

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT			
Report No. ·····:	CTC20232194E02		
FCC ID······:	2BCUQ-308		
Applicant·····:	Fanvil Link Technology Co.,LTD		
Address	Room 1517, Building G, Hualian City Pan District, Shenzhen, China	orama.27 Region, Bao'an	
Manufacturer	Fanvil Link Technology Co.,LTD		
Address	Room 1517, Building G, Hualian City Pan District, Shenzhen, China	orama.27 Region, Bao'an	
Product Name·····:	Android IP Video Phone		
Trade Mark······:	Fanvil		
Model/Type reference······:	A308i		
Listed Model(s) ······	J308, J308i, J308P, i508, A308, J308P-i		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	Nov. 21, 2023		
Date of testing	Nov. 22, 2023 ~ Dec. 13, 2023		
Date of issue	Dec. 14, 2023		
Result:	PASS		
Compiled by:			
(Printed name+signature)	Terry Su	Jerry Su	
Supervised by:		Tric shang	
(Printed name+signature)	Eric Zhang	Jenny Su Zic zhang Jamas	
Approved by:		1 Inas	
(Printed name+signature)	Totti Zhao	Joenan	
Testing Laboratory Name:	CTC Laboratories, Inc.		
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China		
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.			

Table of Contents

Page

1. T	TEST SUMMARY	
1.1.	Test Standards	3
1.2.	REPORT VERSION	3
1.3.	. Test Description	4
1.4.	E TEST FACILITY	5
1.5.	. Measurement Uncertainty	5
1.6	Environmental conditions	6
2. 0	GENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	General Description of EUT	7
2.3.	Accessory Equipment Information	8
2.4.		
2.5.	. Measurement Instruments List	
3. т	TEST ITEM AND RESULTS	12
3.1.	. Conducted Emission	12
3.2.	RADIATED EMISSION	
3.3.	B. BAND EDGE EMISSIONS (RADIATED)	43
3.4.		
3.5.	DTS BANDWIDTH	74
3.6		
3.7.		
3.8		
3.9.	ANTENNA REQUIREMENT	93

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 3:</u> Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Dec. 14, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 3					
Test Item	Standard Section		Result	Test	
rest item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	/	Pass	Alicia Liu	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Seth Chen	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Alicia Liu	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Alicia Liu	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Alicia Liu	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Alicia Liu	

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Fanvil Link Technology Co.,LTD
Address:	Room 1517, Building G, Hualian City Panorama.27 Region, Bao'an District, Shenzhen, China
Manufacturer:	Fanvil Link Technology Co.,LTD
Address:	Room 1517, Building G, Hualian City Panorama.27 Region, Bao'an District, Shenzhen, China

2.2. General Description of EUT

Product Name:	Android IP Video Phone
Trade Mark:	Fanvil
Model/Type reference:	A308i
Listed Model(s):	J308, J308i, J308P, i508, A308, J308P-i
Model Different:	All these models are identical in the same PCB, layout and electrical circuit, The difference is A308i, J308P-i with gooseneck microphone, other model without gooseneck microphone, A308i, A308 with USB port, other model without USB port.
Power supply:	12Vdc/1A from AC/DC Adapter From POE Class 3
Adapter Model:	GQ24-120100-DU Input: 100-240V~ 50/60Hz 0.4A Output: 12Vdc/1A
Hardware version:	V1.0
Software version:	2.6.10.791
WIFI 802.11b/ g/ n(HT20) /	n(HT40)
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel number:	802.11b/g/n(HT20):11channels 802.11n(HT40): 7channels
Channel separation:	5MHz
Antenna type:	FPC Antenna
Antenna gain:	5.6dBi Max

EN

2.3. Accessory Equipment information

Equipment Information				
Name	Model	S/N	Manufacturer	
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
1	1	1	1	
Test Software Information				
Name	Versions	1	1	
SecureCRT.exe	8.7.1	1	1	

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	HT-MCS0
802.11n(HT40)	HT-MCS0

Test mode

For RF test items: The engineering test program was provided and enabled to make EUT continuous transmit. For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 16, 2023
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 16, 2023
10	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024
11	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023
12	High and low temperature test chamber	ESPEC	MT3035	1	Mar. 24, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	Test Software	Tonscend	JS1120-3	V3.3.38	/

Radiate	ed Emission (3m chamber 2	2)			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14 2024
5	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023
7	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023
8	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024
9	Test Software	FARA	EZ-EMC	FA-03A2	/

Radiate	d Emission (3m chamber 3	3)			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023
5	Mirowave Broadband	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : yz.cnca.cn

	Amplifier				
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conduc	ted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023
6	Test Software	R&S	EMC32	6.10.10	1

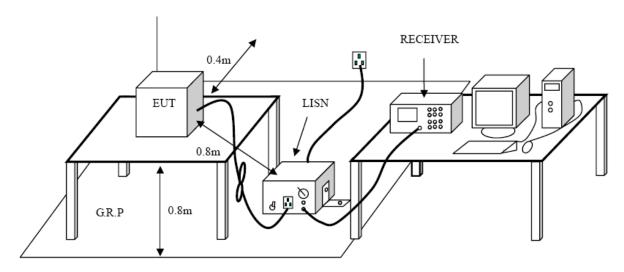
Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three year of the chamber

3. The cable loss has calculated in test result which connection between each test instruments.

3.TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

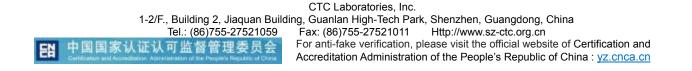
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

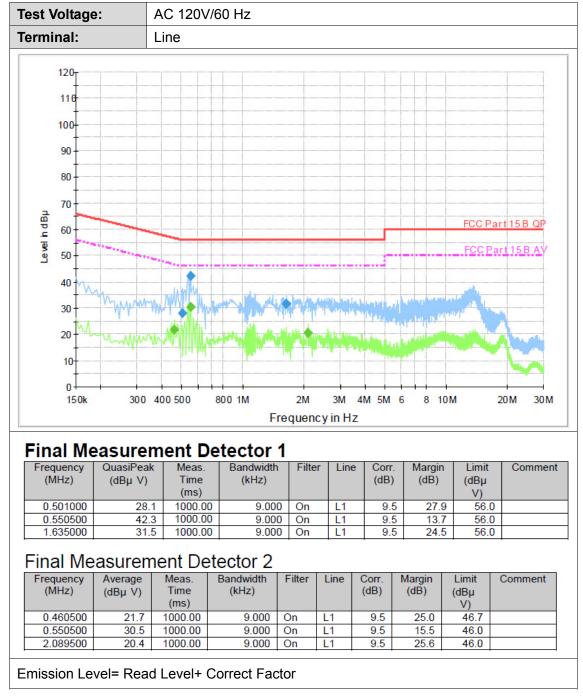

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

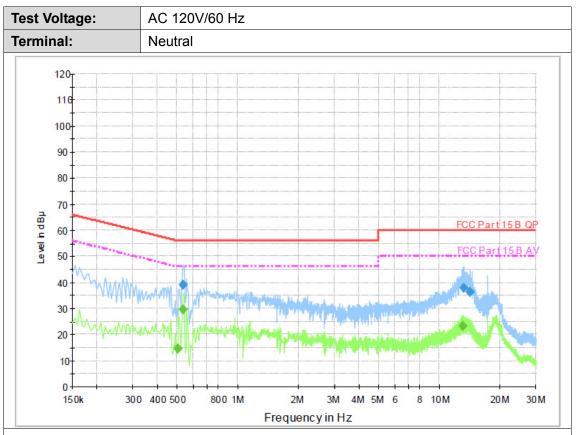
4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.




Test Mode:

Please refer to the clause 2.4.

Test Results

Final Measurement Detector 1

	Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
	(MHz)	(dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ V)	
	0.532500	39.3	1000.00	9.000	On	N	9.4	16.7	56.0	
[13.105500	38.1	1000.00	9.000	On	Ν	9.6	21.9	60.0	
	14.145000	36.3	1000.00	9.000	On	N	9.6	23.7	60.0	

Final Measurement Detector 2

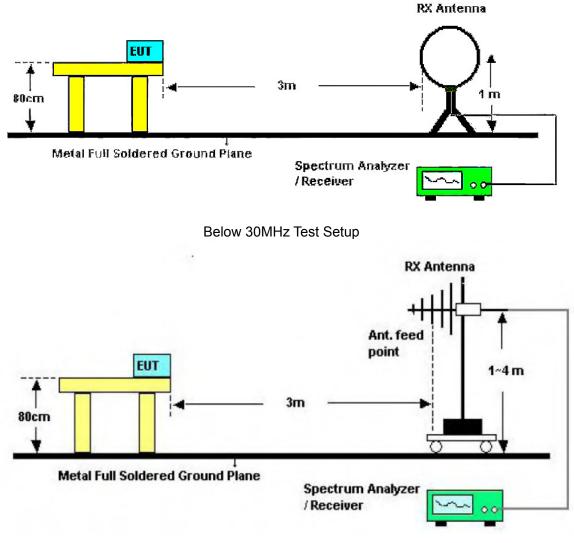
	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
t	0.505500	14.4	1000.00	9.000	On	N	9.4	31.6	46.0	
	0.532500	29.7	1000.00	9.000	On	Ν	9.4	16.3	46.0	
	12.975000	23.1	1000.00	9.000	On	Ν	9.6	26.9	50.0	

Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

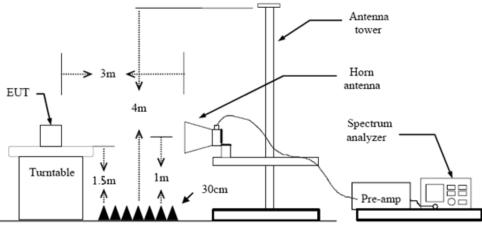
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9:


Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
Above i Grz	74.00	Peak

Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured

(2) Below 30 MHz:

9kHz – 150kHz, RBW=200Hz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz – 30MHz, RBW=9kHz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) From 1 GHz to 10^{th} harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW \geq 1/T Peak detector for Average value.

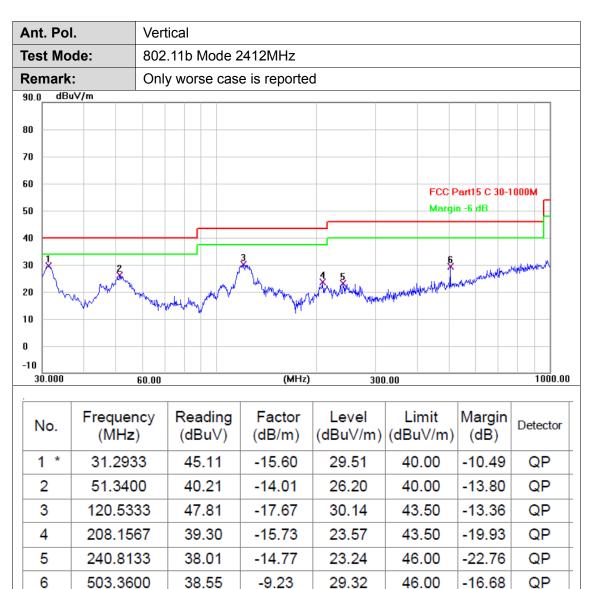
Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

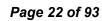
Ant. Pol.		Horizontal								
est Mo	ode:	802.11b Mode 2412MHz Only worse case is reported								
emark										
0.0 dB	3uV/m									
0										
o										
o							FCC P	Part15 C 30-1	000M	
0							Margi	n -6 dB		
o										
0						1. **** 5.		6 Mary Maryka	www.	
0	. Armerican				A	Au Merducht	mut ar and had been public on	Asper		
					. MP 4					
0	manyahaman	mysh	runghut	engelshertell	here bet and an and the	ideal, a				
	www.www.www.www.	whither	nunaphet	ringAleAgeArth	ha h	line in the second s				
0			nonaphet	elingeflefterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfetterfe		300				
		60.00	normaphed	engelsheidetti	(MHz)	300	.00		1000.0	
0		60.00 ncy	Reac (dBu	ding		300 Level (dBuV/m)	Limit	Margin (dB)		
0 30.000	Frequer	60.00 ncy	Read	ding u∨)	(MHz) Factor	Level	Limit	-		
0 30.000 No.	Frequer (MHz	60.00 ncy () 99	Read (dBu	ding uV) 89	(MHz) Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector	
0 30.000 No.	Frequer (MHz 206.53	60.00 ncy) 99 33	Read (dBu	ding u∨) 89 35	(мн ₂) Factor (dB/m) -15.78	Level (dBuV/m) 24.11	Limit (dBuV/m) 43.50	(dB) -19.39	Detector QP	
No.	Frequer (MHz 206.53 240.81	60.00 hcy)) 99 33 67	Read (dBu 39.1	ding u∨) 89 35 62	(MHz) Factor (dB/m) -15.78 -14.77	Level (dBuV/m) 24.11 27.58	Limit (dBuV/m) 43.50 46.00	(dB) -19.39 -18.42	Detector QP QP	
0 30.000 No. 1 2 3 *	Frequer (MHz 206.53 240.81 249.86	60.00 hcy) 99 33 67 33	Read (dBu 39. 42. 43.	ding uV) 89 35 62 51	(MHz) Factor (dB/m) -15.78 -14.77 -14.51	Level (dBuV/m) 24.11 27.58 29.11	Limit (dBuV/m) 43.50 46.00 46.00	(dB) -19.39 -18.42 -16.89	QP QP QP	

Adobe	1GHz
Adobe	1GHz

Ant. Pol.			Horizontal									
est Mo		TX 802.11b Mode 2412MHz No report for the emission which more than 10 dB below the prescribed limit.										
emark												
10.0 dB	uV/m											
00												
0						-						
0									FCC Part15	C - Above 1	G PK	
0												
0												
0									FCC Part15	C - Above 1	G AV	
	ş											
0	* *											
0												
0.0	0 3500.00 6	5000.00	8500	100 11	000.00 (N	vHz)	160	100.00	8500.00 2100	0.00 23500	.00 26000	
No.	Freque (MHz	-	1	ading 3uV)	Facto (dB/n			vel IV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
4 *		·			`	<u> </u>	`	· · ·	. ,			
1 *	4823.4			6.28	2.11			.39	54.00	-25.61	AVG	
2	4824.6	37	41	.54	2.11		43	.65	74.00	-30.35	peak	

2.Margin value = Level -Limit value

EN


Ant. Po	I.	Verti	cal								
est Mo	ode:	TX 8	TX 802.11b Mode 2412MHz								
Remark			No report for the emission which more than 10 dB below the prescribed limit.								
10.0 dB	uV/m										
00											
						FCC Part15 (C-Above 1	G PK			
0											
io						FCC Part15	C- Above 1	3 AV			
50											
10	ş										
30	1										
	×										
20											
	0 3500.00	6000.00	8500.00 1	1000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000.			
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1 *	4823.4	81	26.31	2.11	28.42	54.00	-25.58	AVG			
2	4824.1	61	41.41	2.11	43.52	74.00	-30.48	peak			
2	4824.1	61	41.41	2.11	43.52	74.00	-30.48	peak			

nt. Pol	l.	Hori	zontal					
est Mo	de:	TX 8	302.11b Moo	de 2437MH	z			
emark	:		eport for the cribed limit.		vhich more t	than 10 dB t	pelow the	;
10. <u>0</u> dB	uV/m		1					
00								
						FCC Part15	C - Above 1	G PK
0								
0						FCC Part15	C - Abovo 1	C AV
0								
	Š							
o								
	×							
0.0								
1000.00	0 3500.00 0	6000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4874.8	41	25.61	2.18	27.79	54.00	-26.21	AVG
1 *		42	41.02	2.18	43.20	74.00	-30.80	peak

Page 21 of 93

Remarks:

nt. Po	I.	Verti	ical					
est Mo	de:	TX 8	302.11b Mc	de 2437MH	z			
Remark	(:		eport for th cribed limit	e emission v	which more t	han 10 dB t	pelow the	;
10.0 dB	uV/m							
00								
0								
0						FCC Part15	C - Above 10	G PK
0								
0						FCC Part15	C - Above 10	G AV
io	1							
0								
0	Š							
20								
	0 3500.00 6	000.00	8500.00 1	11000.00 (MHz)	16000.00	8500.00 2100	0.00 23500	.00 26000.
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4873.2	81	40.45	2.18	42.63	74.00	-31.37	peak
	4873.8		26.16	2.18	28.34	54.00	-25.66	AVG

EN

	No rep		le 2462MHz emission v		than 10 dB t	pelow the	;
			emission v	vhich more	than 10 dB t	pelow the	;
					FCC Part15 (C-Above 10	3 PK
					FCC Part15 (- Above 10	AV
ş							
X							
							00 26000.
			Factor	Level	Limit	Margin	Detector
`	, 	· · ·					
							AVG
923.6	97	40.81	2.26	43.07	74.00	-30.93	peak
	1 0.00 60 requer (MHz 923.60	1 X	1 0.00 6000.00 8500.00 11 requency (MHz) Reading (dBuV) 923.606 25.68	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.00 6000.00 8500.00 11000.00 (MHz) 16000.00 1 requency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) 923.606 25.68 2.26 27.94	Image: Section of the section of th	1 1 1 1 0.00 6000.00 8500.00 11000.00 (MHz) 16000.00 18500.00 21000.00 23500. requency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 923.606 25.68 2.26 27.94 54.00 -26.06

Int. F	Pol.	Vert	ical					
est N	Mode:	TX	802.11b Mod	le 2462MHz	2			
lema	ark:		report for the scribed limit.	emission v	vhich more t	han 10 dB t	elow the	;
10.0	dBuV/m							
00								
30 -						FCC Part15	C - Above 1	G PK
70								
60 -						FCC Part15	C - Above 1	G AV
50		ξ.						
40								
30		*						
20								
	0.000 3500.00	6000.00	8500.00 11	000.00 (MHz)	16000.00 1	18500.00 2100	0.00 23500	.00 26000
No		luency 1Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	°. (N							Detector AVG

EN

nt. Pol	•	Horiz	zontal					
est Mo	de:	TX 8	02.11g Mo	de 2412MH	Ζ			
emark	:		eport for the cribed limit.	e emission v	vhich more t	han 10 dB t	pelow the	;
10.0 dBu	V/m							
0								
·								
·						FCC Part15	C - Ahove 1	G PK
)						FCC Part15	C - Above 1	GAV
·	1							
ı	×							
) <u> </u>	ž							
ı								
0.0 1000.000	3500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	D.OO 23500	.00 26000
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4823.9	89	41.15	2.11	43.26	74.00	-30.74	peak
2 *	4824.1	23	26.68	2.11	28.79	54.00	-25.21	AVG
2 *	4824.1	23	26.68	2.11	28.79	54.00	-25.21	A۷

nt. Po	Ι.	Verti	cal					
est Mo			02.11g Mod					
emark			eport for the cribed limit.	emission v	vhich more t	han 10 dB l	pelow the	;
10.0 dB	uV/m							
00								
10								
)								
)						FCC Part15	C - About 1	
, 🗖						FCC Partis	C-ADUVE I	
						FCC Part15	C - Above 1	G AV
)	1							
D	1 X							
o	ş							
o								
0.0								
	0 3500.00 0	000.00	8500.00 11	000.00 (MHz)	16000.00	8500.00 2100	0.00 23500	.00 26000
	Freque	ncy	Reading	Factor	Level	Limit	Margin	Data
No.	(MHz		(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	4823.0	75	40.34	2.10	42.44	74.00	-31.56	peak
2 *	4823.6	27	26.55	2.11	28.66	54.00	-25.34	AVG

nt. Pol	•	Horiz	zontal					
est Mo	de:	TX 8	302.11g Mo	de 2437MH:	Z			
emark			eport for the cribed limit.		which more	than 10 dB	below the	e
10.0 dBu	V/m	-						
00								
)								
)						FCC Part15	C - Above 1	G PK
)								
,						FCC Part15	C - Above 1	G AV
	ş							
)								
)	×							
) — —								
).0	3500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	0.00 2600
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		:)						Detector

nt. Po	Ι.	Vert	ical									
est Mo	de:	TX 8	302.11	g Moo	de 243	7MH	z					
Remark			eport cribec			sion v	which	more f	han 10	dB I	pelow th	ne
10. <u>0</u> dBu	uV/m	p										
00												
0												
0									FCCI		C - Above	10.04
0									FUUT	antis	C - ADUVE	IGPK
o												
0										Part15	<u>C - Above</u>	IG AV
D	Š											
0	×											
0												
0.0	0 3500.00 6	000.00	8500.	DO 11	000.00	(MHz)	160	00.00 1	8500.00	2100	0.00 2350	0.00 26000
No.	Frequer (MHz		Rea (dB		Fac (dB/			vel IV/m)	Lim (dBu\		Margir (dB)	Detector
1 *	4874.5	27	25.	70	2.1	8	27	.88	54.0	00	-26.12	2 AVG
	4874.5	60	40.	24	2.1	8	12	.42	74.0	חח	-31.58	peak

EN

EN

nt. Po			Horiz									
est M emar					-	le 24621			more t	han 10 dB	below the	•
					ed limit.	: CIIISSI	V 11	VIIICII	more i			5
10. <u>0</u> dE	BuV/m											
00												
,												
,												
										FCC Part15	C - Above 10	G PK
										FCC Part15	C - Above 1	G AV
		ł										
)		x										
0		ş										
D												
	00 3500	10 60	100.00	850	0.00 11	000.00 (N	(Hz)	160)00.00 1	8500.00 210	0.00 23500	.00 26000.
No.		equer (MHz)			ading BuV)	Facto (dB/n			evel uV/m)	Limit (dBuV/m	Margin) (dB)	Detector
1	49	923.62	20	4	0.14	2.26		42	2.40	74.00	-31.60	peak
2 *	49	923.8	19	2	5.67	2.26		27	. 93	54.00	-26.07	AVG
										·		-

nt. Po	I.	Verti	cal					
est Mo				de 2462MHz				
lemark	(:		eport for the cribed limit.	emission v	which more t	han 10 dB t	pelow the	!
10.0 dB	uV/m	-						
00								
0								
0						FCC Part15 (C-Above 10	3 PK
0								
o								
0						FCC Part15 (C-Above 10	<u>AV</u>
	ş							
0								
0	1×							
o								
0.0		000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500.	.00 26000
1000.00					-			
1000.00								
<u>1000.00</u> No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
)						Detector

Ant	. Pol		Horiz	zont	al							
Tes	t Mo	de:	TX 8	02.1	11n(HT2	0) Mode	24	12Mł	Ηz			
Ren	nark				rt for the ed limit.	emissic	n v	vhich	more t	han 10 dB	below the	;
110.0) dBu	V/m										
100												
90												
80										FCC Part15	C - Above 1	G PK
70												
60												
50										FCC Part15	C - Above 1	GAV
40		ş										
30		1										
20		^										
10.0												
10	00.000	3500.00 6	000.00	850	0.00 11	000.00 (M	Hz)	160	00.00 1	8500.00 2100	0.00 23500	.00 26000.0
1								1				
N	lo.	Frequer (MHz	-		ading BuV)	Facto (dB/m			evel uV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1 *	4823.0	58	2	6.47	2.10		28	.57	54.00	-25.43	AVG
	2	4824.6	58	4	1.17	2.11		43	.28	74.00	-30.72	peak

Page 31 of 93

Remarks:

nt. Pol	-	Verti	cal					
est Mo	de:	TX 8	02.11n(HT2	20) Mode 24	12MHz			
emark	:		eport for the cribed limit.	e emission v	vhich more	than 10 dB I	below the	9
10.0 dBu	V/m							
00								
						FCC Part15	C - Above 1	G PK
,								
						FCC Part15	C - Above 1	GAV
	1×							
)	Š							
ı								
).0								
1000.000	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	0.00 26000
No.	Frequer	-	Reading	Factor	Level	Limit	Margin	Detector
	(MHz	·	(dBuV)	(dB/m)	. ,	(dBuV/m)	(dB)	
4	4824.0		40.73	2.11	42.84	74.00	-31.16	peak
1 2 *		57	26.24	2.11	28.35	54.00	-25.65	AVG

Page	33	of	93
------	----	----	----

nt. Po	ol.	Horiz	ontal										
est Mo		TX 802.11n(HT20) Mode 2437MHz											
Remarl	K :	No report for the emission which more than 10 dB below the prescribed limit.											
10.0 dB	uV/m												
00													
o													
0													
						FCC Part15	C - Above 1	G PK					
0													
0													
						FCC Part15	C - Above 1	GAV					
50	ş												
10	X												
	1												
20													
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 2600					
	Frequer		Reading	Factor	ا مربعا	Limit	Margin						
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto					
No. 1 *)						Detector AVG					

EN

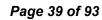
Ant	t. Pol	•	Verti	cal										
Tes	st Mo	de:				20) Mod								
Rer	mark	:			t for the ed limit.	e emissi	on v	vhich	more t	han 1() dB l	pelow th	ne	
10.0) dBu'	V/m												7
00														
0														
0										FCC	Part15	C - Above	1G PK	-
0														
0														
										FCC F	Part15	C - Above	1G AV	
0		1				-								
0		×					-							-
0		ş					_							
0														
0.0														1
		3500.00 6	000.00	850	0.00 11	000.00 (N	(Hz)	160)00.00 1	8500.00	2100).00 235	00.00 26	 5000.0
1		Freque	201	Po	ading	Fact	or		evel	Lin	,it	Margi	n	
Ν	۱o.	(MHz			BuV)	(dB/n			uV/m)			(dB)	Dete	ctor
	1	4874.0	29	4	1.04	2.18	3	43	3.22	74.	00	-30.78	3 pea	ak
2	2 *	4874.9	05	2	6.04	2.18	3	28	3.22	54.	00	-25.78	B AV	'G

EN

nt. Po	ol.	Horiz	ontal									
est M	ode:	TX 8	02.11n(l	HT2	0) Mode	e 24	62MI	Ηz				
emar	k:		eport for cribed line		emissio	on w	/hich	more t	han 10) dB b	elow the	
10. <u>0</u> dE	3uV/m											
00												
o												
o									500		AL	
0									FUU	Partis C	- Above 10	a PK
									FCC	Part15 C	- Above 10	AV 6
0	Š											
o	×					-						
o	1											
o												
0.0												
1000.0	00 3500.00 8	000.00	8500.00	11	000.00 (M	IHz)	160	100.00	8500.00	21000	.00 23500.	00 26000.
No.	Freque (MHz		Readi (dBu\	-	Facto (dB/n			evel uV/m)	Lir (dBu		Margin (dB)	Detector
1 *	4923.9	29	25.5	7	2.26	;	27	7.83	54.	00	-26.17	AVG
2	4924.2	35	40.9	7	2.26	;	43	3.23	74.	00	-30.77	peak

EN

No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak	Ant. Po	ol.	Vert	ical									
No. Frequency (MHz) Reading (dBuV) Factor (dBuV) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detect	est M	ode:	TX 8	802. ⁻	11n(HT2	20) Mod	e 24	62M	Hz				
International Internat						e emissio	on v	vhich	more t	han 10 (dB k	pelow the	;
90 FCC Part15 C - Above 1G PK 70 FCC Part15 C - Above 1G AY 60 FCC Part15 C - Above 1G AY 50 FCC Part15	110.0 dl	BuV/m											
B0 FCC Part15 C - Above 1G PK 70 FCC Part15 C - Above 1G AY 50 FCC Part15 C - Above 1	100						_						
30 FCC Part15 C - Above 1G PK 70 FCC Part15 C - Above 1G AY 50 FCC Part15 C - Above 1	ao 📃												
No. Frequency (MHz) Reading (dBuV) Factor (dBuV) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak													
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak										FCC Pa	rt15 (C - Above 1	G PK
Image: No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak	0						-						
0 1	0									FCC Pa	rt15 (C - Above 1	G AV
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak	0												
0 0	0	×					-						
0 0	0	z											
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak	20	^											
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak													
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak	1000.0	00 3500.00	6000.00	85(0.00 11	000.00 (N	(Hz)	16	000.00 1	8500.00	21000).00 23500	.00 26000.
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak													
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detect 1 4923.471 39.74 2.26 42.00 74.00 -32.00 peak													
	No.		-	1	-								Detector
2 * 4923.597 25.40 2.26 27.66 54.00 -26.34 AVG	1	4923.4	71	3	9.74	2.26		42	2.00	74.0	0	-32.00	peak
	2 *	4923.5	97	2	5.40	2.26		27	7.66	54.0)	-26.34	AVG
	Remarl		• •	_				_				fier Facto	


nt. Po	I.	Horiz	zontal									
est Mo	ode:	TX 8	02.11r	h(HT4	0) Mode	e 24	122MI	Ηz				
emark	(:		eport f cribed		e emissio	on v	vhich	more t	han 10 d	dB k	pelow the	;
0.0 dB	uV/m											
0												
									FCC Pa	rt15 (C-Above 10	G PK
									500 D-		2 41 14	
									FUC Pa		C-Above 10	
	1×											
	ş											
						-						
1000.00	0 3500.00 6	000.00	8500.0	0 11	000.00 (M	IHz)	160	00.00 1	8500.00 2	1000	.00 23500.	.00 26000.
No.	Freque (MHz	-	Read (dBu	-	Facto (dB/m			vel IV/m)	Limit (dBuV/		Margin (dB)	Detector
1	4843.1	·	41.	· ·	2.12	<u> </u>	`	.34	74.00		-30.66	peak
2 *	4844.5		25.		2.13			.96	54.00		-26.04	AVG
					1						1	

Remarks:

de:		•	40) Mode 24	422MHz								
	No report for the emission which more than 10 dB below the prescribed limit.											
√/m												
					FCC Part15	C - Above 1	G PK					
					ECC DestIE	C. About 1						
Š												
1												
×												
3500.00 6	000.00 8	500.00 11	000.00 (MHz)	16000.00	8500.00 2100	0.00 23500	.00 26000.					
			Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector					
4844.0	73	26.11	2.13	28.24	54.00	-25.76	AVG					
4844.1	77	40.41	2.13	42.54	74.00	-31.46	peak					
	3500.00 6 Frequer (MHz 4844.0	7/m //m k k 1 3500.00 6000.00 8 Frequency (MHz) 4844.073	//m //m k //m k //m 3500.00 6000.00 8500.00 11 Frequency (MHz) Reading (dBuV) 4844.073 26.11	7/m 1 1 1 1 1 3500.00 6000.00 8500.00 11000.00 1 1	//m //m //m /	Image: Contract of the second seco	7/m Image: Constraint of the second seco					

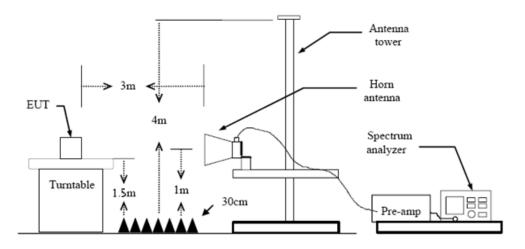
nt. Po	l.	Horiz	zontal										
est Mo	ode:	TX 8	02.11n(HT4	0) Mode 24	37MHz								
lemark	(:	No report for the emission which more than 10 dB below the prescribed limit.											
10.0 dB	luV/m												
00													
0													
o						FCC Part15 C	- Above 1G	i PK					
0													
o 📃													
0						FCC Part15 C	- Above 1G						
	Ę												
0		_											
0	* *												
:0													
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.0	0 26000.0					
	Fromu		Deading	Factor	Level	Limit	Marrin						
No.	Frequer (MHz		Reading (dBuV)	(dB/m)		(dBuV/m)	Margin (dB)	Detector					
1 *	4974.3	48	26.26	2.33	28.59	54.00	-25.41	AVG					
2	4974.8	05	40.27	2.33	42.60	74.00	-31.40	peak					

nt. Po	I	Verti	cal					
st Mo	de:		02.11n(HT4	,				
emark			eport for the cribed limit.	emission w	hich more t	han 10 dB t	pelow the	9
0.0 dB	uV/m							
						500 D	<u> </u>	
						FCC Part15	C-Above I	GPK
						FCC Part15	C - Above 1	G AV
×								
	2							
	×							
.0								
	0 3500.00 6	000.00	8500.00 110	000.00 (MHz)	16000.00 1	8500.00 2100	0.00 23500	.00 2600
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	4874.0	33	40.89	2.18	43.07	74.00	-30.93	peak
2 *	4874.7	'96	26.05	2.18	28.23	54.00	-25.77	AVG
						·	-	

nt. Po	I.	Horiz	zontal									
est Mo	de:	TX 8	302.11n(HT	40) Mode 24	452MHz							
emark		No report for the emission which more than 10 dB below the prescribed limit.										
10.0 dB	uV/m											
00												
0												
0						FCC Part15	C - Above 1	G PK				
0						reerans	C ADOVE I					
o						ECO D-41E	0.411	<u> </u>				
0						FCC Part15	C - ADOVE I	GAV				
o	Š											
o												
0												
0.0	0 3500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000				
No.	Freque (MHz		Reading (dBu∀)	(dB/m)	· · ·	Limit (dBuV/m)	Margin (dB)	Detector				
1 *	4904.0	56	25.67	2.22	27.89	54.00	-26.11	AVG				
2	4904.3	65	40.58	2.22	42.80	74.00	-31.20	peak				

2.Margin value = Level -Limit value

nt. Po	ol.	Vertio	cal					
est Mo	ode:		•	40) Mode 24				
Remarl	K :		eport for the cribed limit.	e emission v	vhich more t	han 10 dB b	pelow the	!
10.0 dB	uV/m		Î					
00								
•								
						FCC Part15	C - Above 1	G PK
·						FCC Part15	C - Abovo 1	
							C-ADOVE I	
.	Š							
)	×							
)								
).0								
1000.00	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4903.9	14	25.89	2.22	28.11	54.00	-25.89	AVG
2	4904.5	92	40.83	2.22	43.05	74.00	-30.95	peak


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:
 - RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

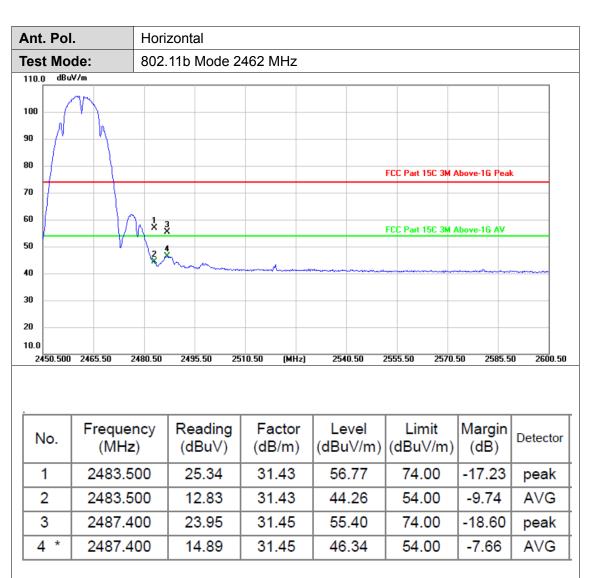
Test Mode

Please refer to the clause 2.4.

Test Results

For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : yz.cnca.cn


۱nt.	Pol.			H	loriz	onta	al										
est	Mod	le:		8	02.1	11b	Mode	e 24	112N	lHz							
110.0	dBuV	//m															
100															N		
90															/ v	V	\vdash
BO													FCC P	art 15C 3M	Above-1G	Peak	++
70																	
60													2ғс 8 р	art 15C 3M	Above-1G	AV	+
50													1 4	\mathcal{N}			$\neg \forall$
40												⁰	Ň	/			
30																	
20																	
10.0 23	05.600	2317.0	50	2329	3.60	234	1.60	23	53.60	(MHz)	237	7.60	2389.6	0 2401	.60 24	13.60	2425.
N	o.		eque MH		У		adin BuV			ictor 3/m)		vel IV/m)	-	imit uV/m)	Margi (dB)		etector
1	*	23	86.	360)	1	3.61		31	.06	44	.67	5	4.00	-9.33	3	AVG
2	2	23	86.	600)	2	3.28		31	.07	54	.35	74	4.00	-19.6	5	peak
3	3	23	90.	000)	2	2.85		31	.08	53	.93	74	4.00	-20.0	7	peak
	1	23	90.	000		1	2.38		31	.08	13	.46	5	4.00	-10.5	Λ	AVG

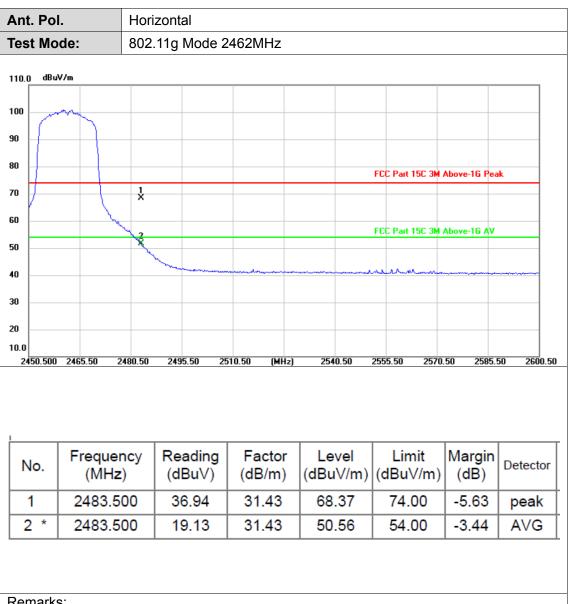
Remarks:

Ant. Po	ol.	Vert	ical					
Fest M	ode:	802	.11b Mode 2	412MHz				
110.0 dl	Bu∀/m							
100								
90							J V	
80						FCC Part 15C 3M /	bove-1G Pea	k l
70								
60						FCC Part 15C 3M	Above-16 AV	-+
50						×		
40	·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				3~~~		V
30								
20								
10.0 2305.60	00 2317.60 2	2329.60	2341.60 23	353.60 (MHz)	2377.60	2389.60 2401.	60 2413.6	0 2425.6
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	21.21	31.08	52.29	74.00	-21.71	peak
2 *	2390.0		7.96	31.08	39.04	54.00	-14.96	AVG
	or (dB/m) = /		na Factor (c -Limit value	lB/m)+Cabl	e Factor (dE	3)-Pre-ampli	fier Facto	or

Page 46 of 93

Remarks:

nt. Po	l.	Vert	cal									
est Mo	ode:	802.	11b Mc	ode 2	462 MH	z						
10.0 dB	uV/m											
100												
90	M											
30	h								FCC Part	15C 3M /	Above-1G Pe	ak
70												
50									FCC Part	15C 3M /	Above-1G AV	
50			X									
10		Yh	2 X									deferrance and
io												
20												
0.0 2450.80	0 2462.80	2474.80	2486.80] 24	198.80 (N	(Hz)	252	2.80	2534.80	2546.	80 2558.	80 2570.8
No.	Freque (MH:	-	Read (dBu	-	Facto (dB/m			vel V/m)	Lin (dBu'		Margin (dB)	Detector
1	2483.5	500	17.5	55	31.43	3	48	.98	74.	00	-25.02	peak
2 *	2483.5	500	8.1	5	31.43	3	39	.58	54.	00	-14.42	AVG
Remark	S'											


nt. Po	I.	Hori	zontal					
est Mo		802	11g Mode	2412MHz				
0.0 dBu	V/m							
o								~
						FCC Part 15C 3M	Above-1G Pea	ak
						1 /		
						FCC Part 75C 3M	Above-1G AV	
						2		
.0								
.0 2305.600	2317.60	2329.60	2341.60	2353.60 (MHz)	2377.60	2389.60 2401.	.60 2413.	60 2425.
No.		luency 1Hz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	239	0.000	37.89	31.08	68.97	74.00	-5.03	peak
2 *	239	0.000	18.65	31.08	49.73	54.00	-4.27	AVG

Remarks:

nt. Po	ol.		Verti	cal									
est Mo	ode:		802.	11g	Mode 2	412MHz							
10.0 dB	uV/m												
00													
0												m	
D										FCC Part	15C 3M	Above-1G Pe	ak
)													
0										1 X FCC Part	15C 3)	Above-1G AV	-
D										2			
'							_			~~~			
)													
)).0													
2305.60	0 2317.	60 2	2329.60	234	1.60 23	353.60 (M	Hz)	237	7.60	2389.60	2401	.60 2413.	60 2425
No.	(equer (MHz	:)	(d	ading BuV)	Facto (dB/m)	`	V/m)	Lin (dBu)	√/m)	· · ·	Detecto
1	23	90.0	00	28	8.56	31.08		59.	64	74.	00	-14.36	peak
2 *	23	90.0	00	1	0.79	31.08		41.	87	54.	00	-12.13	AVG

Remarks:

EN

Ant	t. Pol.		Ver	lical					
Гes	st Moc	le:	802	.11g Mode 2	2462MHz				
10.0) dBuV/	'n							
00									
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m							
0							FCC Part 15C 3M A	hove.16 Peal	k
0									<u> </u>
0	}		+	1			FCC Part 15C 3M A	bove-16 AV	
0				~					
0				2					an a
0									
0									
0.0	50.800	2462.80	2474.80	2486.80 24	98.80 (MHz)	2522.80 2	2534.80 2546.8	80 2558.8	0 2570.8
		Fred	uency	Reading	Factor	Level	Limit	Margin	
1	No.		IHz)	(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
	1	248	3.500	22.26	31.43	53.69	74.00	-20.31	peak
	2 *	248	3.500	9.78	31.43	41.21	54.00	-12.79	AVG

Remarks:

EN

Ant. Po	ol.	Hori	zontal					
Fest M	ode:	802	.11n(HT20)	Mode 2412	MHz			
10.0 dB	uV/m							
00								
o 📃								
o						FCC Part 15C 3M	Above-1G Pea	k
0								
o						FCC Part 15C/3M /	Above-1G AV	\rightarrow
0						3		
0								
0								
0.0 2305.00	0 2317.00	2329.00	2341.00 23	53.00 (MHz)	2377.00	2389.00 2401.	00 2413.0	0 2425.0
No.	Freque (MH		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	2390.0		28.15	31.08	59.23	74.00	-14.77	peak
2 *	2390.0		14.46	31.08	45.54	54.00	-8.46	AVG
					-			

Page 52 of 93

nt. Po	Ι.	Verti	cal					
est Mo	de:	802.	11n(HT20) I	Mode 2412	ЛНz			
0.0 dBu	V/m		,					
0								
						FCC Part 15C 3M	Above-1G Pea	ik
						FCC Part 15C 3)/ /	Above-1G AV	
						×		7
						3		
.0								
2305.600	2317.60	2329.60	2341.60 23	53.60 (MHz)	2377.60	2389.60 2401.	60 2413.	60 2425.
No.	Frequ (Mł	Hz)	Reading (dBu∀)	Factor (dB/m)	· · ·	Limit (dBuV/m)	. ,	Detector
1	2390		21.12	31.08	52.20	74.00	-21.80	peak
2 *	2390	.000	8.99	31.08	40.07	54.00	-13.93	AVG

nt. Po	ol.	Horiz	zontal					
est Mo	ode:	802.	11n(HT20)	Mode 2462I	MHz			
0.0 dBu	JV/m							
10 ~	~							
						FCC Part 15C 3M /	Above-1G Pea	ık
		1 X						
• [hu,				FCC Part 15C 3M /	About 1C AV	
		X					ADOVE-TO AV	
					••••••			m
ı								
,								
2450.500) 2465.50 2	480.50	2495.50 25	i10.50 (MHz)	2540.50	2555.50 2570.	50 2585.	50 2600.5
No.	Freque		Reading	Factor	Level	Limit	Margin	Detector
MO. (MF		<i>.</i>	(dBuV)	(dB/m)	(dBuV/m)		(dB)	
	2483.5	00	36.30	31.43	67.73 50.12	74.00 54.00	-6.27 -3.88	peak AVG
1 2 *	2483.5		18.69	31.43				

Page 54 of 93

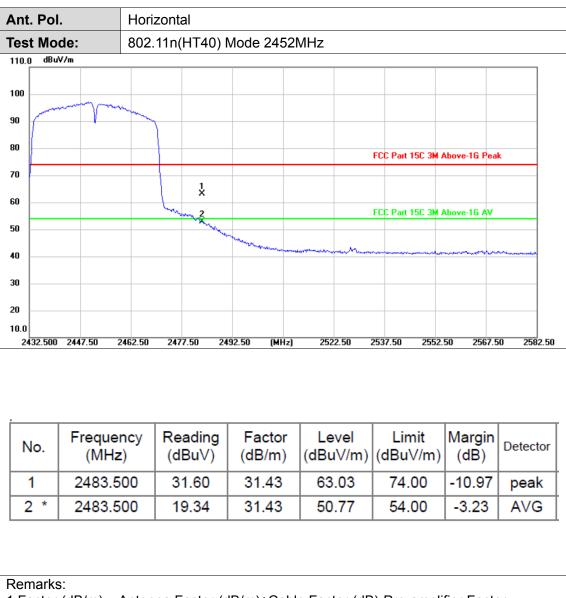
Remarks:

	nt. Pol. Vertical							
Test Mode: 802.11n(HT20) Mode 2462MHz								
0.0 dBuV.	/m							
00								
	m							
\square						FCC Part 15C 3M A	Above-1G Pea	k
						FCC Part 15C 3M A	Above-1G AV	
		\mathbf{i}	1 2					
			×			****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-Around Ma
.0								
2449.600	2461.60 2	473.60	2485.60 24	97.60 (MHz)	2521.60	2533.60 2545.	60 2557.£	<u>60 2569</u> .
No.	Freque (MHz	•	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	2483.5	00	18.50	31.43	49.93	74.00	-24.07	peak
2 *	2483.5	00	8.82	31.43	40.25	54.00	-13.75	AVG

Page 55 of 93

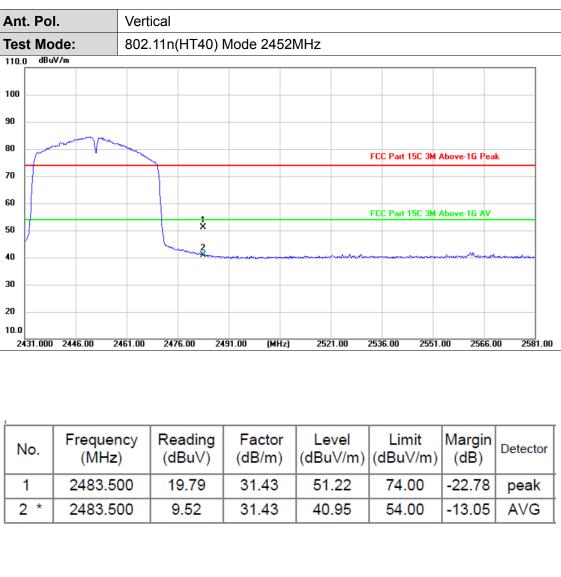
Remarks:

nt. Pol		Horiz	zontal					
est Mo	de:	802.	11n(HT40) I	Node 2422	ИНz			
).0 dBu\	//m		(
)							more	
							V	
						FCC Part 15C 3M A	Above-1G Pea	k
					1 X	FCC Part 15C 3M A	bove-1G AV	
					2			
			and the second					
_								
0 2291.500	2306.50 2	321.50	2336.50 23	51.50 (MHz)	2381.50 2	2396.50 2411.	50 2426.5	0 2441.5
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	000	26.17	31.08	57.25	74.00	-16.75	peak
2 *	2390.0	000	16.58	31.08	47.66	54.00	-6.34	AVG
						-		



nt. Po	I.		Verti	cal										
est Mo	ode:		802.	11n(HT40)	Mode 24	221	ЛНz						
10.0 dB	ıV/m													1
00														
o														
o										FCC F	art 15C 3M	Above-1G Pe	ak	
0							-							
0								1	FCC	Part 15C 3M	Above-1G AV			
0														
0	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ay Mada ya manaka ma	•••••		and and a second second second	and the second second	-	مىلى <u>مەرەبىلى مەرە</u> ر					9	
o														
0														
0.0 2295.100	0 2310.1	10 23	25.10	234	0.10 23	355.10 (M	Hz)	238	5.10	2400.1	10 2415	.10 2430.	.10 244	5.1
No.		equen (MHz)			ading BuV)	Facto (dB/m			vel V/m)		_imit 3uV/m)	Margin (dB)	Detect	or
1	23	390.00	0	2	2.67	31.08	5	53	.75	7	4.00	-20.25	peak	<
2 *	23	390.00)0	1	0.56	31.08	;	41	.64	5	4.00	-12.36	AVG	;

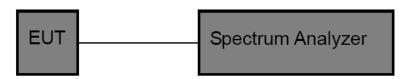
Page 57 of 93


Remarks:

Page 58 of 93

Page 59 of 93

Remarks:



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

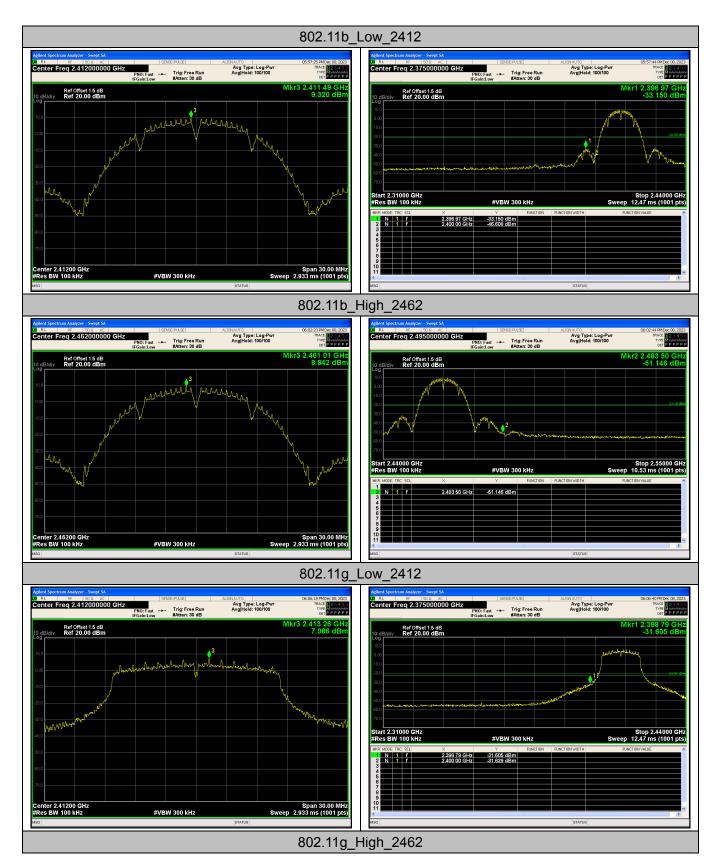
Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

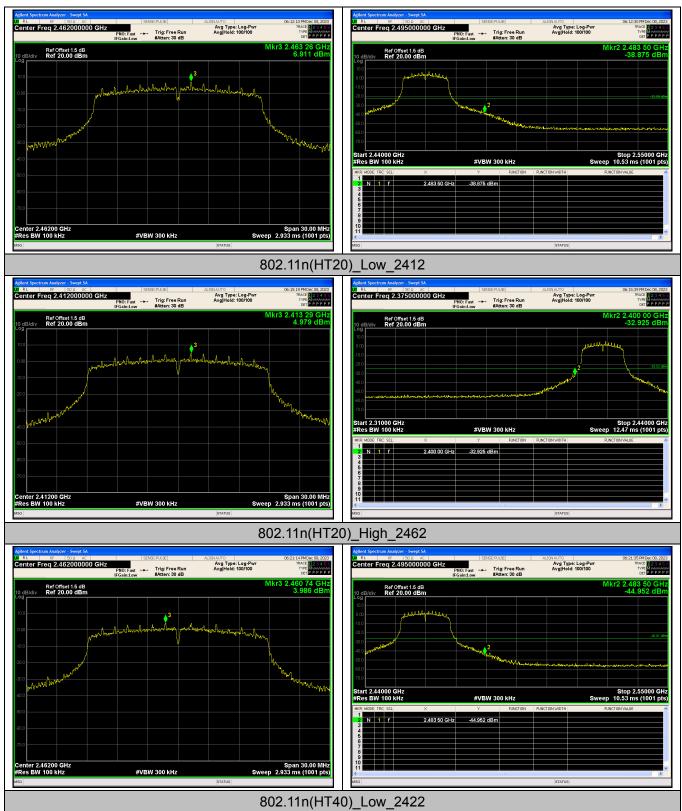
Test Mode

Please refer to the clause 2.4.

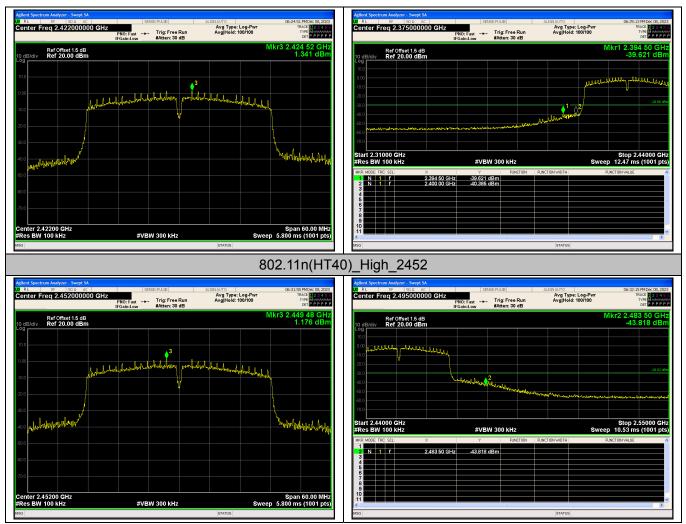

Test Results

(1) Band edge Conducted Test

Test Mode	Test Frequency	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
802.11b	2412	9.320	-33.150	≤-20.68	PASS
002.110	2462	8.842	-51.146	≤-21.16	PASS
902 11 a	2412	7.086	-31.606	≤-22.91	PASS
802.11g	2462	6.911	-38.876	≤-23.09	PASS
902 11p(UT20)	2412	4.979	-32.926	≤-25.02	PASS
802.11n(HT20)	2462	3.986	-44.962	≤-26.01	PASS
902 11p(UT40)	2422	1.341	-39.621	≤-28.66	PASS
802.11n(HT40)	2452	1.176	-43.818	≤-28.82	PASS

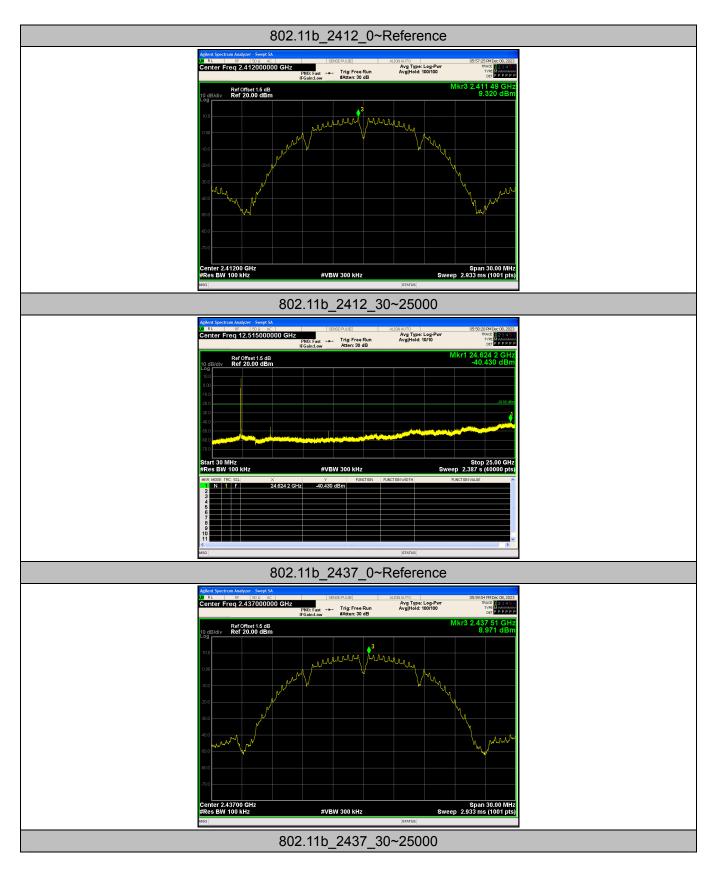


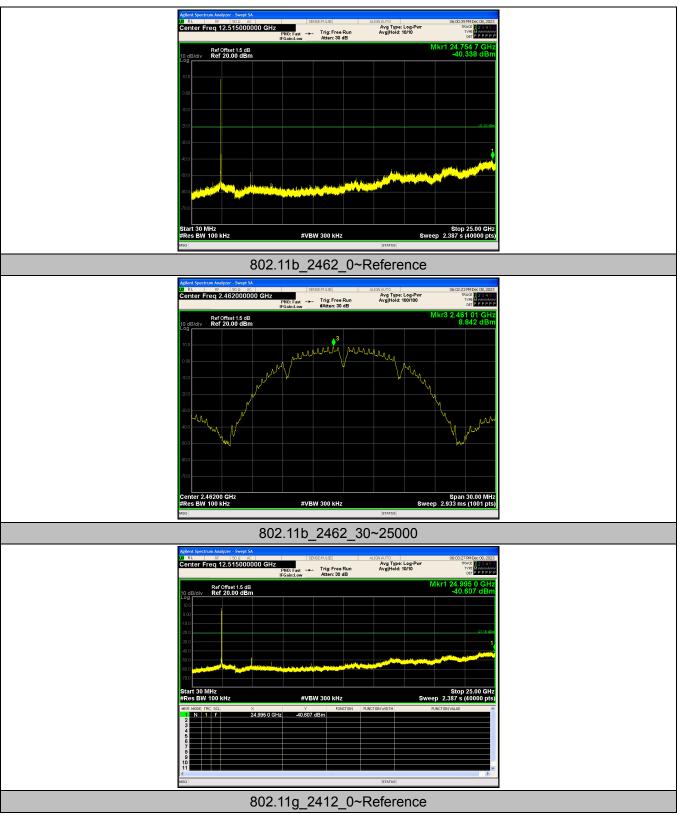
Page 62 of 93



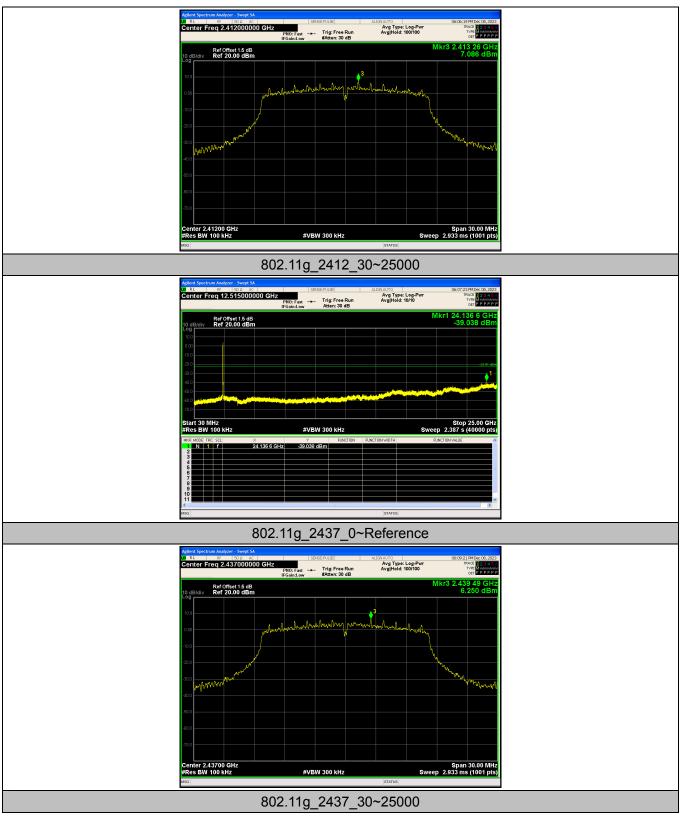
Page 63 of 93

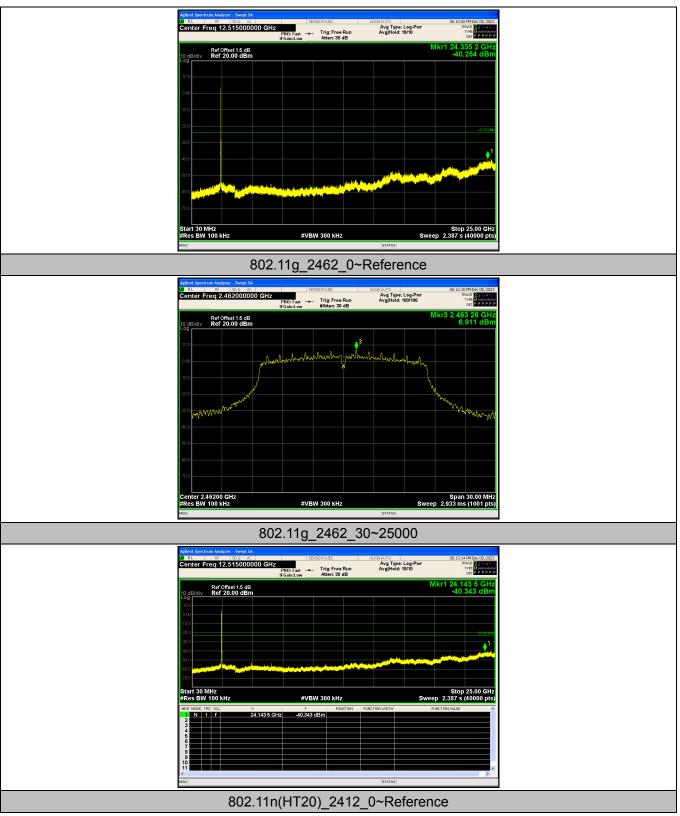
Page 64 of 93

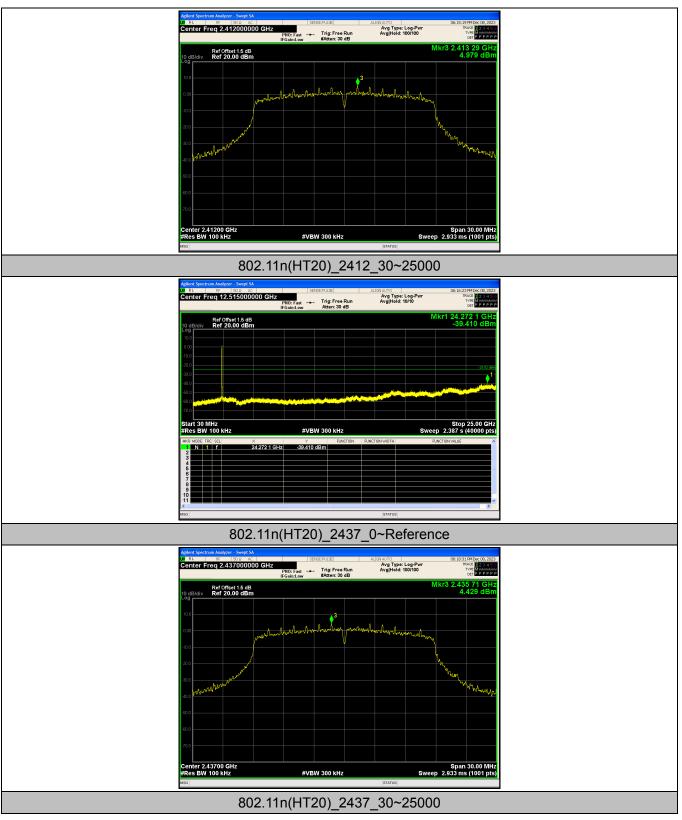


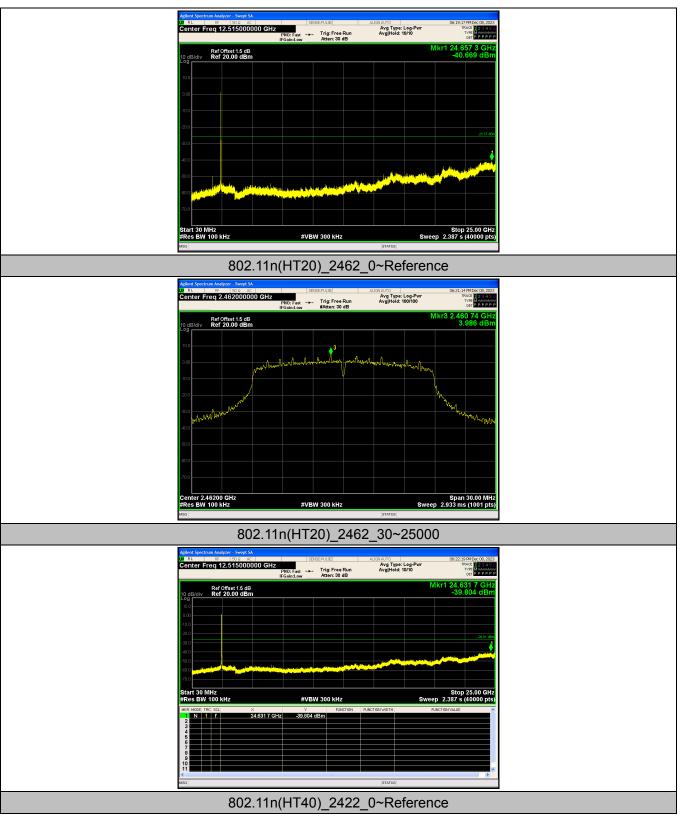

(2) Conducted Spurious Emissions Test

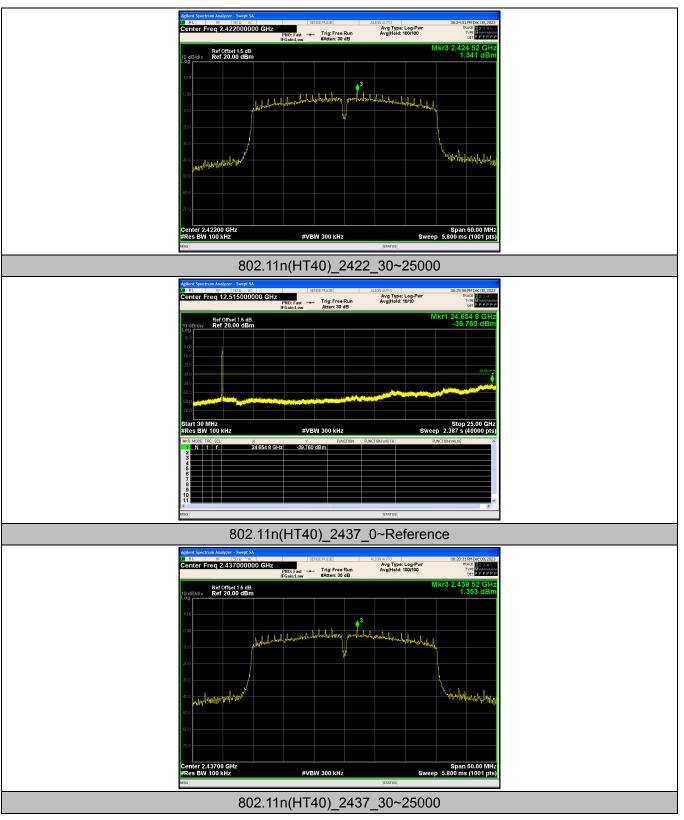
Test Mode	Frequency[MHz]	Freq Range [Mhz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
	2412	Reference	9.320			PASS
	2412	30~25000	9.320	-40.430	≤-20.68	PASS
802.11b	2437	Reference	8.971			PASS
002.110	2437	30~25000	8.971	-40.338	≤-20.07	PASS
	2462	Reference	8.842			PASS
	2402	30~25000	8.842	-40.607	≤-21.16	PASS
	2412	Reference	7.086			PASS
	2412	30~25000	7.086	-39.038	≤-22.91	PASS
902 11 a	2437	Reference	6.250			PASS
802.11g	2437	30~25000	6.250	-40.254	≤-23.75	PASS
	2462	Reference	6.911			PASS
	2402	30~25000	6.911	-40.343	≤-23.09	PASS
	2412	Reference	4.979			PASS
		30~25000	4.979	-39.410	≤-25.02	PASS
802 11 p/UT20	0407	Reference	4.429			PASS
802.11n(HT20)	2437	30~25000	4.429	-40.669	≤-25.57	PASS
	2462	Reference	3.986			PASS
	2402	30~25000	3.986	-39.804	≤-26.01	PASS
	2422	Reference	1.341			PASS
	2422	30~25000	1.341	-39.760	≤-28.66	PASS
000 11p/UT 10)	2427	Reference	1.353			PASS
802.11n(HT40)	2437	30~25000	1.353	-40.404	≤28.65	PASS
	2452	Reference	1.176			PASS
	2452	30~25000	1.176	-39.983	≤-28.82	PASS

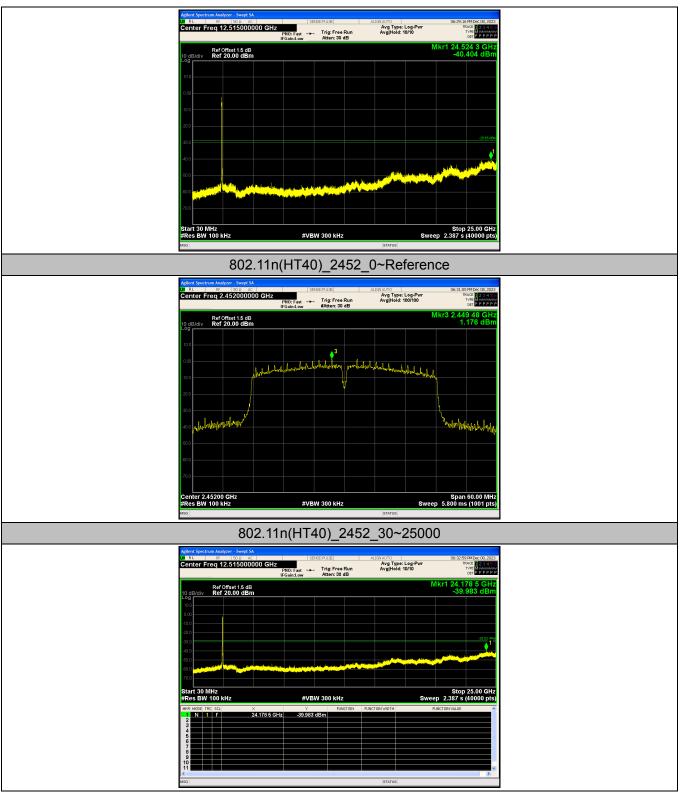


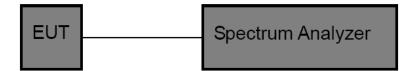











3.5. DTS Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

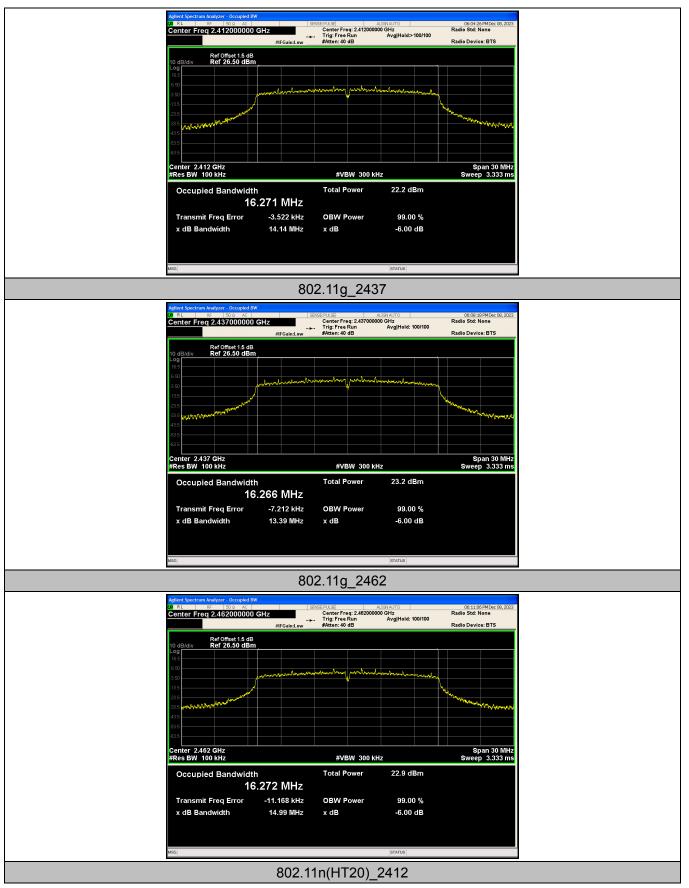
- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \ge 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

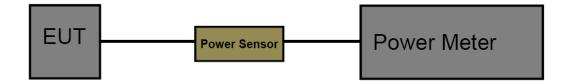
Test Results


Test Mode	Channel	DTS BW [MHz] Limit [MHz]		Verdict
	2412	9.092	>=0.5	PASS
802.11b	2437	9.551	>=0.5	PASS
	2462	9.096	>=0.5	PASS
	2412	14.14	>=0.5	PASS
802.11g	2437	13.39	>=0.5	PASS
	2462	14.99	>=0.5	PASS
802.11n(HT20)	2412	15.00	>=0.5	PASS
	2437	15.38	>=0.5	PASS
	2462	15.11	>=0.5	PASS
	2422	35.02	>=0.5	PASS
802.11n(HT40)	2437	33.76	>=0.5	PASS
	2452	35.04	>=0.5	PASS

Page 77 of 93

Page 78 of 93

Page 79 of 93


3.6. Maximum Conducted Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband RF power meter.
- 2. Power measurements were performed only when the EUT was transmitting at its AVG power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

<u>Test Mode</u>

Please refer to the clause 2.4.

Test Result

Test Mode	Channel	Result Avg [dBm] Limit [dBm]		Verdict
	2412	17.939	<=30	PASS
802.11b	2437	17.858	<=30	PASS
	2462	17.595	<=30	PASS
	2412	17.015	<=30	PASS
802.11g	2437	17.041	<=30	PASS
	2462	16.622	<=30	PASS
802.11n(HT20)	2412	14.932	<=30	PASS
	2437	14.908	<=30	PASS
	2462	14.692	<=30	PASS
802.11n(HT40)	2422	13.887	<=30	PASS
	2437	13.871	<=30	PASS
	2452	13.745	<=30	PASS

Note: Test results increased RF cable loss by 1.5dB and Duty Cycle Factor.

3.7. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item Limit		Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz

Detector: PK

Sweep time: Auto

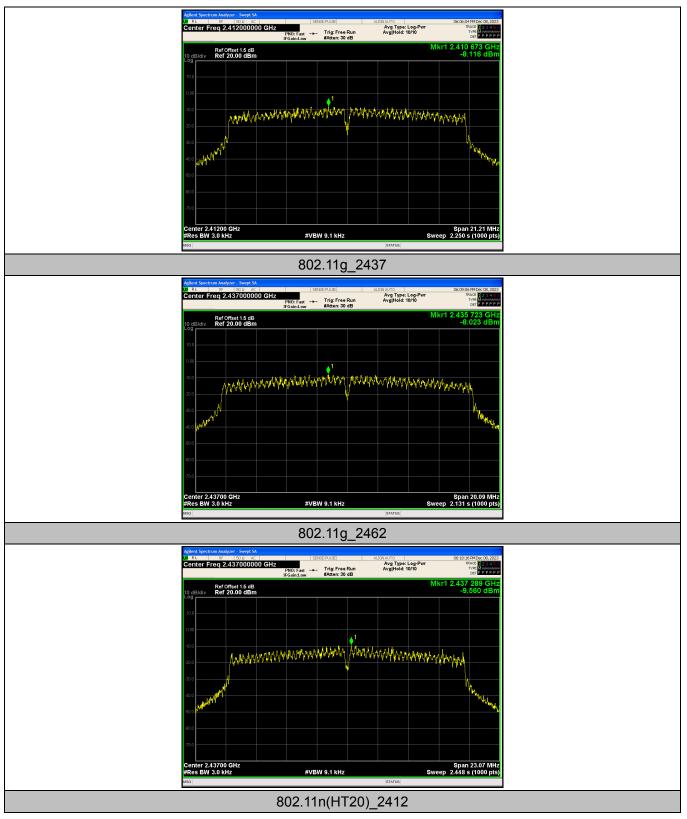
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

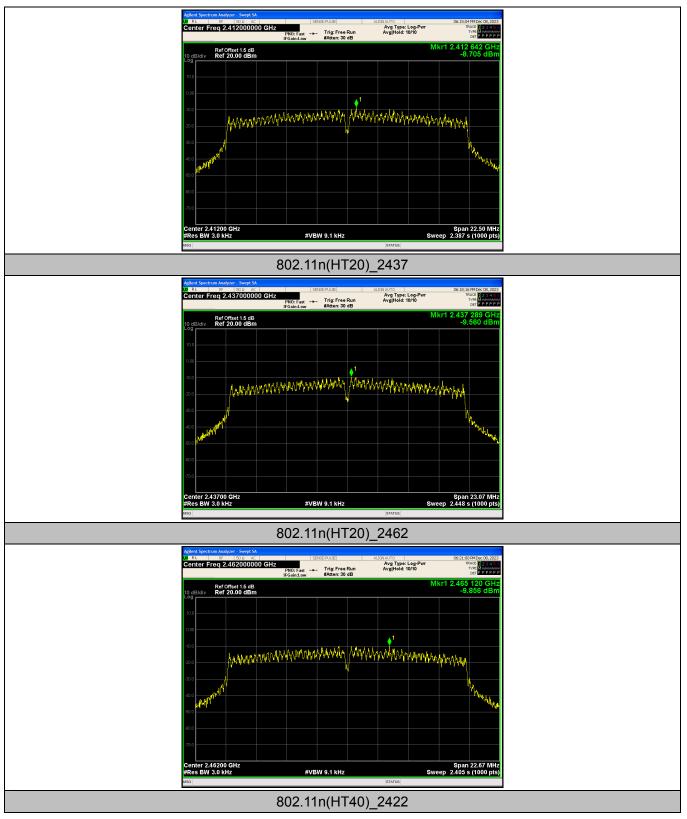
Please refer to the clause 2.4.

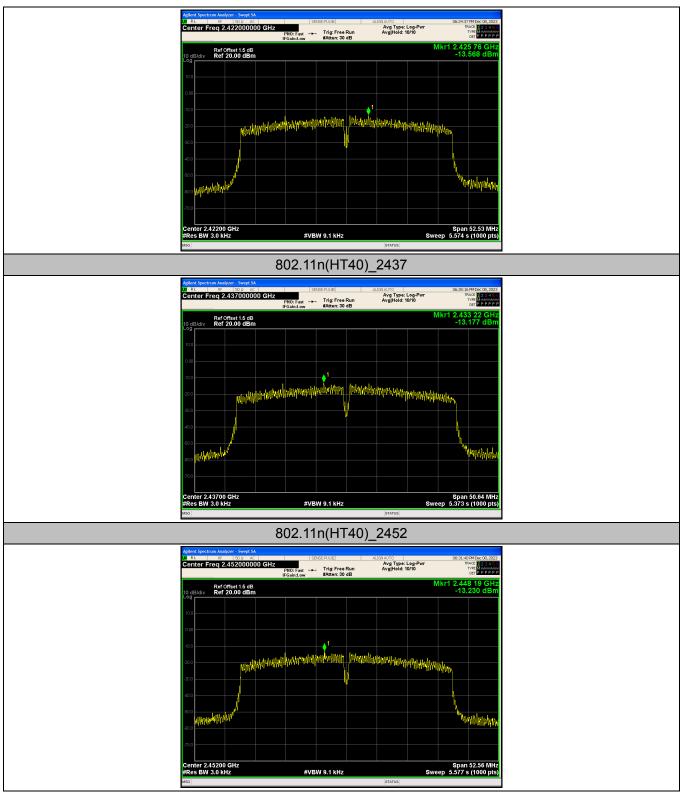

Test Result

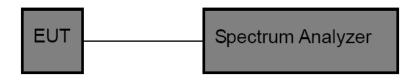
EN


Test Mode	Channel	Value [dBm/3kHz]	Duty Cycle Factor	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
	2412	-5.042	0	-5.042	<=8	PASS
802.11b	2437	-5.185	0	-5.185	<=8	PASS
	2462	-5.367	0	-5.367	<=8	PASS
	2412	-8.116	0.95	-7.166	<=8	PASS
802.11g	2437	-8.023	0.95	-7.073	<=8	PASS
	2462	-8.451	0.95	-7.501	<=8	PASS
	2412	-8.705	1.01	-7.695	<=8	PASS
802.11n(HT20)	2437	-9.560	1.01	-8.550	<=8	PASS
	2462	-9.856	1.01	-8.846	<=8	PASS
802.11n(HT40)	2422	-13.568	1.86	-11.708	<=8	PASS
	2437	-13.177	1.87	-11.307	<=8	PASS
	2452	-13.230	1.86	-11.37	<=8	PASS

Note: Result = Value + Duty Cycle Factor







3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency. Set the span to 0Hz Set the RBW to 8MHz Set the VBW to 8MHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

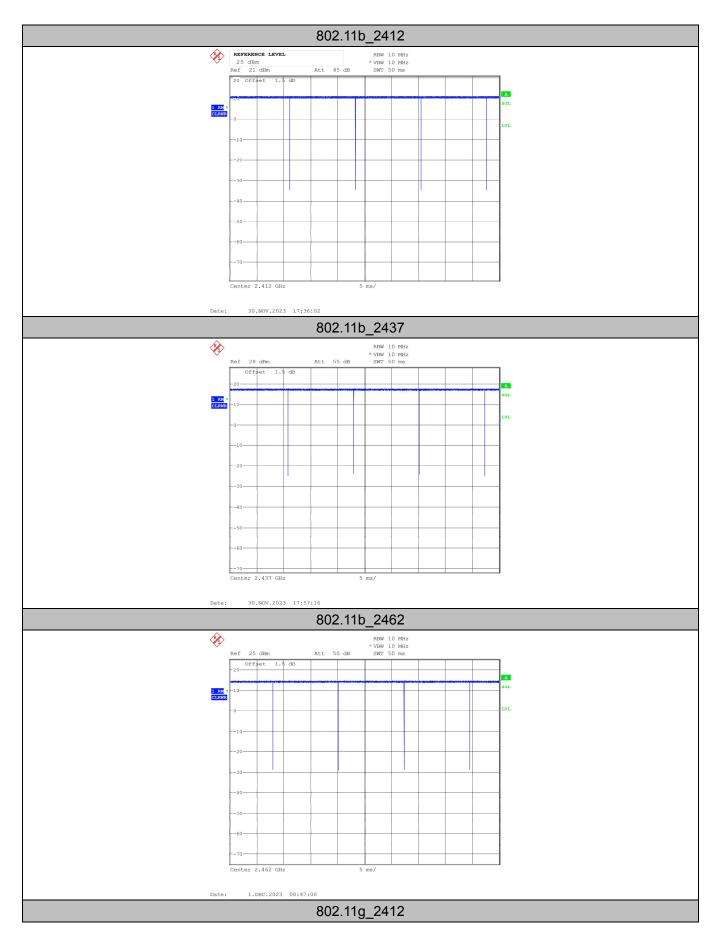
Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Duty Cycle Factor	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2412	50.000	50.000	100	0	1	1
802.11b	2437	50.000	50.000	100	0	1	1
2462	2462	50.000	50.000	100	0	1	1
802.11g 24	2412	2.030	2.527	80.34	0.95	0.493	1
	2437	2.030	2.528	80.29	0.95	0.493	1
	2462	2.030	2.527	80.34	0.95	0.493	1
	2412	1.894	2.392	79.17	1.01	0.528	1
802.11n(HT20)	2437	1.894	2.390	79.22	1.01	0.528	1
	2462	1.894	2.392	79.17	1.01	0.528	1
802.11n(HT40)	2422	0.932	1.431	65.13	1.86	1.073	2
	2437	0.931	1.431	65.07	1.87	1.074	2
	2452	0.932	1.431	65.13	1.86	1.073	2

Note: Duty Cycle Factor = 10*Log10(1/ Duty Cycle)


1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

 Tel.: (86)755-27521059
 Fax:

 中国国家认证认可监督管理委员会
 For all

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

3.9. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.