18.82	12.10	33.00	10.72	10.18	50.00	-17.00	Average
18.82	17.60	38.50	10.72	10.18	60.00	-21.50	QP
24.53	10.10	30.89	10.60	10.19	50.00	-19.11	Average
24.53	16.90	37.69	10.60	10.19	60.00	-22.31	QP
	MHz 0.15 0.20 0.20 0.46 0.46 12.19 12.19 18.82 18.82 24.53	Freq Level MHz dBuV 0.15 7.62 0.15 12.45 0.20 3.81 0.20 7.58 0.46 3.20 0.46 10.24 12.19 18.08 12.19 26.56 18.82 12.10 18.82 17.60 24.53 10.10	Freq Level Level MHz dBuV dBuV 0.15 7.62 28.32 0.15 12.45 33.15 0.20 3.81 24.30 0.20 7.58 28.07 0.46 3.20 23.99 0.46 10.24 31.03 12.19 18.08 39.09 12.19 26.56 47.57 18.82 12.10 33.00 18.82 17.60 38.50 24.53 10.10 30.89	Freq Level Level Factor MHz dBuV dBuV dB 0.15 7.62 28.32 10.58 0.15 12.45 33.15 10.58 0.20 3.81 24.30 10.40 0.46 3.20 23.99 10.67 0.46 10.24 31.03 10.67 12.19 18.08 39.09 10.80 12.19 26.56 47.57 10.80 18.82 12.10 33.00 10.72 18.82 17.60 38.50 10.72 24.53 10.10 30.89 10.60	Freq Level Level Factor Loss MHz dBuV dBuV dB dB 0.15 7.62 28.32 10.58 10.12 0.15 12.45 33.15 10.58 10.12 0.20 3.81 24.30 10.40 10.09 0.20 7.58 28.07 10.40 10.09 0.46 3.20 23.99 10.67 10.12 0.46 10.24 31.03 10.67 10.12 12.19 18.08 39.09 10.80 10.21 12.19 26.56 47.57 10.80 10.21 18.82 12.10 33.00 10.72 10.18 18.82 17.60 38.50 10.72 10.18 24.53 10.10 30.89 10.60 10.19	Freq Level Factor Loss Line MHz dBuV dBuV dBuV dB dBuV 0.15 7.62 28.32 10.58 10.12 55.74 0.15 12.45 33.15 10.58 10.12 65.74 0.20 3.81 24.30 10.40 10.09 53.54 0.20 7.58 28.07 10.40 10.09 63.54 0.46 3.20 23.99 10.67 10.12 46.76 0.46 10.24 31.03 10.67 10.12 56.76 12.19 18.08 39.09 10.80 10.21 50.00 12.19 26.56 47.57 10.80 10.21 60.00 18.82 12.10 33.00 10.72 10.18 50.00 18.82 17.60 38.50 10.72 10.18 60.00 24.53 10.10 30.89 10.60 10.19 50.00	Freq Level Factor Loss Line Limit MHz dBuV dBuV dBuV dB dB dBuV dB 0.15 7.62 28.32 10.58 10.12 55.74 -27.42 0.15 12.45 33.15 10.58 10.12 65.74 -32.59 0.20 3.81 24.30 10.40 10.09 53.54 -29.24 0.20 7.58 28.07 10.40 10.09 63.54 -35.47 0.46 3.20 23.99 10.67 10.12 46.76 -22.77 0.46 10.24 31.03 10.67 10.12 56.76 -25.73 12.19 18.08 39.09 10.80 10.21 50.00 -10.91 12.19 26.56 47.57 10.80 10.21 60.00 -12.43 18.82 12.10 33.00 10.72 10.18 50.00 -17.00 18.82 17.60 38.50

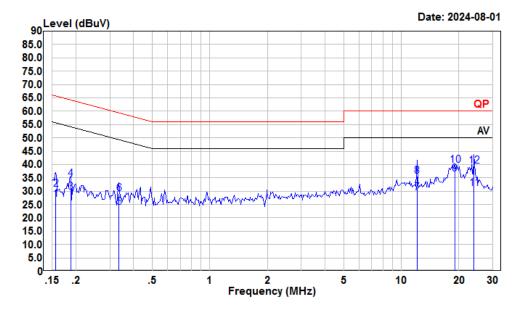
For Model: V61W

For Adapter 2(according to the test result of model V62W, adapter 2 was worst, so for model V61W, adapter 2 was select to test.)


AC 120V/60 Hz, Line

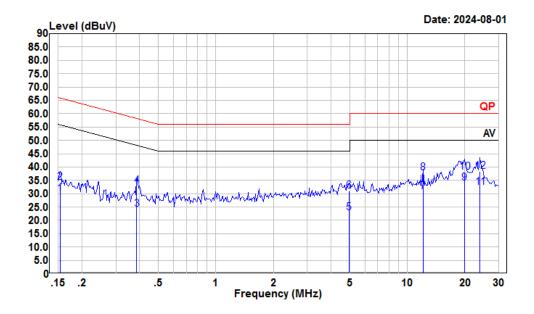
Condition:	Line
Project :	2401U79863E-RF
tester :	Macy.shi
Note :	BT

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	12.59	33.60	10.89	10.12	55.74	-22.14	Average
2	0.15	20.65	41.66	10.89	10.12	65.74	-24.08	QP
3	0.21	9.46	30.33	10.78	10.09	53.10	-22.77	Average
4	0.21	16.62	37.49	10.78	10.09	63.10	-25.61	QP
5	0.33	24.38	45.14	10.64	10.12	49.49	-4.35	Average
6	0.33	27.54	48.30	10.64	10.12	59.49	-11.19	QP
7	0.50	12.90	33.54	10.50	10.14	46.00	-12.46	Average
8	0.50	21.34	41.98	10.50	10.14	56.00	-14.02	QP
9	2.01	8.06	28.85	10.60	10.19	46.00	-17.15	Average
10	2.01	14.32	35.11	10.60	10.19	56.00	-20.89	QP
11	13.41	7.34	28.16	10.60	10.22	50.00	-21.84	Average
12	13.41	17.82	38.64	10.60	10.22	60.00	-21.36	QP


AC 120V/60 Hz, Neutral

Condition:	Neutral
Project :	2401U79863E-RF
tester :	Macy.shi
Note :	BT

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	9.67	30.37	10.58	10.12	55.74	-25.37	Average
2	0.15	19.91	40.61	10.58	10.12	65.74	-25.13	QP
3	0.25	3.43	23.99	10.48	10.08	51.69	-27.70	Average
4	0.25	14.29	34.85	10.48	10.08	61.69	-26.84	QP
5	0.33	15.65	36.33	10.56	10.12	49.49	-13.16	Average
6	0.33	22.19	42.87	10.56	10.12	59.49	-16.62	QP
7	0.50	8.60	29.44	10.70	10.14	46.00	-16.56	Average
8	0.50	18.63	39.47	10.70	10.14	56.00	-16.53	QP
9	2.01	2.47	23.06	10.40	10.19	46.00	-22.94	Average
10	2.01	9.25	29.84	10.40	10.19	56.00	-26.16	QP
11	7.89	4.00	24.93	10.73	10.20	50.00	-25.07	Average
12	7.89	12.37	33.30	10.73	10.20	60.00	-26.70	QP


For POE AC 120V/60 Hz, Line

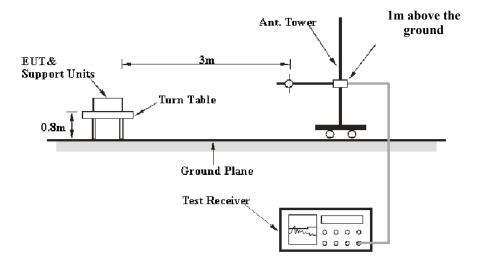
Condition	Line
Project :	2401U79863E-RF
tester	Macy.shi
Note	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.16	5.81	26.82	10.89	10.12	55.65	-28.83	Average
2	0.16	9.86	30.87	10.89	10.12	65.65	-34.78	QP
3	0.19	8.61	29.52	10.82	10.09	54.15	-24.63	Average
4	0.19	13.61	34.52	10.82	10.09	64.15	-29.63	QP
5	0.34	3.17	23.92	10.63	10.12	49.31	-25.39	Average
6	0.34	8.49	29.24	10.63	10.12	59.31	-30.07	QP
7	12.06	8.60	29.41	10.60	10.21	50.00	-20.59	Average
8	12.06	14.80	35.61	10.60	10.21	60.00	-24.39	QP
9	19.02	15.40	36.43	10.85	10.18	50.00	-13.57	Average
10	19.02	18.80	39.83	10.85	10.18	60.00	-20.17	QP
11	24.02	10.04	30.95	10.72	10.19	50.00	-19.05	Average
12	24.02	18.57	39.48	10.72	10.19	60.00	-20.52	QP

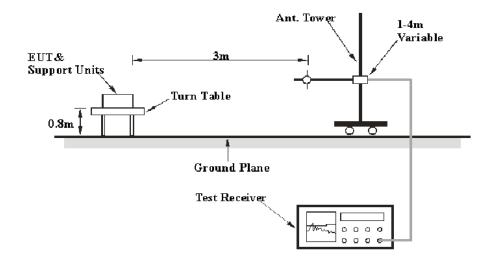
AC 120V/60 Hz, Neutral

Neutral
2401U79863E-RF
Macy.shi
BT

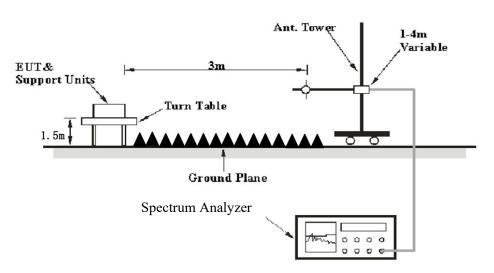
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	9.26	29.98	10.59	10.13	55.82	-25.84	Average
2	0.15	13.60	34.32	10.59	10.13	65.82	-31.50	QP
3	0.39	3.56	24.28	10.61	10.11	48.17	-23.89	Average
4	0.39	12.17	32.89	10.61	10.11	58.17	-25.28	QP
5	4.95	2.10	22.79	10.51	10.18	46.00	-23.21	Average
6	4.95	10.41	31.10	10.51	10.18	56.00	-24.90	QP
7	12.06	9.80	30.81	10.80	10.21	50.00	-19.19	Average
8	12.06	16.90	37.91	10.80	10.21	60.00	-22.09	QP
9	19.85	13.20	34.07	10.70	10.17	50.00	-15.93	Average
10	19.85	17.30	38.17	10.70	10.17	60.00	-21.83	QP
11	24.02	11.56	32.36	10.61	10.19	50.00	-17.64	Average
12	24.02	17.42	38.22	10.61	10.19	60.00	-21.78	QP


FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement				
9 kHz – 150 kHz	/	/	200 Hz	QP				
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	РК				
150 kHz – 30 MHz	/	/	9 kHz	QP				
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	РК				
30 MHz – 1000 MHz	/	/	120 kHz	QP				
	100 kHz	300 kHz	/	РК				
	Harmonics & Band Edge							
	1MHz	3 MHz	/	РК				
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)							
Above I GHZ	Other Emissions							
	1MHz	3 MHz	/	РК				
	1MHz	10 Hz	/	Average				

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

```
Factor = Antenna Factor + Cable Loss - Amplifier Gain
```

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

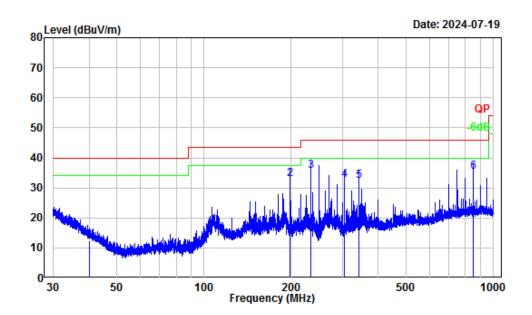
Environmental Conditions

Temperature:	22~25.6°C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-07-19 for below 1GHz and Sadow Tan on 2024-07-15 for above 1GHz.

EUT operation mode: Transmitting

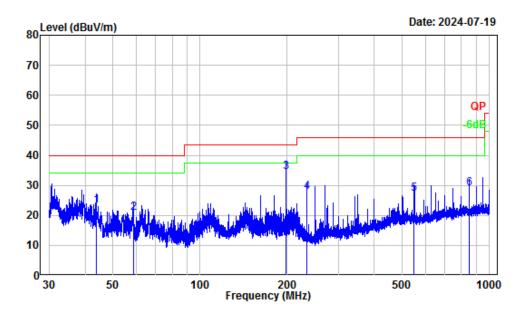
Note: for below 1GHz range, the POE power mode was evaluated under the worst case mode(5G wifi) according to the result of adapter, it was verified POE power mode compliance with requirement, so the POE mode not performed in this report.


Note: After pre-scan in the X, Y and Z axes of orientation, the worst case as below:

9 kHz-30MHz: (maximum output power mode 8DPSK, Low Channel)

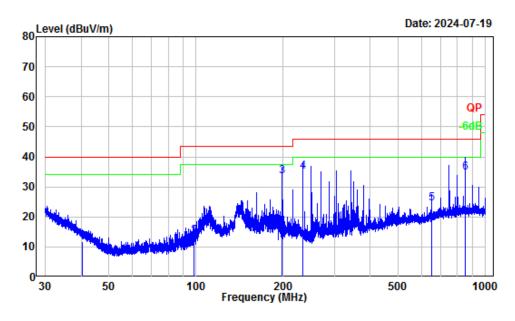
The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded.

30MHz-1GHz: (maximum output power mode 8DPSK, Low Channel) For Model: V62W For Adapter 1


Horizontal

Site :	Chamber A			
Condition :	3m Horizontal			
Project Number:	2401U79863E-RF			
Test Mode :	BT			
Tester :	Anson Su			

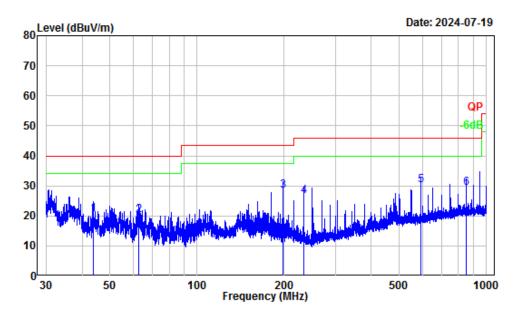
	Fred	Factor			Limit		Demark
	iicq	ractor	Level	Level	LINC	CIMIC	Kellidi K
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.03	-11.54	23.99	12.45	40.00	-27.55	QP
2	197.98	-13.73	46.76	33.03	43.50	-10.47	QP
3	233.96	-14.20	49.68	35.48	46.00	-10.52	QP
4	306.08						
5	341.98	-12.11	44.29	32.18	46.00	-13.82	QP
6	850.29	-4.82	40.20	35.38	46.00	-10.62	QP



Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	2401U79863E-RF
Test Mode	:	BT
Tester	:	Anson Su

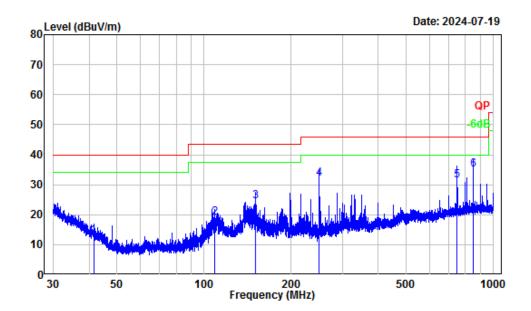
	_				Limit		
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.79	-15.16	38.28	23.12	40.00	-16.88	QP
2	58.72	-18.82	39.66	20.84	40.00	-19.16	QP
3	197.98	-14.81	49.30	34.49	43.50	-9.01	QP
4	233.96	-14.86	42.66	27.80	46.00	-18.20	QP
5	549.98	-8.26	35.53	27.27	46.00	-18.73	QP
6	850.29	-5.12	34.09	28.97	46.00	-17.03	QP

For Adapter 2



Site	:	Chamber A
Condition	:	3m Horizontal
Project Number	:	2401U79863E-RF
Test Mode	:	BT
Tester	:	Anson Su

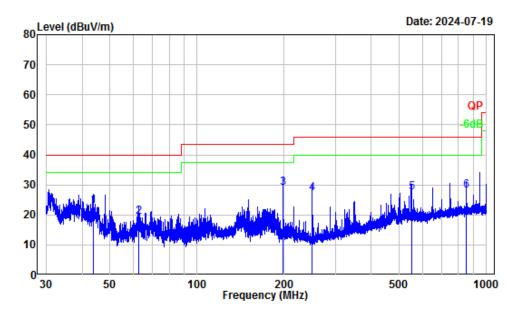
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.29	-11.70	23.41	11.71	40.00	-28.29	QP
2	98.44	-15.85	29.51	13.66	43.50	-29.84	QP
3	197.98	-13.73	47.10	33.37	43.50	-10.13	QP
4	234.07	-14.20	49.33	35.13	46.00	-10.87	QP
5	650.23	-6.73	31.21	24.48	46.00	-21.52	QP
6	850.29	-4.82	39.60	34.78	46.00	-11.22	QP


Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	2401U79863E-RF
Test Mode	:	BT
Tester	:	Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.79	-15.16	35.76	20.60	40.00	-19.40	QP
2	62.76	-18.80	38.99	20.19	40.00	-19.81	QP
3	197.98	-14.81	43.08	28.27	43.50	-15.23	QP
4		-14.86	41.52	26.66	46.00	-19.34	QP
5	594.09	-8.24	38.40	30.16	46.00	-15.84	QP
6	850.29	-5.12	34.37	29.25	46.00	-16.75	QP

For Model: V61W

For Adapter 1 (according to the test result of model V62W, adapter 1 was worst, so for model V61W, adapter 1 was select to test)


Horizontal

:	Chamber A
:	3m Horizontal
:	2401U79863E-RF
:	BT
:	Anson Su
	:

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.46	-12.45	25.31	12.86	40.00	-27.14	QP
2	108.84	-13.35	32.37	19.02	43.50	-24.48	QP
3	150.01	-13.57	37.94	24.37	43.50	-19.13	QP
4	249.97	-14.53	46.50	31.97	46.00	-14.03	QP
5	750.11	-5.54	36.90	31.36	46.00	-14.64	QP
6	850.29	-4.82	39.98	35.16	46.00	-10.84	QP

Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	2401U79863E-RF
Test Mode	:	BT
Tester	:	Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.77	-15.15	37.96	22.81	40.00	-17.19	QP
2	62.95	-18.80	38.08	19.28	40.00	-20.72	QP
3	197.98	-14.81	43.94	29.13	43.50	-14.37	QP
4	249.97	-14.93	42.09	27.16	46.00	-18.84	QP
5	550.22	-8.26	35.58	27.32	46.00	-18.68	QP
6	850.29	-5.12	33.24	28.12	46.00	-17.88	QP

Report No.: 2401U79863E-RFC

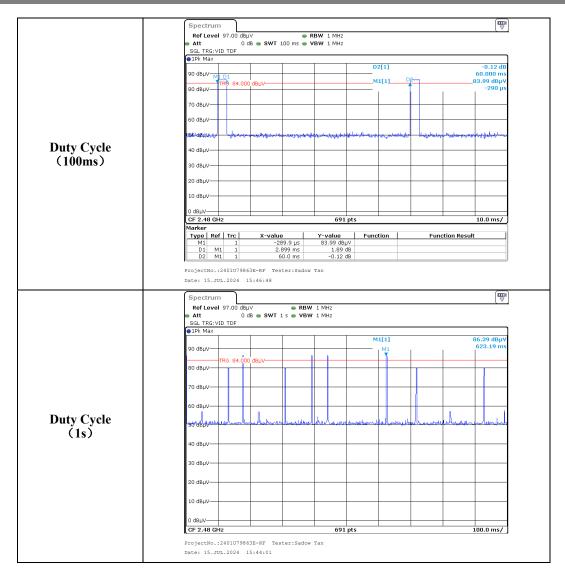
Above 1GHz: (model V62W was tested)

	Recei	iver			Corrected		
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			8DPSK(worst cas	e)			
			Low Channel 2402N	/Hz			
2374.08	54.49	PK	Н	-3.20	51.29	74	-22.71
2360.19	54.20	PK	V	-3.18	51.02	74	-22.98
4804.00	58.86	PK	Н	1.69	60.55	74	-13.45
4804.00	55.84	PK	V	1.69	57.53	74	-16.47
			Middle Channel 2441	MHz			
4882.00	54.94	PK	Н	1.69	56.63	74	-17.37
4882.00	52.17	PK	V	1.69	53.86	74	-20.14
	High Channel 2480MHz						
2499.59	54.15	PK	Н	-3.20	50.95	74	-23.05
2489.21	54.46	РК	V	-3.18	51.28	74	-22.72
4960.00	50.99	PK	Н	2.77	53.76	74	-20.24
4960.00	48.59	РК	V	2.77	51.36	74	-22.64

Note:

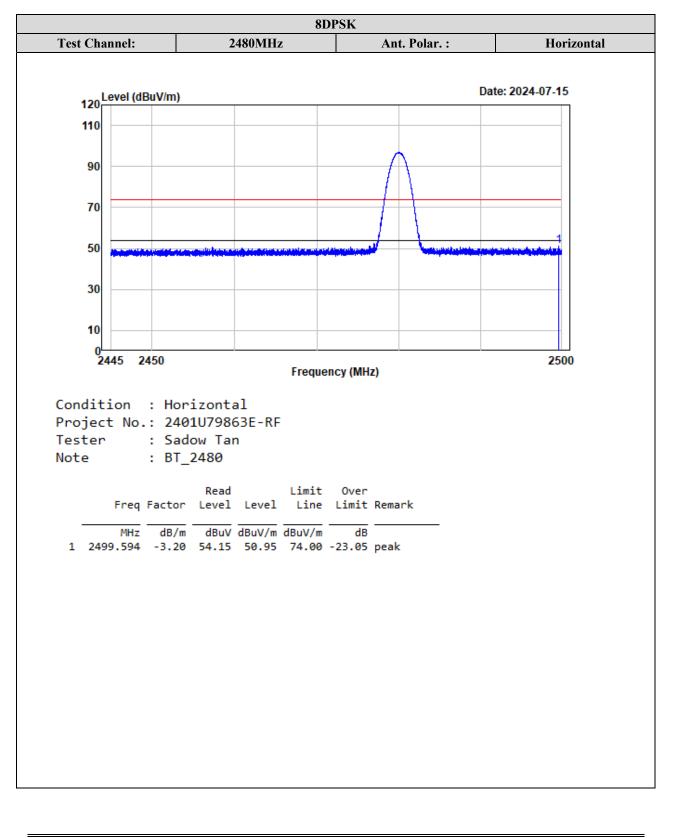
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit

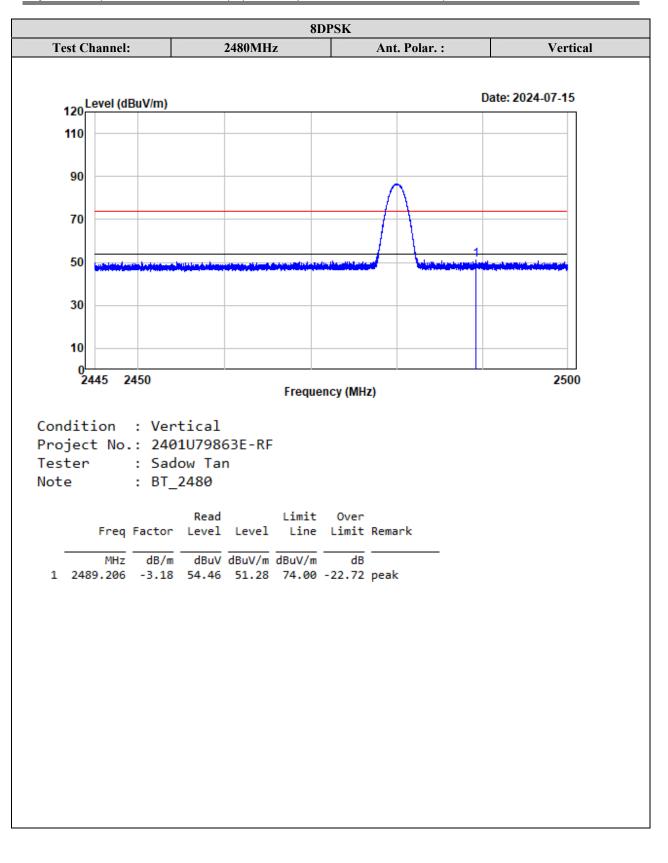
The other spurious emission which is in the noise floor level was not recorded.

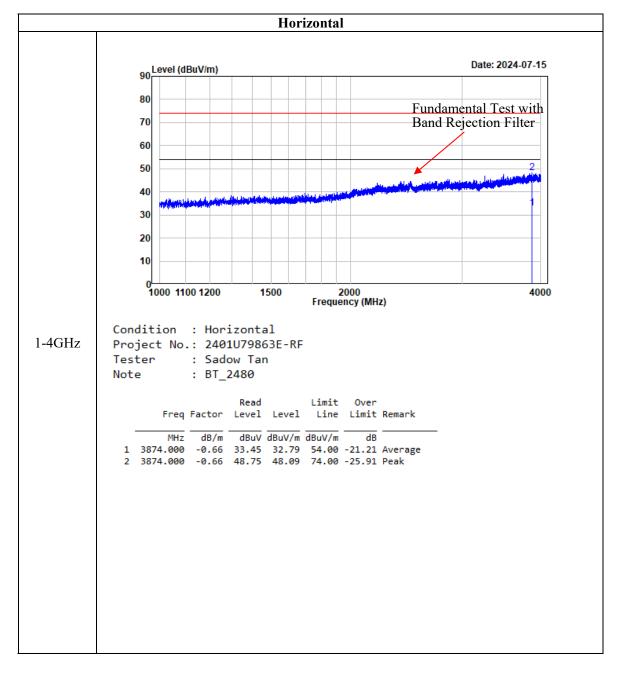

Report No.: 2401U79863E-RFC

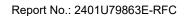
	Field Strength of Average						
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Corrected Factor (dB)	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Comment
			Low Channe	1 2402MHz			
2374.08	51.29	Н	-24.73	26.56	54	-27.44	Bandedge
2360.19	51.02	V	-24.73	26.29	54	-27.71	Bandedge
4804.00	60.55	Н	-24.73	35.82	54	-18.18	Harmonic
4804.00	57.53	V	-24.73	32.80	54	-21.20	Harmonic
			Middle Chann	el 2441MHz			
4882.00	56.63	Н	-24.73	31.90	54	-22.10	Harmonic
4882.00	53.86	V	-24.73	29.13	54	-24.87	Harmonic
			High Channe	el 2480MHz			
2499.59	50.95	Н	-24.73	26.22	54	-27.78	Bandedge
2489.21	51.28	V	-24.73	26.55	54	-27.45	Bandedge
4960.00	53.76	Н	-24.73	29.03	54	-24.97	Harmonic
4960.00	51.36	V	-24.73	26.63	54	-27.37	Harmonic

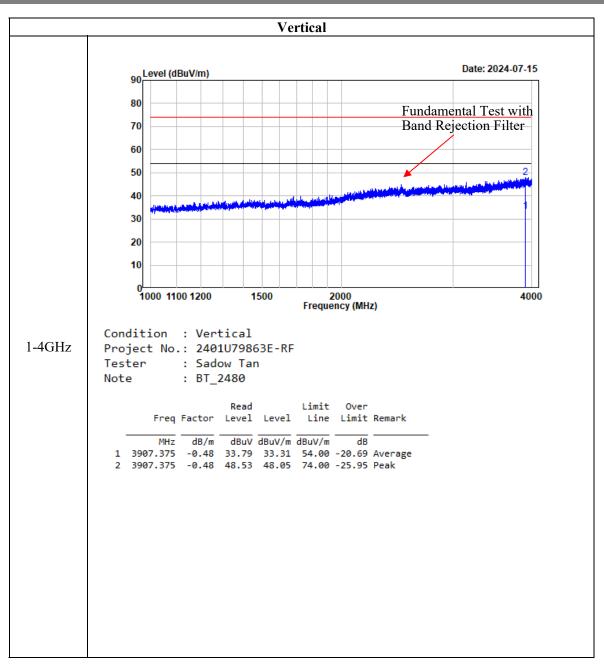
Note: Average level= Peak level+ Duty Cycle Corrected Factor

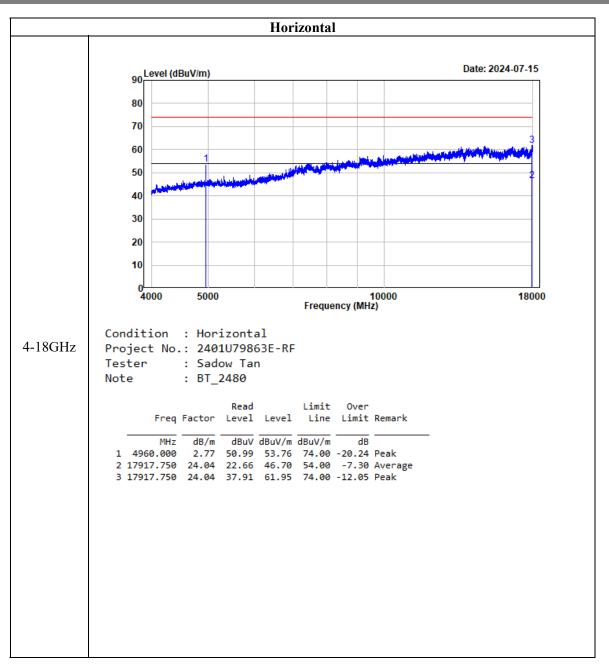

Worst case duty cycle: Duty cycle = Ton/100ms = 2.90*2/100=0.058 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.058 = -24.73

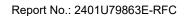

Report No.: 2401U79863E-RFC

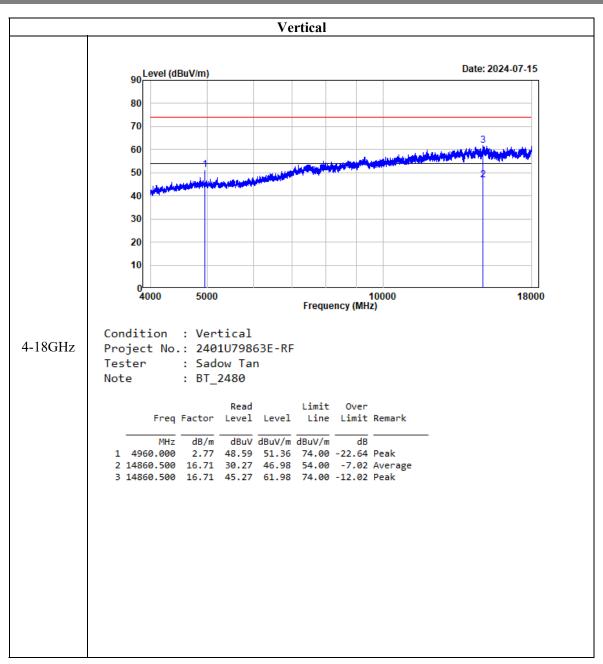

Report No.: 2401U79863E-RFC

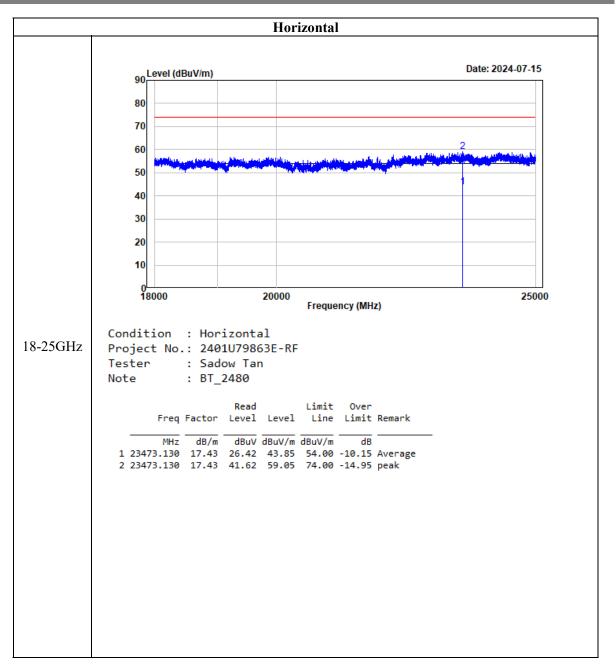

Test plots for Band Edge Measurements (Radiated):

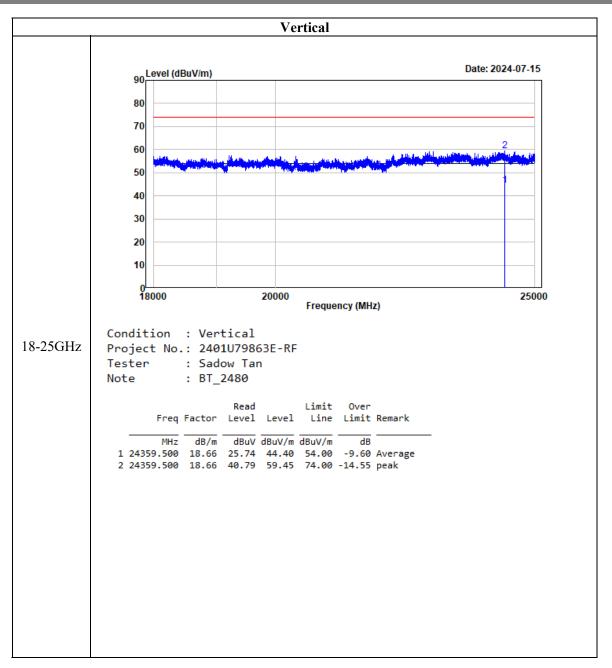



Harmonic Measurements:






Report No.: 2401U79863E-RFC



Report No.: 2401U79863E-RFC

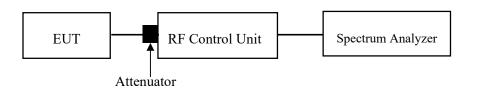
Report No.: 2401U79863E-RFC

FCC §15.247(a) (1) & RSS-247 § 5.1 (b) - CHANNEL SEPARATION TEST

Applicable Standard

According to FCC §15.247(a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 - 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

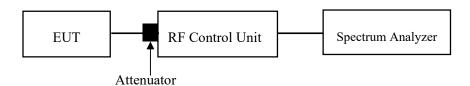
In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

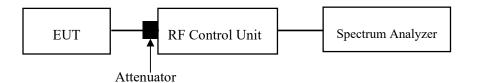
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

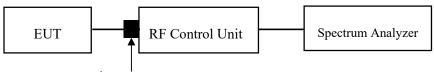
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

Note 2: Totalhops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

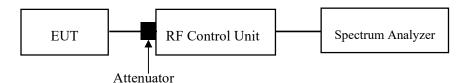
FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

According to RSS-247§ 5.1(b) &§ 5.4(b):


For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

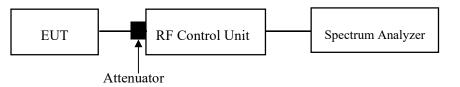
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-07-12.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

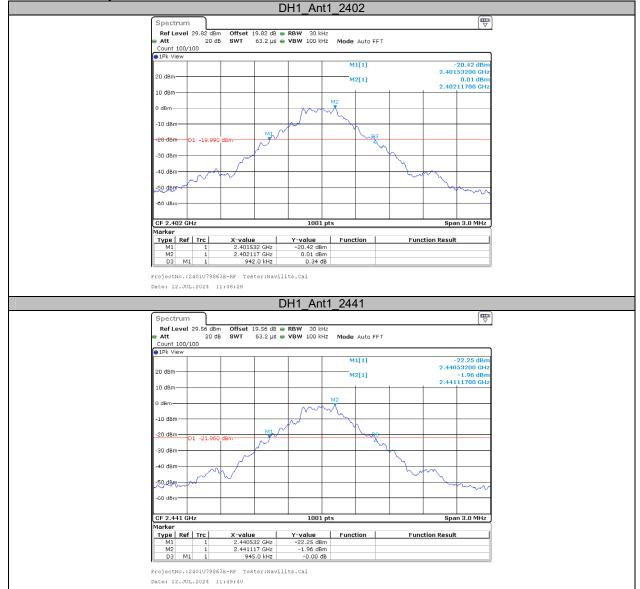
Report No.: 2401U79863E-RFC

EUT PHOTOGRAPHS

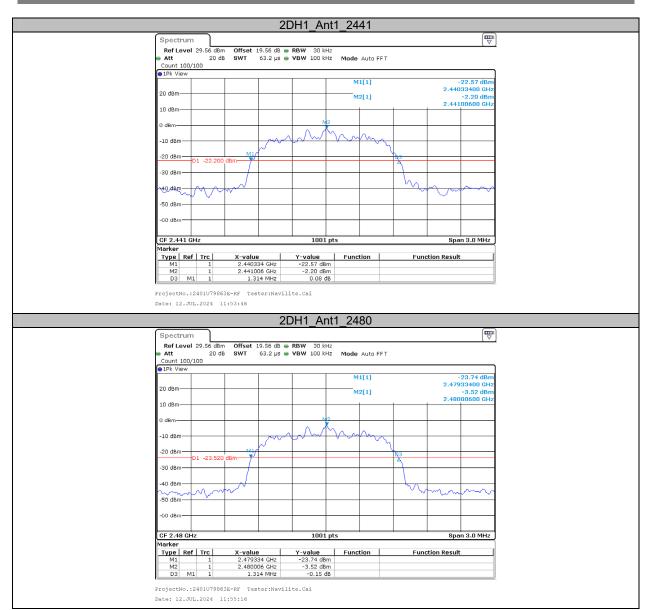
Please refer to the attachment 2401U79863E-RF External photo and 2401U79863E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

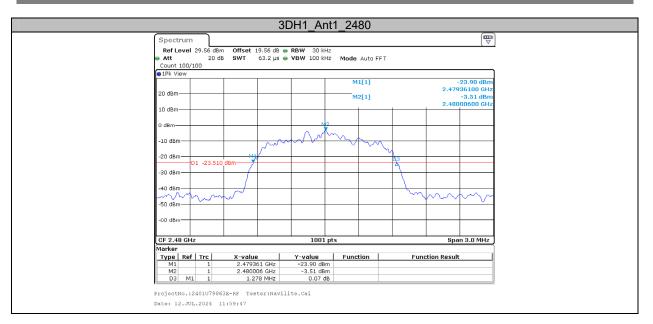
Please refer to the attachment 2401U79863E-RFC Test Setup photo.

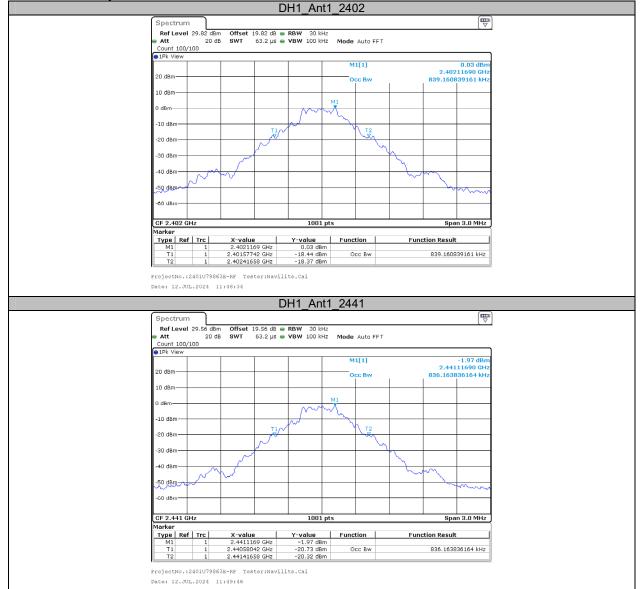

APPENDIX


Appendix A: 20dB Emission Bandwidth

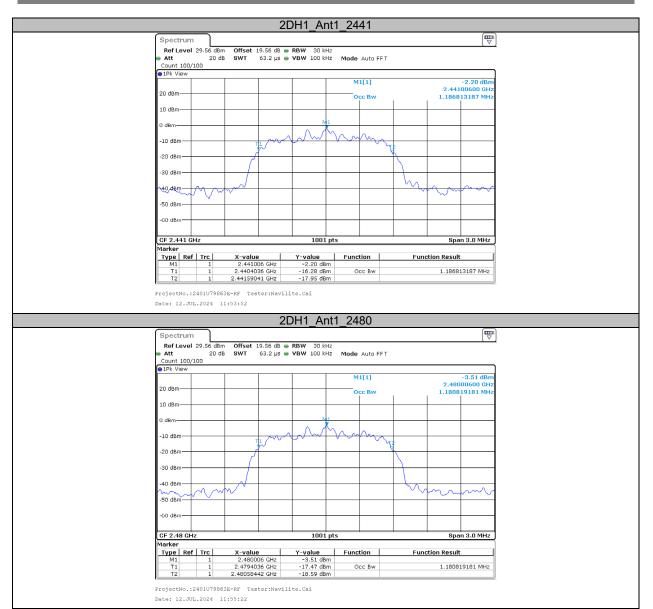

Test Result

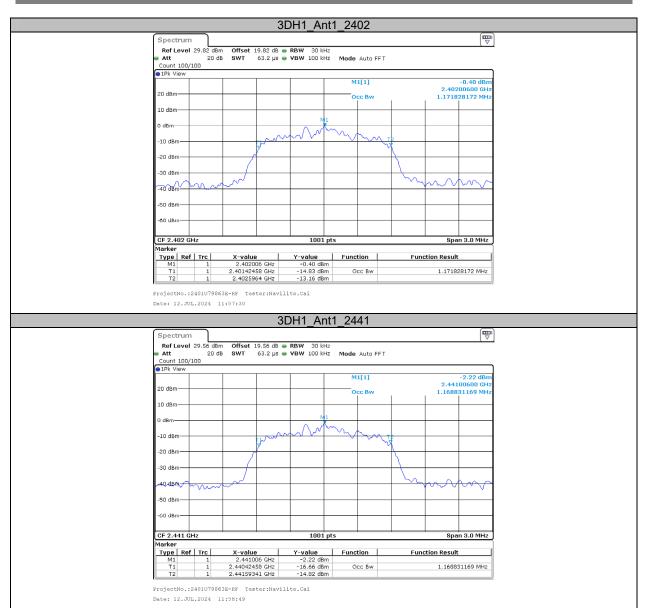
Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.94	2401.53	2402.47		
		2441	0.94	2440.53	2441.48		
		2480	0.95	2479.53	2480.48		
2DH1	Ant1	2402	1.31	2401.33	2402.65		
		2441	1.31	2440.33	2441.65		
		2480	1.31	2479.33	2480.65		
3DH1	Ant1	2402	1.28	2401.36	2402.64		
		2441	1.28	2440.36	2441.64		
		2480	1.28	2479.36	2480.64		

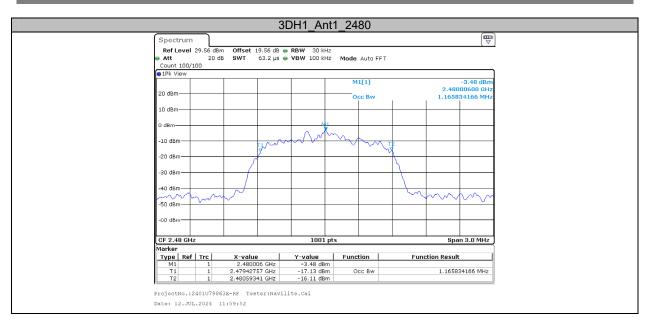

Test Graphs

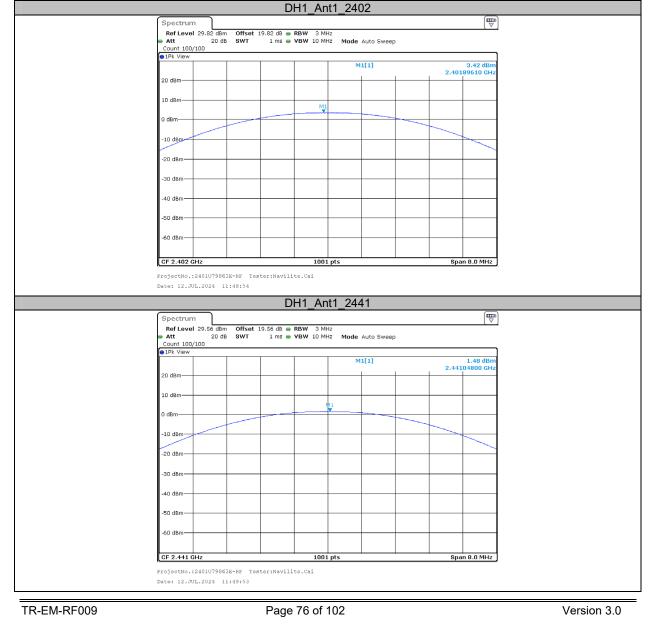

Report No.: 2401U79863E-RFC

Appendix B: Occupied Channel Bandwidth


Test Result

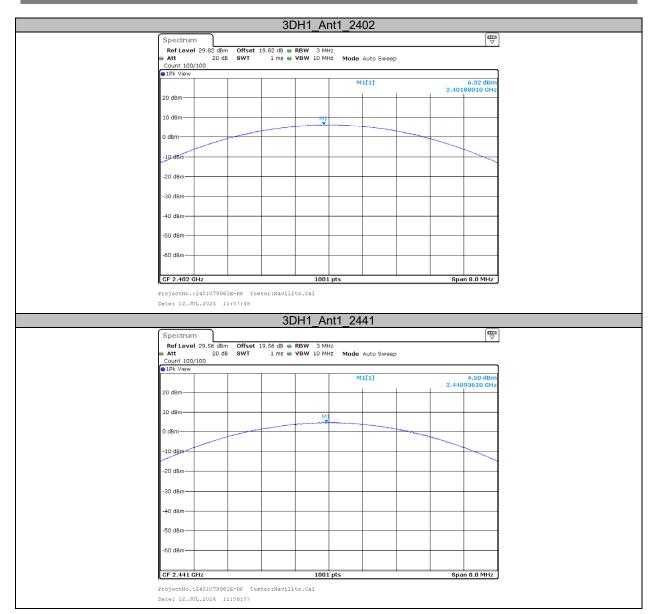

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.839	2401.5774	2402.4166		
		2441	0.836	2440.5804	2441.4166		
		2480	0.833	2479.5804	2480.4136		
2DH1	Ant1	2402	1.193	2401.4036	2402.5964		
		2441	1.187	2440.4036	2441.5904		
		2480	1.181	2479.4036	2480.5844		
3DH1	Ant1	2402	1.172	2401.4246	2402.5964		
		2441	1.169	2440.4246	2441.5934		
		2480	1.166	2479.4276	2480.5934		

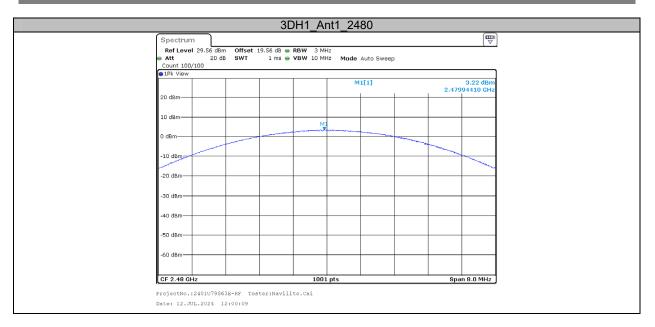

Test Graphs


Report No.: 2401U79863E-RFC

Appendix C: Maximum Conducted Output Power

Test Result Peak


Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	3.42	≤20.97	8.52	≤36.00	PASS
DH1	Ant1	2441	1.48	≤20.97	6.58	≤36.00	PASS
		2480	0.42	≤20.97	5.52	≤36.00	PASS
		2402	5.82	≤20.97	10.92	≤36.00	PASS
2DH1	Ant1	2441	4.13	≤20.97	9.23	≤36.00	PASS
		2480	2.80	≤20.97	7.90	≤36.00	PASS
		2402	6.32	≤20.97	11.42	≤36.00	PASS
3DH1	Ant1	2441	4.50	≤20.97	9.60	≤36.00	PASS
		2480	3.22	≤20.97	8.32	≤36.00	PASS


Test Graphs

			D	H1_Ar	nt1_24	80			
Spectr	um								ļ
	vel 29.56 dB		19.56 dB 👄			Auto 2007			
Att Count 1	20 c DO/100	IB SWT	1 ms 🖷	ARM TO W	Hz Mode	Auto Sweep)		
⊖1Pk Vie	w .		_	1					
					N 1	11[1]		2.470	0.42 dB 976020 GF
20 dBm-						+			
10 dBm—									
0 dBm-				M1					
o ubiii									
-10 dBm-	-	T	_						
	1								
-20 dBm-									
-30 dBm-									
-40 dBm-									
-40 uBm-									
-50 dBm-					-				
-60 dBm-									
	CH2			100	1 pts		I I I	Spa	in 8.0 MH:
	.:2401U798					102			
ProjectNo	JUL.2024			ite.Cai		102		_	Ę
ProjectNo Date: 12	um vel 29.82 dB	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24				Ţ
ProjectNo Date: 12 Spectro Ref Let Att Count 1	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24	102 Auto Sweep	,		Ę
ProjectNo Date: 12	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24	Auto Sweep	,		
ProjectNo Date: 12 Spectro Ref Let Att Count 1	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24		,		5.82 dB
ProjectNo Date: 12 Spectro Ref Let Att Count 1	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep	, , ,		
ProjectNe Date: 12 Spectri Ref Le • Att • 1Pk Vie 20 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectNe Date: 12 Spectrn Ref Le Att Count 1 IPk Vie	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep	, ,		5.82 dB
ProjectNu Date: 12 Spectru RefLe Att Count 1 @1Pk Vie 20 dBm- 10 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectNe Date: 12 Spectri Ref Le • Att • 1Pk Vie 20 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectr Ref Le Att 20 dBm- 10 dBm- 0 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectNu Date: 12 Spectru RefLe Att Count 1 @1Pk Vie 20 dBm- 10 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep	,		5.82 dB
ProjectN. Date: 12 Spectr Ref Le Att 20 dBm- 10 dBm- 0 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectre Ref Le Att 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectr Ref Le • Att Count 1 • 1Pk Vie 20 dBm- 10 dBm- 0 dBm- -10 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectr Ref Le • Att Count 1 • 1Pk Vie 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectre Ref Le Att 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectr Ref Le • Att Count 1 • 1Pk Vie 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN Date: 12 Spectra Ref Le Att Count 1 • 1Pk Vie 20 dBm- 10 dBm- - 10 dBm- -20 dBm- -30 dBm- -40 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW ЗМ	nt1_24	Auto Sweep			5.82 dB
ProjectN Date: 12 Spectra Ref Le Att Count 1 • 1Pk Vie 20 dBm- 10 dBm- - 10 dBm- -20 dBm- -30 dBm- -40 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24	Auto Sweep			5.82 dB
ProjectN Date: 12 Spectri Ref Le Att 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	.:24010798 .JUL.2024 um vel 29.82 dB 20 d	11:51:10 m Offset	2[19.82 dB •	ite.Cai DH1_A RBW 3M	nt1_24	Auto Sweep			5.82 dB
ProjectN. Date: 12 Spectri Ref Le Att 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm-	.:24010798 .JUL.2024	11:51:10 m Offset	2[19.82 dB •	DH1_A RBW 3M VBW 10 M	nt1_24	Auto Sweep		2.403	5.82 dB

Appendix D: Carrier Frequency Separation

Test Result

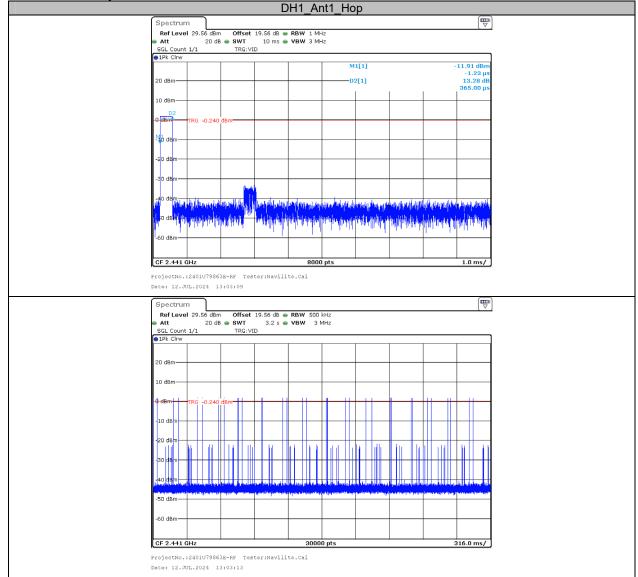
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.627	PASS
2DH1	Ant1	Нор	1	≥0.873	PASS
3DH1	Ant1	Нор	1.003	≥0.853	PASS

Test Graphs

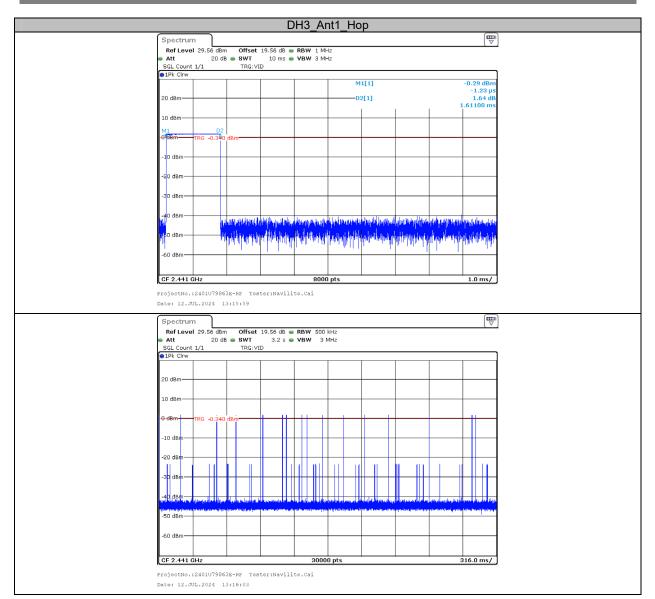
			D	H1_A	nt1_Ho	р			
Spectrur	n								
	1 29.56 dBn	n Offset	19.56 dB 👄	RBW 100 k	Hz				(*
Att	20 di	B SWT	18.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
Count 100 Pk View	1/100								
					M	1[1]			1.52 dBm
20 dBm					D	2611		2.440	33913 GHz -0.12 dB
20 UBIII-						2[1]		1.0	-0.12 UB
10 dBm									
	M1								
0 dBm		<u> </u>				D2			
-10 dBm	r								
-20 dBm									
00.40									
-30 dBm									
-40 dBm									
10 dbii									
-50 dBm									
-60 dBm-									
Start 2.44	05 GHz			691	nts			Ston 2	1425 GHz
			21	DH1_A	nt1_H	-P			(
Spectrur									₹
	el 29.56 dBn	n Offset	19.56 dB 😑	RBW 100 k					
			10.0.04	UDU 200 k	HZ	LUNE FFT			('
Att Count 100	20 di 1/100	B SWT	18.9 µs 👄	VBW 300 k	HZ HZ Mode	Auto FFT			(-
Count 100 Pk View	20 de 1/100	B SWT	18.9 µs 👄	VBW 300 k	Hz Mode				
Count 100	20 di 1/100	3 SWT	18.9 µs 🖷	VBW 300 k	Hz Mode	Auto FFT		2.440	1.03 dBm
Count 100	20 dt 1/100	3 SWT	18.9 µs 👄	VBW 300 k	Hz Mode				1.03 dBm 34203 GHz -0.03 dB
Count 100 Pk View 20 dBm	20 df 1/100	3 SWT	18.9 µs ●	VBW 300 k	Hz Mode	1[1]			1.03 dBm 34203 GHz
Count 100 ●1Pk View	/100	3 SWT	18.9 µs 🖷	VBW 300 k	Hz Mode	1[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 PIPk View 20 dBm 10 dBm	20 df	3 SWT	18.9 µs ●	VBW 300 k	Hz Mode	1[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 Pk View 20 dBm	/100	3 SWT	18.9 µs ●	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 1Pk View 20 dBm 10 dBm 0 dBm	/100	3 SWT	18.9 µs ●	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 PIPk View 20 dBm 10 dBm	/100	3 SWT	18.9 µs •	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 1Pk View 20 dBm 10 dBm 0 dBm	/100	3 SWT	18.9 µs	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 10C IPk View 20 dBm 10 dBm -10 dBm -20 dBm	/100	3 SWT	18.9 µs •	VBW 300 k	Hz Mode	1[1] 2[1]	~~~		1.03 dBm 34203 GHz -0.03 dB
Count 100 1Pk View 20 dBm	/100	3 SWT	18.9 µs	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100	/100	3 SWT	18.9 µs •	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 10C IPk View 20 dBm 10 dBm -10 dBm -20 dBm	/100	3 SWT	18.9 µs •	VBW 300 k	Hz Mode	1[1] 2[1]	~~~~		1.03 dBm 34203 GHz -0.03 dB
Count 100 IPK View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	/100	3 SWT	18.9 µs •		Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100	/100	3 SWT	18.9 µs ●	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100	/100	3 SWT	18.9 µs •	VBW 300 k	Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100 IPK View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	/100	3 SWT	18.9 µs ●		Hz Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100	M10	3 SWT	18.9 µs ●		HZ Mode	1[1] 2[1]			1.03 dBm 14203 GHz -0.03 dB 0000 MHz
Count 100	05 GHz			691	HZ Mode	1[1] 2[1]			1.03 dBm 34203 GHz -0.03 dB
Count 100	05 GH2	JE-RF Te	18.9 µs •	691	HZ Mode	1[1] 2[1]			1.03 dBm 14203 GHz -0.03 dB 00000 MHz
Count 100	05 GH2	JE-RF Te		691	HZ Mode	1[1] 2[1]			1.03 dBm 14203 GHz -0.03 dB 00000 MHz

Appendix E: Time of occupancy

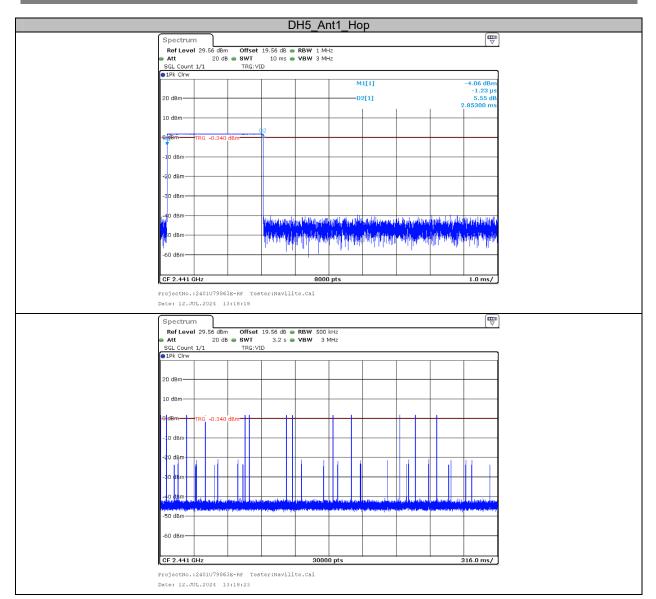
Test Result


Test Mode	Antenna	Frequency[MHz]	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.365	320	0.117	≤0.4	PASS
DH3	Ant1	Нор	1.611	170	0.274	≤0.4	PASS
DH5	Ant1	Нор	2.853	130	0.371	≤0.4	PASS
2DH1	Ant1	Нор	0.374	320	0.120	≤0.4	PASS
2DH3	Ant1	Нор	1.619	170	0.275	≤0.4	PASS
2DH5	Ant1	Нор	2.858	120	0.343	≤0.4	PASS
3DH1	Ant1	Нор	0.375	330	0.124	≤0.4	PASS
3DH3	Ant1	Нор	1.618	180	0.291	≤0.4	PASS
3DH5	Ant1	Нор	2.860	130	0.372	≤0.4	PASS

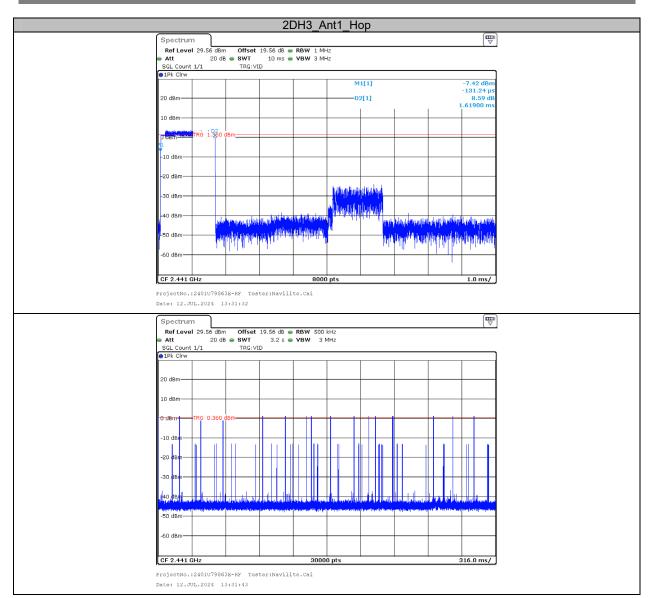
Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

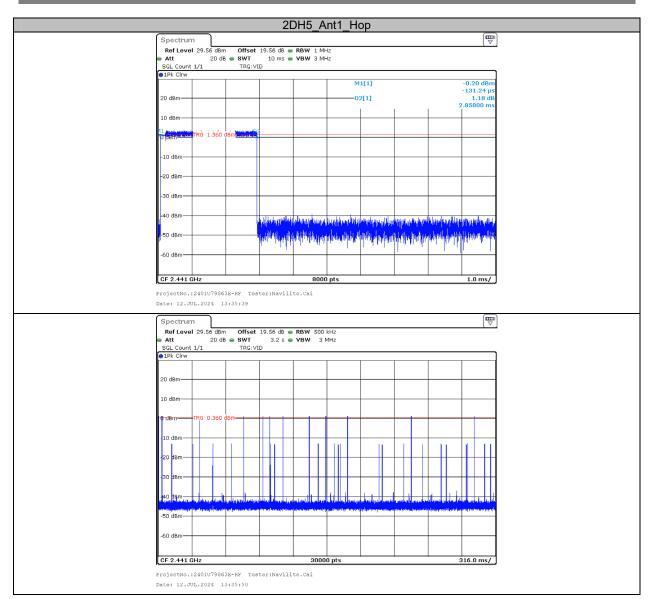

Note 2: Totalhops=Hopping Number in 3.16s*10

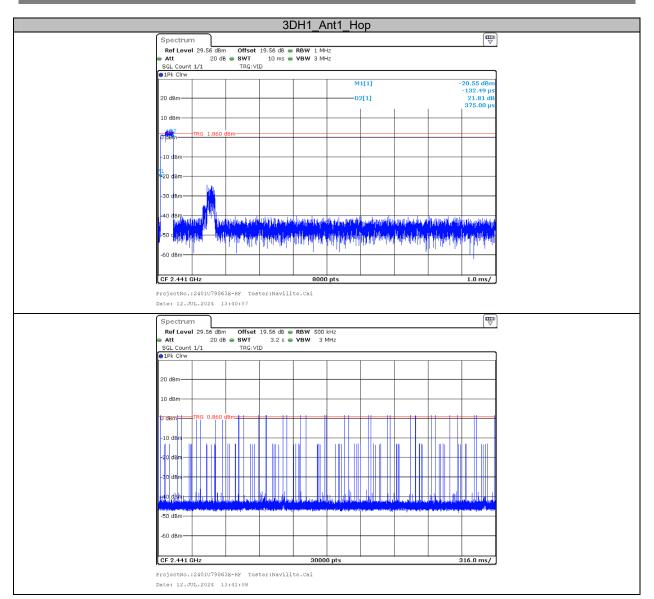
Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

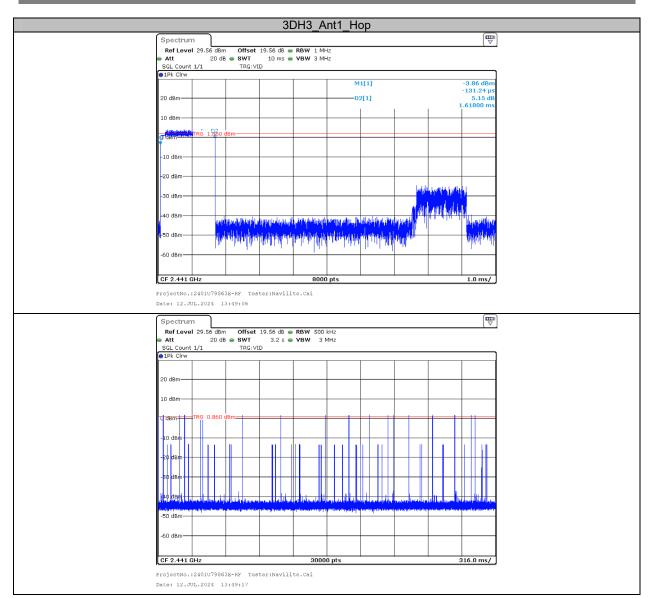

Test Graphs

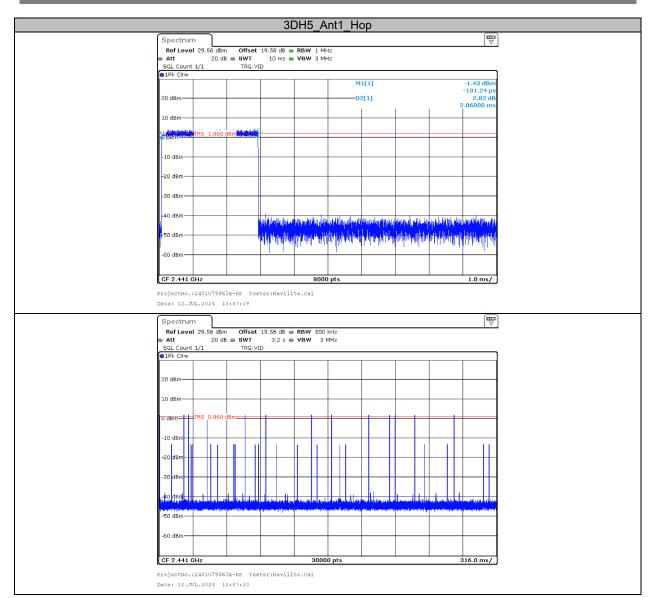



Report No.: 2401U79863E-RFC




Report No.: 2401U79863E-RFC





Report No.: 2401U79863E-RFC

Appendix F: Number Of Hopping Channels

Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

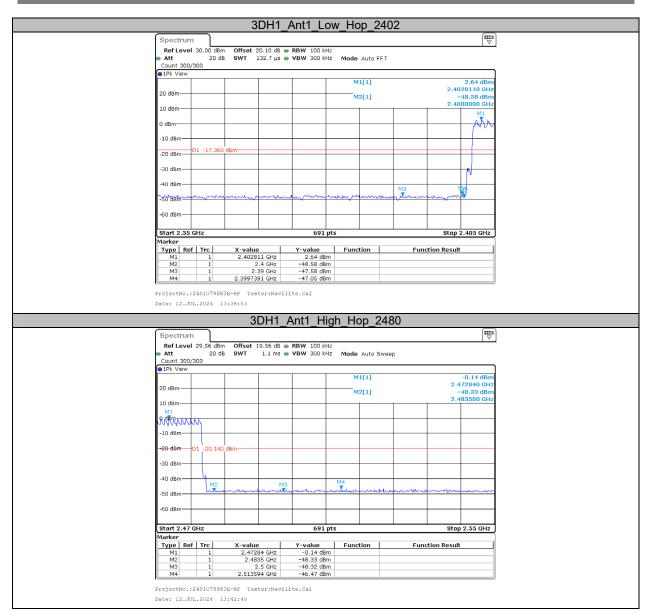
Test Graphs

				-	114 4						
				D	H1_Ar	nt1_Ho	р				
ſ	Spectrur	n								ſ	₩
		29.75 dBm		L9.75 dB 👄							
•	Att Count 100	20 dB 0/1000	SWT	1 ms 👄 '	VBW 300 k	Hz Mode	Auto Sweep	0			
	●1Pk View										
	20 dBm										_
	10 dBm										_
	o BERANI			A R d R A R M A	A h & h h h h h h h h h	1N					
	- MATHAU	YUNOUGHA	ARRAN A	AN UNAN	IYAAAYIKA	HUMBLUR	UNUUUU	UMPHUU	UANAM	ADADA -	
	-10 980	<u>AAAAAAA</u>	<u> an de de la d</u>		INNIAN	404000	HWY WO	<u>HANHND</u>	1) IU IU I	нин	_
	1			Annanal	le-Jecost	alisatis	Aliofato	UUUNNA	AAAAAAAAA	n A s A A A	
	-20 dBm										
	-30 dBm										
	-bo ubin										
	40 dBm										
	-50 dBm										M.
	60 d0										
	-60 dBm										
	01				601				Stop 2.	1005.01	
	Start 2.4 (691	pts			stup 2.	4033 Gr	Π2
				ter:Navili	te.Cai						
ŭ	ate: 12.0	UL.2024 1	5:02:55								
				20	DH1 A	nt1 H	n n				
				21	<u></u>	<u> </u>	ър				
ſ	Spectrur	n		ZL	<u></u>	<u></u>	υþ			(₽
	Ref Leve	1 29.75 dBm		19.75 dB 🕳	RBW 100 k	Hz				(•
	Ref Leve Att	l 29.75 dBm 20 dB		19.75 dB 🕳	RBW 100 k	Hz	Auto Sweep	2		(₹
-	Ref Leve	l 29.75 dBm 20 dB 0/1000		19.75 dB 🕳	RBW 100 k	Hz		0		(₽
-	Ref Leve Att Count 100	l 29.75 dBm 20 dB 0/1000		19.75 dB 🕳	RBW 100 k	Hz				(
ſ	Ref Leve Att Count 100	l 29.75 dBm 20 dB 0/1000		19.75 dB 🕳	RBW 100 k	Hz)		(
ſ	Ref Leve Att Count 100 1Pk View 20 dBm-	l 29.75 dBm 20 dB 0/1000		19.75 dB 🕳	RBW 100 k	Hz				(
ſ	Ref Leve Att Count 100 1Pk View	l 29.75 dBm 20 dB 0/1000		19.75 dB 🕳	RBW 100 k	Hz		, ,		(
	Ref Leve Att Count 100 1Pk View 20 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm-	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 🕳	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep		MMMMM		
	Ref Leve Att Count 100 1Pk View 20 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep		www		
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve • Att Count 100 • IPk View 20 dBm 10 dBm -10 dBm -20 dBm -380 dBm -40 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep		www		
	Ref Leve Att Count 100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -80 dBm -40 dBm -50 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve • Att Count 100 • IPk View 20 dBm 10 dBm -10 dBm -20 dBm -380 dBm -40 dBm	I 29.75 dBm 20 dE 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep				
	Ref Leve Att Count 100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -80 dBm -50 dBm	1 29.75 dBm 20 dB 0/1000	3 SWT	19.75 dB 1 ms	RBW 100 k УВW 300 k	Hz Hz Mode	Auto Sweep			MW	
	Ref Leve Att Count 100 IPk View 20 dBm 10 dBm 10 dBm -20 dBm -20 dBm -380 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm	1 29.75 dBm 20 dB 0/1000	NWWWWW	19.75 dB = 1 ms =	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep		Stop 2.	MW	
P	Ref Leve Att Count 100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm	1 29.75 dBm 20 dB 0/1000	SWT	19.75 dB 1 ms	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweep			MW	

3DH1_Ant1_Hop
Spectrum
Ref Level 29.75 dBm Offset 19.75 dB Ref Level 29.75 dBm Offset 19.75 dB Ref Level 29.75 dBm Offset 19.75 dB
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000
IPk View
20 dBm
10 dBm
of the manual and a second with a second with a second s
-10 d8m
-20 dBm
/B0 dBm
-40 dBm
-50 dBm
-60 dBm
Start 2.4 GHz 691 pts Stop 2.4835 GHz
ProjectNo.:2401U79063E-RF Tester:Navilite.Cai

Appendix G: Band Edge Measurements

Test Graphs



Report No.: 2401U79863E-RFC

***** END OF REPORT *****