

SAR Test Report

Report No.: AGC02762230903FH01

FCC ID : 2BCTG-S10

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: 4G Feature Phone

BRAND NAME : QLYX

MODEL NAME : S10, S10+

APPLICANT: A.V. World of Technology Ltd

DATE OF ISSUE : Sep. 28, 2023

IEEE Std. 1528:2013

STANDARD(S) : FCC 47 CFR Part 2§2.1093

IEEE Std C95.1 ™-2005

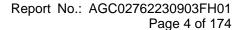
REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

Page 2 of 174

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sep. 28, 2023	Valid	Initial Release



Page 3 of 174

Test Report			
Applicant Name	A.V. World of Technology Ltd		
Applicant Address	Avinadav 3 Jerusalem Israel		
Manufacturer Name	A.V. World of Technology Ltd		
Manufacturer Address	Avinadav 3 Jerusalem Israel		
Factory Name	N/A		
Factory Address	N/A		
Product Designation	4G Feature Phone		
Brand Name	QLYX		
Model Name	S10		
Series Models	S10+		
Declaration of Difference	All the same except the model name		
EUT Voltage	DC3.7V by battery		
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093 IEEE Std C95.1 ™-2005		
Date of receipt of test item	Sep. 06, 2023		
Test Date	Sep. 15, 2023 to Sep. 19, 2023		
Report Template	AGCRT-US-4G/SAR (2021-04-20)		

Note: The results of testing in this report apply to the product/system which was tested only.

Prepared By	Jack Ga	}
Troparou By	Jack Gui(Project Engineer)	Sep. 19, 2023
	Calin Li	ч
Reviewed By	Calvin Liu (Reviewer)	Sep. 28, 2023
Approved By	Max Zhan	9
	Max Zhang (Authorized Officer)	Sep. 28, 2023

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	9 9
3.6. SAM TWIN PHANTOM	
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	13
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17
6. SAR SYSTEM CHECK PROCEDURE	20
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	23
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET	24 24
8. SAR EXPOSURE LIMITS	26
9. TEST FACILITY	27
10. TEST EQUIPMENT LIST	28
11. MEASUREMENT UNCERTAINTY	29
12. CONDUCTED POWER MEASUREMENT	32
13. TEST RESULTS	67
13.1. SAR Test Results Summary	67
APPENDIX A. SAR SYSTEM CHECK DATA	89
APPENDIX B. SAR MEASUREMENT DATA	99
APPENDIX C. TEST SETUP PHOTOGRAPHS	169
APPENDIX D. CALIBRATION DATA	174

Page 5 of 174

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

		orted 1g-SAR(W/kg)	
Frequency Band	Head	Body-worn(with 10mm separation)	SAR Test Limit (W/kg)
UMTS Band V	0.697	0.764	
LTE Band 2	0.582	1.175	
LTE Band 4	0.399	1.115	
LTE Band 5	0.900	1.009	
LTE Band 7	0.216	0.778	
LTE Band 12	0.564	0.903	
LTE Band 13	0.539	0.739	
LTE Band 17	0.546	0.774	1.6
LTE Band 25	0.562	1.192	
LTE Band 26A	0.857	1.006	
LTE Band 26B	0.724	0.850	
LTE Band 66	0.283	1.142	
LTE Band 71	0.456	0.856	
Simultaneous Reported SAR		1.211	
SAR Test Result		PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D05 SAR for LTE Devices v02r05

Page 6 of 174

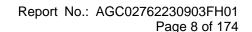
2. GENERAL INFORMATION

2.1. EUT Description

2111 201 2000 iiptioii	
General Information	
Product Designation	4G Feature Phone
Test Model	S10
Sample ID	230906218
Hardware Version	L900B_MB_V0.1
Software Version	L900B_RSK_T242A_S10_US_V02
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
WCDMA	
Support Band	☐UMTS FDD Band II ☑UMTS FDD Band V ☐UMTS FDD Band IV
	☐UMTS FDD Band I ☐UMTS FDD Band III ☐UMTS FDD Band VIII
HS Type	HSPA(HSUPA/HSDPA)
TX Frequency Range	FDD Band V: 824-849MHz
RX Frequency Range	FDD Band V: 869-894MHz
Release Version	Rel-6
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK
Antenna Gain	Band V: -1.41dBi
Max. Average Power	Band V: 21.23 dBm
Bluetooth	
Bluetooth Version	V5.0
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Peak Power	-0.935dBm
Antenna Gain	3dBi

Page 7 of 174

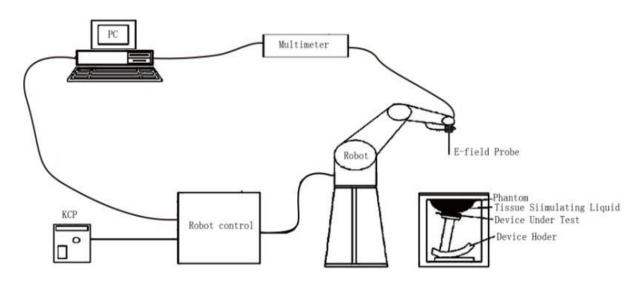
EUT Description(Continue)

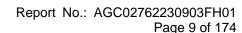

LTE	- · · · /
LIE	
Support Band	□ □ FDD Band 2 □ □ FDD Band 4 □ FDD Band 5 □ □ FDD Band 7
	☑FDD Band 12 ☑FDD Band 13 ☑FDD Band 17 ☑FDD Band 25
Support Baria	☑FDD Band 26 ☐TDD Band 38 ☐TDD Band 40 ☐TDD Band 41
	☑FDD Band 66 ☑FDD Band 71 (U.S. Bands)
	Band 2:1850-1910MHz; Band 4:1710-1755MHz;Band 5:824-849MHz;
TX Frequency Range	Band 7:2500-2570MHz; Band 12:699-716MHz; Band 13: 777-787MHz;
TATTEQUETICY Natige	Band 17: 704-716MHz; Band 25: 1850-1915MHz; Band 26: 814-849MHz;
	Band 66:1700-1780MHz; Band 71:663-698MHz
	Band 2:1930-1990MHz; Band 4:2110-2155MHz; Band 5:869-894MHz;
BV Fraguency Bongo	Band 7:2620-2690MHz; Band 12: 729-746 MHz; Band 13: 746-756MHz;
RX Frequency Range	Band 17: 734-746 MHz; Band 25: 1930-1995MHz; Band 26: 859-894MHz;
	Band 66:2110-2200MHz; Band 71:617-652MHz
Release Version	Rel-8
Type of modulation	QPSK, 16QAM
	Band 2: -1.36dBi; Band 4: -1.27dBi; Band 5: -1.41dBi; Band 7: -1.72dBi;
Antenna Gain	Band 12: -1.65dBi; Band 13: -1.69dBi; Band 17: -1.65dBi; Band 25: -1.34dBi;
	Band 26: -1.41dBi; Band 66: -1.27dBi; Band 71: -2.14dBi;
	Band 2: 24.19dBm; Band 4: 23.96dBm; Band 5: 22.48dBm; Band 7: 24.70 dBm;
Max. Average Power	Band 12: 23.90dBm; Band 13:22.43 dBm; Band 17: 21.95dBm; Band 25: 25.02 dBm;
_	Band 26A: 24.61dBm; Band 26B: 23.30dBm; Band 66: 25.66dBm; Band 71: 21.74dBm;
Accessories	
	Brand name: QLYX
Battery	Model No.: S10
-	Voltage and Capacitance: 3.7 V & 1200mAh
Earphone	Brand name: N/A
Earphone	Model No.: N/A

Note:1.CMU200 can measure the average power and Peak power at the same time

2. The sample used for testing is end product.

3. The test sample has no any deviation to the test method of standard mentioned in page 1.


Product	Туре		
Product	□ Production unit	☐ Identical Prototype	


3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

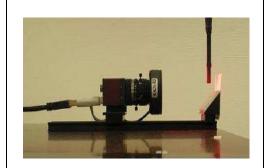
3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotronic F-Field Probe Specification

130ti opic E-1 icia	Probe Specification	
Model	SSE2	
Manufacture	MVG	
Identification No.	SN 45/22 EPGO391	
Frequency	0.15GHz-6GHz Linearity:±0.09dB(0.15GHz-6GH z)	
Dynamic Range	0.01W/kg-100W/kg Linearity:±0.09dB	
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm	
Application	High precision dosimetric measuren (e.g., very strong gradient fields). Or compliance testing for frequencies to 30%.	nly probe which enables

3.3. Robot The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used. The XL robot series have many features that are important for our application: ☐ High precision (repeatability 0.02 mm) ☐ High reliability (industrial design) ☐ Jerk-free straight movements ☐ Low ELF interference (the closed metallic construction shields against motor control fields) □ 6-axis controller

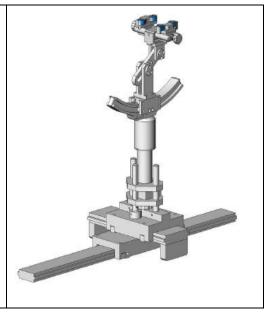

Report No.: AGC02762230903FH01 Page 10 of 174

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page 11 of 174


3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 12 of 174

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

 σ is the conductivity of the tissue in siemens per metre;

 ρ is the density of the tissue in kilograms per cubic metre;

c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

Page 13 of 174

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

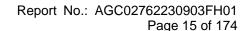
	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 14 of 174

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

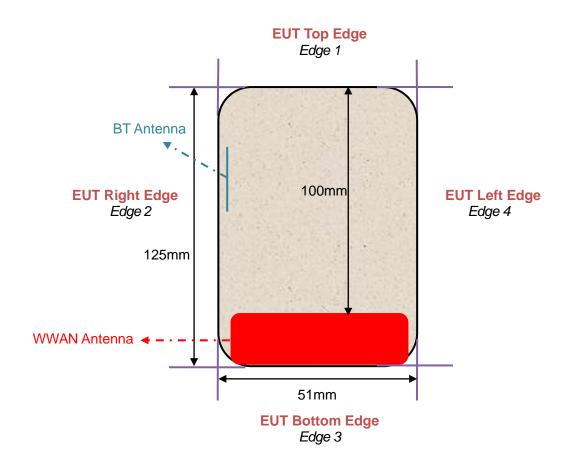

Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}		$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Zoom}(n > 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		$\leq 1.5 \cdot \Delta z_{Z_{0000}}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.


4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of Portable Mobile Station (MS). It supports WCDMA/HSPA, LTE, BT and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (the back view)

Page 16 of 174

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 10% are listed in 6.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
750 Head	35	2	0.0	0.0	63	0.0
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
1750 Head	52.64	0.36	0.0	47	0.0	0.0
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
2600 Head	55.242	0.306	0	44.452	0	0

Page 17 of 174

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head and body tissue dielectric parameters recommended by the IEEE Std. 1528 have been incorporated in the following table.

Target Frequency	he	ad	body		
(MHz)	εr	σ (S/m)	εr	σ (S/m)	
300	45.3	0.87	45.3	0.87	
450	43.5	0.87	43.5	0.87	
750	41.9	0.89	41.9	0.89	
835	41.5	0.90	41.5	0.90	
900	41.5	0.97	41.5	0.97	
915	41.5	1.01	41.5	1.01	
1450	40.5	1.20	40.5	1.20	
1610	40.3	1.29	40.3	1.29	
1750	40.1	1.37	40.1	1.37	
1800 – 2000	40.0	1.40	40.0	1.40	
2300	39.5	1.67	39.5	1.67	
2450	39.2	1.80	39.2	1.80	
2600	39.0	1.96	39.0	1.96	
3000	38.5	2.40	38.5	2.40	

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m³

Page 18 of 174

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

Tissue Stimulant Measurement for 750MHz								
	Fr.	Dielectric Para	Tissue	Test time				
	(MHz)	εr 41.9 (37.71-46.09) δ[s/m] 0.89(0.801-0.979)			Temp [°C]			
	673	45.76	0.81					
	683	45.19	0.82					
Head	688	44.39	0.83					
	704	44.03	0.85	21.5	Sep. 18,			
	707.5	43.92	0.87	21.5	2023			
	710	43.21	0.89					
	750	42.13	0.91					
	782	41.32	0.93					

	Tissue Stimulant Measurement for 835MHz							
	Fr.	Dielectric Para	Tissue	_				
	(MHz)	εr 41.5 (37.35-45.65) δ[s/m] 0.90(0.81-0.99)		Temp [°C]	Test time			
	821.5	45.12	0.83					
	829	44.66	0.86					
Head	831.5	43.23	0.87					
	835	41.68	0.89	21.1	Sep. 19,			
	836.4	40.37	0.92	21.1	2023			
	836.5	40.37	0.92					
	841.5	39.62	0.93					
	844	38.42	0.95					

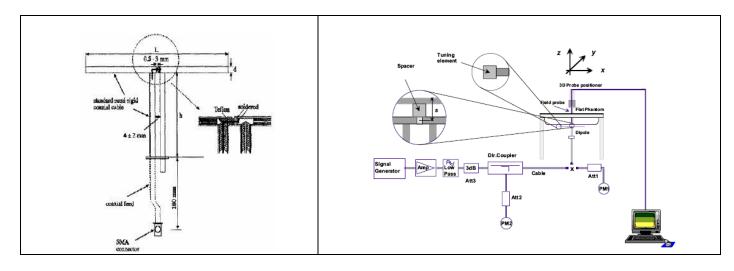
Tissue Stimulant Measurement for 1750MHz									
	Dielectric Para	Dielectric Parameters (±10%)							
εr 40.1 (36.09-44.11)		δ[s/m]1.37(1.233-1.507)	Temp [°C]	Test time					
1720	43.22	1.37							
1732.5	42.68	1.40							
1745	41.37	1.42	20.2	Sep. 16, 2023					
1750	40.55	1.43	20.2	2023					
1755	39.66	1.45							
1770	38.24	1.47							

Page 19 of 174

	Tissue Stimulant Measurement for 1900MHz								
	Fr.	Dielectric Para	ameters (±10%)	Tissue					
	(MHz)	εr40.00(36.00-44.00)	δ[s/m]1.40(1.26-1.54)	Temp [°C]	Test time				
l land	1860	41.37	1.33						
Head	1880	40.67	1.38		Con 15				
	1882.5	40.32	1.41	20.5	Sep. 15, 2023				
	1900	39.98	1.43		2023				
	1905	38.62	1.46						

Tissue Stimulant Measurement for 2600MHz							
	Fr.	Dielectric Para	Tissue	To ad dissa			
	(MHz)	εr39(35.1-42.9)	δ[s/m]1.96(1.764-2.156)	Temp [°C]	Test time		
	2535	39.96	1.96	20.9	Sep. 17,		
260	2600	38.67	1.99	20.9	2023		

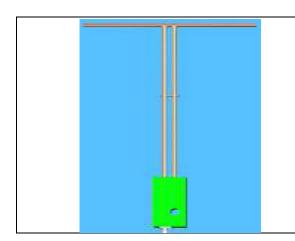
Page 20 of 174


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Page 21 of 174

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
750MHz	176	100	6.35
835MHz	161.0	89.8	3.6
1800MHz	71.6	41.7	3.6
1900MHz	68	39.5	3.6
2600MHz	48.5	28.8	3.6

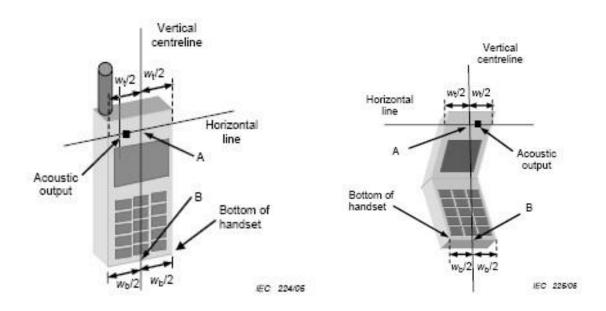
Page 22 of 174

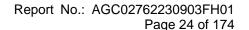
6.2.2. System Check Result

System Per	System Performance Check at 750MHz&835MHz &1800MHz &1900MHz &2600MHz for Head									
Validation K	Validation Kit: SN 22/16 DIP 0G750-417& SN 15/16 DIP 0G835-399& SN 46/11 DIP 1G800-186& SN 29/15									
DIP 1G900-3	389& SN 2	22/16 DIP	2G600-407							
	Tar	get	Reference	ce Result	Tes	sted	Tissue			
Frequency	Value((W/kg)	(± 10%)		Value(W/kg)		Temp.	Test time		
[MHz]	1g	10g	1g	10g	1g	10g	[°C]			
750	8.33	5.44	7.497-9.163	4.896-5.984	8.78	5.45	21.5	Sep. 18, 2023		
835	9.67	6.14	8.703-10.637	5.526-6.754	9.42	5.96	21.1	Sep. 19, 2023		
1800	37.76	19.60	33.984-41.536	17.640-21.560	39.28	19.87	20.2	Sep. 16, 2023		
1900	41.26	20.86	37.134-45.386	18.774-22.946	42.36	20.53	20.5	Sep. 15, 2023		
2600	54.94	23.77	49.446-60.434	21.393-26.147	52.51	23.52	20.9	Sep. 17, 2023		

Note:

⁽¹⁾ We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.


Page 23 of 174


7. EUT TEST POSITION

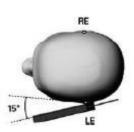
This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body and Front.

7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

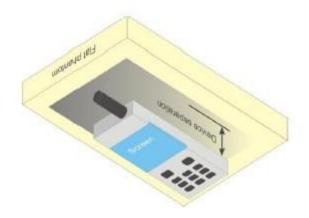
7.2. Cheek Position

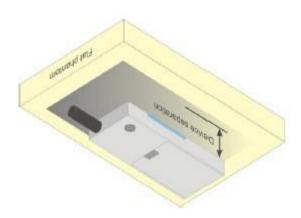
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.





7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

Page 26 of 174

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

	(11113)
Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 27 of 174

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

Page 28 of 174

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Software version	Current calibration date	Next calibration date
SAR Probe	MVG	SN 45/22 EPGO391	N/A	Dec. 02, 2022	Dec. 01, 2023
Phantom	SATIMO	SN_4511_SAM90	N/A	Validated. No cal required.	Validated. No cal required.
Liquid	SATIMO	N/A	N/A	Validated. No cal required.	Validated. No cal required.
Comm Tester	Agilent-8960	GB46310822	A.13.07	Jun. 03, 2023	Jun. 02, 2024
Comm Tester	R&S- CMW500	121209	V3.7.40	Jun. 01, 2023	May 31, 2024
Multimeter	Keithley 2000	1350784	N/A	Jun. 01, 2023	May 31, 2024
SAR Software	SATIMO-OpenSAR	N/A	OpenSAR V4_02_32	N/A	N/A
Dipole	SATIMO SID750	SN 22/16 DIP 0G750-417	N/A-	Apr. 28, 2022	Apr. 27, 2025
Dipole	SATIMO SID835	SN 15/16 DIP 0G835-399	N/A	Apr. 28, 2022	Apr. 27, 2025
Dipole	SATIMO SID1800	SN 46/11 DIP 1G800-186	N/A	Apr. 28, 2022	Apr. 27, 2025
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	N/A	Apr. 28, 2022	Apr. 27, 2025
Dipole	SATIMO SID2600	SN 22/16 DIP 2G600-407	N/A	Apr. 28, 2022	Apr. 27, 2025
Signal Generator	Agilent-E4438C	US41461365	V5.03	Jun. 01, 2023	May 31, 2024
EXA Signal Analyzer	Agilent / N9010A	MY53470504	N/A	Jun. 01, 2023	May 31, 2024
Network Analyzer	Rhode & Schwarz ZVL6	N/A	3.2	Oct. 17, 2022	Oct. 16, 2023
Attenuator	Warison /WATT-6SR1211	S/N:WRJ34AYM2F1	N/A	June 07,2023	June 06,2024
Attenuator	Mini-circuits / VAT-10+	31405	N/A	June 07,2023	June 06,2024
Amplifier	AS0104-55_55	1004793	N/A	N/A	N/A
Directional Couple	Werlatone/ C5571-10	SN99463	N/A	Mar. 10,2022	Mar. 09,2024
Directional Couple	Werlatone/ C6026-10	SN99482	N/A	Mar. 10,2022	Mar. 09,2024
Power Sensor	NRP-Z21	1137.6000.02	N/A	Sep. 05,2023	Sep. 04,2024
Power Sensor	NRP-Z23	100323	N/A	Feb. 15,2023	Feb. 14,2024
Power Viewer	R&S	V2.3.1.0	N/A	N/A	N/A
Calibration standard parts for network sub - port	R&S/ ZV-Z132	N/A	V2.3.1.0	Nov. 15,2022	Nov. 14,2023

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 29 of 174

11. MEASUREMENT UNCERTAINTY

11. MEASUREMENT				N 45/00 ED	00004				
M	SATIMO Uncertainty- SN 45/22 EPGO391 Measurement uncertainty for DUT averaged over 1 gram / 10 gram.								
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	L	(* /3/		I.			(* 75)	(, , , ,	
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞
Axial Isotropy	E.2.2	0.215	R	1.732	0.707	0.707	0.088	0.088	∞
Hemispherical Isotropy	E.2.2	0.215	R	1.732	0.707	0.707	0.088	0.088	∞
Boundary effect	E.2.3	1.000	R	1.732	1	1	0.577	0.577	∞
Linearity	E.2.4	0.995	R	1.732	1	1	0.574	0.574	∞
System detection limits	E.2.4	1.000	R	1.732	1	1	0.577	0.577	×
Modulation response	E2.5	3.000	R	1.732	1	1	1.732	1.732	∞
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	∞
Response Time	E.2.7	0.000	R	1.732	1	1	0.000	0.000	∞
Integration Time	E.2.8	1.400	R	1.732	1	1	0.808	0.808	∞
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1	1	1.732	1.732	∞
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1	1	1.732	1.732	∞
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1	1	0.808	0.808	∞
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1	1	0.808	0.808	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1	1	1.328	1.328	∞
Test sample Related									
Test sample positioning	E.4.2	2.6	N	1	1	1	2.60	2.60	∞
Device holder uncertainty	E.4.1	3	N	1	1	1	3.00	3.00	8
Output power variation—SAR drift measurement	E.2.9	5	R	1.732	1	1	2.89	2.89	∞
SAR scaling	E.6.5	5	R	1.732	1	1	2.89	2.89	∞
Phantom and tissue parameter	rs								
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.900	1.596	_∞
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.120	2.840	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.150	1.300	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	8
Combined Standard Uncertainty			RSS				10.529	10.344	
Expanded Uncertainty (95% Confidence interval)			K=2				21.059	20.689	

•		TIMO Unce				- / 40			
System		uncertainty Tol	Prob.				1g Ui	10g Ui	l .
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	(+-%)	(+-%)	vi
Measurement System									
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞
Axial Isotropy	E.2.2	0.215	R	1.732	1.000	1.000	0.124	0.124	∞
Hemispherical Isotropy	E.2.2	0.215	R	1.732	0.000	0.000	0.000	0.000	∞
Boundary effect	E.2.3	1.000	R	1.732	1.000	1.000	0.577	0.577	∞
Linearity	E.2.4	0.995	R	1.732	1.000	1.000	0.574	0.574	∞
System detection limits	E.2.4	1.000	R	1.732	1.000	1.000	0.577	0.577	∞
Modulation response	E2.5	3.000	R	1.732	0.000	0.000	0.000	0.000	∞
Readout Electronics	E.2.6	0.021	N	1.000	1.000	1.000	0.021	0.021	∞
Response Time	E.2.7	0.000	R	1.732	0.000	0.000	0.000	0.000	∞
Integration Time	E.2.8	1.400	R	1.732	0.000	0.000	0.000	0.000	∞
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1.000	1.000	0.808	0.808	8
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1.000	1.000	0.808	0.808	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1.000	1.000	1.328	1.328	∞
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	5	N	1	1	1	5	5	∞
Input power and SAR drift measurement	8,6.6.4	5	R	1.732	1	1	2.887	2.887	8
Dipole axis to liquid distance	8,E.6.6	2	R	1.732	1	1	1.155	1.155	∞
Phantom and set-up									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.9	1.596	∞
Liquid conductivity (temperature uncertainty)	E.3.3	4	N	1	0.78	0.71	3.12	2.84	∞
Liquid conductivity (measured)	E.3.3	5	N	1	0.23	0.26	1.15	1.3	М
Liquid permittivity (temperature uncertainty)	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	∞
Liquid permittivity (measured)	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	М
Combined Standard Uncertainty			RSS				10.462	10.276	
Expanded Uncertainty (95% Confidence interval)			K=2				20.925	20.552	

Page 31 of 174

	SA	TIMO Unce	rtaintv- S	N 45/22 EF	PGO391				
Sy	stem Check u	uncertainty f	or DÚT a			10 gram.			
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System		, ,	•	I.	•	•			
Probe calibration drift	E.2.1.3	7.000	N	1	1	1	7	7	∞
Axial Isotropy	E.2.2	0.215	R	√3	0	0	0	0	∞
Hemispherical Isotropy	E.2.2	0.215	R	$\sqrt{3}$	0	0	0	0	∞
Boundary effect	E.2.3	1.000	R	√3	0	0	0	0	∞
Linearity	E.2.4	0.995	R	$\sqrt{3}$	0	0	0	0	∞
System detection limits	E.2.4	1	R	√3	0	0	0	0	∞
Modulation response	E2.5	3	R	√3	0	0	0	0	∞
Readout Electronics	E.2.6	0.021	N	√3	0	0	0	0	∞
Response Time	E.2.7	0	R	√3	0	0	0	0	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0	0	∞
RF ambient conditions-Noise	E.6.1	3	R	√3	0	0	0	0	∞
RF ambient conditions-reflections	E.6.1	3	R	√3	0	0	0	0	∞
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0	0.00	∞
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	√3	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parameter	rs								
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.000	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	N	1.000	0.78	0.71	3.12	2.84	8
Liquid permittivity measurement	E.3.3	5	N	1.000	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	М
Combined Standard Uncertainty			RSS				8.927	8.708	
Expanded Uncertainty (95% Confidence interval)			K=2				17.853	17.415	

Page 32 of 174

12. CONDUCTED POWER MEASUREMENT

UMTS BAND

HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent-8960 referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(βc and βd) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc (Note5)	βd	βd (SF)	β с /βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

Page 33 of 174

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent-8960 referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βd	βd (SF)	βc/βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/ d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15. Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: Bed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Page 34 of 174

UMTS BAND V

Mode	Frequency	Avg. Burst Power
ivioue	(MHz)	(dBm)
VALODAMA OSO	826.4	21.23
WCDMA 850	836.4	21.17
RMC	846.6	21.21
LIODDA	826.4	20.63
HSDPA	836.4	17.14
Subtest 1	846.6	19.38
LIODDA	826.4	20.21
HSDPA	836.4	18.54
Subtest 2	846.6	18.80
LIODDA	826.4	18.94
HSDPA	836.4	19.46
Subtest 3	846.6	17.64
LIODDA	826.4	18.99
HSDPA	836.4	19.44
Subtest 4	846.6	17.14 19.38 20.21 18.54 18.80 18.80 18.94 19.46 17.64 18.99 19.44 19.44 19.46
LICLIDA	826.4	18.40
HSUPA	836.4	19.62
Subtest 1	846.6	20.79
LICLIDA	826.4	18.68
HSUPA	836.4	20.08
Subtest 2	846.6	19.27
LICLIDA	826.4	18.41
HSUPA	836.4	19.75
Subtest 3	846.6	20.87
LICLIDA	826.4	18.34
HSUPA	836.4	19.87
Subtest 4	846.6	19.95
LICLIDA	826.4	21.21
HSUPA	836.4	20.51
Subtest 5	846.6	19.71

Page 35 of 174

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)
Note: CM=1 for β c/ β d=12/15, β hs/ β c=24/15.For all c	other combinations of D	PDCH, DPCCH, HS-DPCCH,
E-DPDCH and E-DPCCH the MPR is based on the r	elative CM difference.	

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

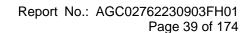
The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 36 of 174

LTE Band

		Conducte	ed Power	of LTE Band 2(d	Bm)		
Bandwidth	Modulation	RB size	RB	Torget MDD	Channel	Channel	Channel
Danuwidin	Modulation	KD SIZE	offset	Target MPR	18607	18900	19193
			0	0	21.55	21.41	21.43
		1	3	0	21.62	21.24	21.28
	QPSK		5	0	21.65	20.15	21.28
			0	0	21.61	21.41	21.29
		3	2	0	21.59	21.40	21.28
			3	0	21.67	21.30	21.17
4 4MU=		6	0	1	20.62	20.28	20.20
1.4MHz			0	1	21.40	20.25	20.24
		1	3	1	21.49	20.09	20.14
			5	1	21.55	20.03	20.11
	16QAM		0	1	20.30	21.22	20.42
		3	2	1	20.32	20.24	20.41
			3	1	20.47	20.19	20.23
		_					
		6	0	2	19.91	21.30	19.42
Randwidth	Modulation		RB		19.91 Channel	21.30 Channel	19.42 Channel
Bandwidth	Modulation	RB size		2 Target MPR			
Bandwidth	Modulation		RB		Channel	Channel	Channel
Bandwidth	Modulation		RB offset	Target MPR	Channel 18615	Channel 18900	Channel 19185
Bandwidth	Modulation	RB size	RB offset	Target MPR	Channel 18615 21.47	Channel 18900 20.53	Channel 19185 21.83
Bandwidth	Modulation QPSK	RB size	RB offset 0 7	Target MPR 0 0	Channel 18615 21.47 21.76	Channel 18900 20.53 21.23	Channel 19185 21.83 21.51
Bandwidth		RB size	RB offset 0 7 14	Target MPR 0 0 0	Channel 18615 21.47 21.76 21.94	Channel 18900 20.53 21.23 21.01	Channel 19185 21.83 21.51 21.31
Bandwidth		RB size	RB offset 0 7 14 0	0 0 0 0	Channel 18615 21.47 21.76 21.94 20.61	Channel 18900 20.53 21.23 21.01 21.50	Channel 19185 21.83 21.51 21.31 20.49
		RB size	RB offset 0 7 14 0 4	0 0 0 0 1	Channel 18615 21.47 21.76 21.94 20.61 20.63	Channel 18900 20.53 21.23 21.01 21.50 21.50	Channel 19185 21.83 21.51 21.31 20.49 20.49
Bandwidth 3MHz		RB size	RB offset 0 7 14 0 4 7	0 0 0 0 1 1 1	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16
		RB size	RB offset 0 7 14 0 4 7 0	0 0 0 1 1 1	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86 20.72	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18 21.34	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16 20.26
		1 8 15	RB offset 0 7 14 0 4 7 0 0	Target MPR 0 0 0 1 1 1 1 1	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86 20.72 20.47	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18 21.34 20.38	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16 20.26 20.61
		1 8 15	RB offset 0 7 14 0 4 7 0 0 7	0 0 0 1 1 1 1 1	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86 20.72 20.47 20.62	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18 21.34 20.38 21.10	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16 20.26 20.61 20.24
	QPSK	1 8 15	RB offset 0 7 14 0 4 7 0 0 7	Target MPR 0 0 0 1 1 1 1 1 1 1	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86 20.72 20.47 20.62 20.86	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18 21.34 20.38 21.10 20.80	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16 20.26 20.61 20.24 20.01
	QPSK	1 8 15 1	RB offset 0 7 14 0 4 7 0 7 14 1 0 0 7	Target MPR 0 0 0 1 1 1 1 1 1 2	Channel 18615 21.47 21.76 21.94 20.61 20.63 20.86 20.72 20.47 20.62 20.86 19.79	Channel 18900 20.53 21.23 21.01 21.50 21.50 20.18 21.34 20.38 21.10 20.80 20.76	Channel 19185 21.83 21.51 21.31 20.49 20.49 20.16 20.26 20.61 20.24 20.01 19.65


Page 37 of 174

	Conducted Power of LTE Band 2(dBm)											
Don duri déla	Medulation	DD oi=o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	18625	18900	19175					
			0	0	21.54	21.72	22.43					
		1	13	0	21.82	21.19	21.80					
			24	0	22.13	21.72	21.33					
	QPSK		0	1	20.74	20.56	20.91					
	5MHz	12	6	1	20.65	21.57	20.94					
			13	1	21.10	20.97	20.49					
5MU-7		25	0	1	20.82	21.28	20.70					
SIVITIZ			0	1	19.92	21.11	20.96					
		1	13	1	20.33	20.53	20.36					
	16QAM		24	1	20.64	20.03	19.97					
		16QAM		0	2	19.80	21.87	19.91				
		12	6	2	19.79	21.83	19.90					
			13	2	20.12	21.24	19.33					
		25	0	2	19.99	21.52	19.77					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Banawian	Modulation	ND 3120	offset	rarget wir ix	18650	18900	19150					
			0	0	21.65	21.20	23.18					
		1	25	0	22.22	20.31	22.28					
			49	0	23.00	20.24	21.31					
	QPSK		0	1	20.97	21.92	21.71					
		25	13	1	20.86	21.93	21.75					
			25	1	21.68	22.84	20.74					
10MHz		50	0	1	21.34	21.36	21.34					
10.31112			0	1	20.63	21.19	21.89					
		1	25	1	21.29	21.70	22.03					
			49	1	21.79	23.64	20.98					
	16QAM		0	2	20.03	22.13	20.97					
		25	13	2	20.03	21.13	20.94					
			25	2	20.73	21.04	19.85					
		50	0	2	20.42	20.58	20.46					

Page 38 of 174

	Conducted Power of LTE Band 2(dBm)											
Don duvidala	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	18675	18900	19125					
			0	0	21.59	24.19	23.57					
		1	38	0	22.59	21.33	22.89					
			74	0	21.20	21.75	21.41					
	QPSK		0	1	21.77	20.51	21.78					
		36	18	1	21.76	20.51	21.80					
			39	1	21.76	21.51	21.80					
15MHz		75	0	1	21.75	20.50	21.80					
ISIVITIZ			0	1	20.71	21.52	23.21					
		1	38	1	21.69	21.67	22.45					
			74	1	23.21	21.05	20.95					
	16QAM	36	0	2	21.76	20.51	21.80					
			18	2	21.76	20.51	21.80					
			39	2	21.75	20.51	21.80					
		75	0	2	20.76	21.53	20.93					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Banawiani	Modulation	ND 3120	offset	rarget wir ix	18700	18900	19100					
		4	0	0	23.87	23.76	23.72					
		1	50	0	23.35	21.57	23.41					
			99	0	21.27	22.58	21.50					
	QPSK		0	1	21.39	21.14	22.58					
		50	25	1	21.40	21.03	22.66					
			50	1	23.60	21.34	21.48					
20MHz		100	0	1	22.59	22.28	22.14					
ZOMII IZ			0	1	20.74	21.24	22.85					
		1	50	1	22.21	22.88	22.07					
			99	1	21.28	21.92	20.20					
	16QAM		0	2	20.54	21.33	21.78					
		50	25	2	20.55	22.33	21.77					
			50	2	22.76	23.44	20.63					
		100	0	2	21.69	21.49	21.20					

	Conducted Power of LTE Band 4(dBm)											
D 1 144			RB	T (MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	19957	20175	20393					
			0	0	20.85	21.23	20.10					
		1	3	0	20.68	21.31	21.16					
			5	0	20.54	21.38	21.24					
	QPSK		0	0	20.85	20.24	21.38					
		3	2	0	20.83	20.26	21.38					
			3	0	20.72	20.28	21.40					
1.4MHz		6	0	1	19.77	23.25	20.34					
1.4IVITIZ		-	0	1	20.87	22.89	21.65					
		1	3	1	20.71	22.92	21.73					
			5	1	20.58	22.94	21.78					
	16QAM	3	0	1	19.64	22.97	21.14					
			2	1	19.59	23.07	21.20					
			3	1	19.45	23.07	21.22					
		6	0	2	19.32	22.29	20.22					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Banawian	Modulation	NB SIZE	offset	rarget iii ix	19965	20175	20385					
			0	0	20.86	21.09	20.86					
		1	7	0	20.53	21.36	20.13					
			14	0	20.23	21.40	20.33					
	QPSK		0	1	19.83	23.18	21.00					
		8	4	1	19.82	23.17	21.96					
			7	1	19.29	23.30	20.09					
3MHz		15	0	1	19.58	23.28	21.04					
31411 12			0	1	19.85	22.80	21.94					
		1	7	1	19.36	22.94	20.17					
			1		19.03	23.09	21.28					
			14	1	13.03	20.00	21.20					
	16QAM		14 0	2	19.13	22.42	21.17					
	16QAM	8										
	16QAM	8	0	2	19.13	22.42	21.17					

Page 40 of 174

	Conducted Power of LTE Band 4(dBm)											
Don duvidala	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	19975	20175	20375					
			0	0	20.77	23.88	21.49					
		1	13	0	20.14	21.22	21.13					
			24	0	19.99	22.50	22.41					
	QPSK		0	1	19.55	23.12	21.63					
		12	6	1	19.52	23.13	21.65					
			13	1	19.11	23.41	22.14					
5MH-7	5MHz	25	0	1	19.17	23.22	21.01					
JIVII IZ			0	1	19.18	20.19	20.06					
		1	13	1	18.55	20.63	20.59					
			24	1	18.33	23.80	20.89					
	16QAM		0	2	18.75	22.37	21.64					
		12	6	2	18.71	22.23	21.65					
			13	2	18.03	22.68	20.09					
		25	0	2	18.43	22.44	21.97					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Barrawiani	modulation	112 0120	offset	- Iai got iiii ix	20000	20175	20350					
			0	0	20.80	23.44	21.15					
		1	25	0	20.04	20.26	21.40					
			49	0	21.22	21.90	20.32					
	QPSK		0	1	19.18	22.89	21.70					
		25	13	1	19.18	22.88	21.69					
			25	1	19.56	23.60	21.87					
10MHz		50	0	1	19.32	23.25	20.34					
10.31112			0	1	19.79	22.49	21.71					
		1	25	1	19.09	22.64	20.63					
			49	1	20.25	23.17	21.88					
	16QAM		0	2	18.25	22.12	21.83					
		25	13	2	18.24	22.13	21.84					
			25	2	18.51	22.83	22.00					
		50	0	2	18.50	22.41	21.50					

Page 41 of 174

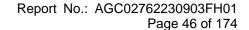
	Conducted Power of LTE Band 4(dBm)											
Dan druidth	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	20025	20175	20325					
			0	0	20.66	22.89	21.39					
		1	38	0	20.48	22.16	21.79					
			74	0	22.64	22.91	21.32					
	QPSK		0	1	20.07	23.33	22.90					
		36	18	1	20.16	23.29	20.76					
	15MHz		39	1	20.13	23.28	20.82					
15MU-		75	0	1	20.14	23.27	20.82					
ISIVITIZ			0	1	19.52	22.18	21.20					
		1	38	1	19.39	23.36	21.43					
			74	1	21.58	21.12	21.96					
	16QAM		0	2	20.07	23.30	20.87					
		36	18	2	20.14	23.29	20.77					
			39	2	20.12	23.28	21.85					
		75	0	2	19.22	22.53	20.95					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Danawiani	oudidion	IXD GIZO	offset	- rangot iiii ik	20050	20175	20300					
		1	0	0	23.79	23.73	23.80					
		ļ ļ	50	0	21.62	21.45	20.09					
			99	0	23.94	21.60	21.32					
	QPSK		0	1	19.37	22.59	20.29					
		50	25	1	19.35	22.56	20.28					
			50	1	21.77	23.96	21.31					
20MHz		100	0	1	20.88	23.44	21.62					
20			0	1	19.49	22.00	23.42					
		1	50	1	20.27	23.76	21.66					
			99	1	22.60	21.84	20.90					
	16QAM		0	2	18.68	21.68	23.48					
		50	25	2	18.60	21.66	23.47					
			50	2	20.95	23.12	20.44					
		100	0	2	20.05	22.60	21.60					

Page 42 of 174

	Conducted Power of LTE Band 5(dBm)											
Don duvidala	Madulatian	DD oi-o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	20407	20525	20643					
			0	0	22.37	18.17	20.76					
		1	3	0	22.09	18.49	21.02					
			5	0	21.98	18.70	21.13					
QF	QPSK		0	0	22.43	18.33	20.79					
		3	2	0	22.35	18.30	20.78					
			3	0	22.19	18.56	21.09					
1 /MHz	1.4MHz	6	0	1	21.05	19.42	19.82					
1.4111112			0	1	21.90	20.95	20.02					
		1	3	1	21.83	19.13	20.36					
			5	1	21.57	20.35	20.52					
	16QAM		0	1	20.98	20.99	19.33					
		3	2	1	20.98	20.97	19.33					
			3	1	20.78	20.20	19.57					
		6	0	2	20.80	20.90	19.06					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Barrawiani	modulation	112 0120	offset	- Iai got iiii ix	20415	20525	20635					
			0	0	22.43	19.91	19.98					
		1	7	0	21.73	19.53	20.72					
			14	0	21.10	19.09	21.21					
	QPSK		0	1	21.17	20.04	19.22					
		8	4	1	21.04	20.13	19.43					
			7	1	20.59	19.77	19.86					
3MHz		15	0	1	20.72	20.52	19.48					
O 12			0	1	20.99	20.66	20.77					
		1	7	1	20.30	20.26	19.36					
			14	1	19.60	20.87	19.94					
	16QAM		0	2	20.66	21.81	19.46					
		8	4	2	20.66	20.80	18.47					
			7	2	19.64	20.33	19.92					
		15	0	2	20.16	19.81	18.67					

Page 43 of 174

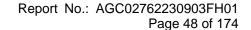
	Conducted Power of LTE Band 5(dBm)											
Don duvidala	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	20425	20525	20625					
			0	0	22.48	20.61	19.22					
		1	13	0	21.28	20.49	20.22					
			24	0	19.87	19.53	21.19					
QP	QPSK		0	1	20.92	20.92	18.50					
		12	6	1	20.95	20.06	18.62					
			13	1	19.69	18.04	19.66					
5MHz		25	0	1	20.40	20.57	19.14					
SIVITIZ			0	1	20.66	20.99	20.39					
		1	13	1	19.59	20.68	20.49					
			24	1	18.15	20.66	19.32					
	16QAM		0	2	20.31	20.58	20.04					
		12	6	2	20.31	20.56	18.07					
			13	2	18.63	20.60	19.70					
		25	0	2	19.44	19.06	18.33					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Barrawiani	modulation	112 0120	offset	- Iai got iiii ix	20450	20525	20600					
			0	0	22.31	21.68	21.63					
		1	25	0	19.58	18.50	19.03					
			49	0	19.68	20.77	21.05					
	QPSK		0	1	19.98	20.90	20.89					
		25	13	1	20.14	20.95	20.97					
			25	1	20.39	19.71	19.12					
10MHz		50	0	1	20.89	18.03	19.12					
10.31112			0	1	21.22	20.56	20.37					
		1	25	1	18.26	20.84	19.99					
			49	1	19.25	19.12	20.09					
	16QAM		0	2	19.12	19.46	20.94					
		25	13	2	19.12	20.42	20.93					
			25	2	20.46	18.00	19.16					
		50	0	2	20.94	20.58	20.20					


Page 44 of 174

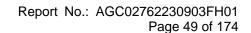
	Conducted Power of LTE Band 7 (dBm)											
Day I 1 M	Bar I Indian	DD -: -	RB	Target	Channel	Channel	Channel					
Bandwidth	Modulation	tion RB size offset		MPR	20775	21100	21425					
			0	0	20.38	21.34	21.05					
		1	12	0	21.01	21.47	21.04					
			24	0	21.47	21.58	20.90					
	QPSK		0	1	19.63	20.45	21.83					
		12	6	1	19.60	21.51	21.85					
			13	1	20.26	21.75	21.85					
5MHz	25	0	1	19.98	20.55	21.92						
		0	1	18.78	21.71	21.56						
	1	12	1	19.46	21.86	21.51						
			24	1	19.95	21.11	21.38					
	16QAM		0	2	18.66	21.66	23.87					
		12	6	2	18.63	20.69	23.87					
			13	2	19.26	20.86	23.85					
		25	0	2	19.07	21.77	23.95					
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel					
Bandwidth	Wiodulation	ND SIZE	offset	MPR	20800	21100	21400					
			0	0	20.37	21.42	21.23					
		1	24	0	21.48	21.44	20.90					
			49	0	23.10	20.86	21.87					
	QPSK		0	1	19.99	21.57	20.02					
		25	12	1	20.01	21.56	21.07					
			25	1	21.36	21.77	21.89					
10MHz		50	0	1	20.67	20.58	21.93					
I OIVII IZ			0	1	19.66	21.20	21.11					
		1	24	1	21.18	21.87	21.99					
			49	1	22.47	20.51	21.00					
	16QAM		0	2	19.06	21.87	20.24					
		25	12	2	19.12	20.81	20.26					
			25	2	20.46	21.01	20.07					
		50	0	2	19.82	21.81	20.17					

Page 45 of 174

Conducted Power of LTE Band 7 (dBm)											
			RB	Target	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	MPR	20825	21100	21375				
			0	0	21.74	21.82	21.12				
		1	37	0	21.78	22.04	20.43				
			74	0	20.53	22.66	20.25				
	QPSK		0	1	21.21	21.13	19.58				
		37	16	1	21.30	21.11	19.75				
			35	1	20.30	21.17	19.76				
4EMU-		75	0	1	20.30	21.27	19.73				
15MHz		0	1	20.95	21.05	20.34					
	1	37	1	21.91	21.11	19.51					
			74	1	19.67	21.83	19.25				
	16QAM		0	2	20.30	21.12	19.62				
		37	16	2	20.30	21.10	19.75				
			35	2	21.30	21.28	19.76				
		75	0	2	20.25	20.25	18.73				
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel				
Danawiatii	Woddiation	ND SIZE	offset	MPR	20850	21100	21350				
			0	0	23.66	24.41	23.94				
		1	49	0	23.39	20.73	21.40				
			99	0	24.70	21.51	21.04				
	QPSK		0	1	20.84	21.52	20.14				
		50	25	1	20.89	20.47	22.12				
			49	1	21.44	21.94	21.04				
20MHz		100	0	1	22.91	21.74	21.52				
201411 12			0	1	19.03	21.89	21.50				
		1	49	1	21.91	22.10	21.94				
			99	1	21.22	21.97	21.55				
	16QAM		0	2	20.05	21.67	21.33				
		50	25	2	20.04	21.68	21.31				
			49	2	23.57	21.15	21.25				
		100	0	2	22.17	22.99	22.70				



		Conducte	d Power o	of LTE Band 12(d	dBm)		
			RB		Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	23017	23095	23173
			0	0	21.60	22.39	20.87
		1	3	0	21.46	22.21	20.84
			5	0	20.43	22.02	20.70
	QPSK		0	0	20.72	22.54	21.93
		3	2	0	20.68	22.52	21.93
			3	0	20.58	22.18	21.82
4 4841-		6	0	1	23.38	21.32	20.99
1.4MHz			0	1	21.95	21.08	19.35
		1	3	1	23.89	20.92	20.92
			5	1	23.85	20.61	20.76
	16QAM		0	1	23.15	21.21	20.20
		3	2	1	23.15	21.21	21.20
			3	1	23.28	21.00	20.70
		6	0	2	22.77	20.23	21.98
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Banawiatii	Modulation	ND 3120	offset	rarget wir ix	23025	23095	23165
			0	0	21.51	22.92	18.85
		1	7	0	21.33	22.19	20.93
			14	0	21.34	21.48	20.65
	QPSK		0	1	23.37	21.50	20.91
		8	4	1	23.40	21.50	21.93
			7	1	23.27	20.95	20.93
3MHz		15	0	1	23.32	21.37	17.63
JIII IZ			0	1	23.26	21.53	18.45
		1	7	1	23.07	20.85	20.53
			14	1	22.94	20.10	19.82
	16QAM		0	2	22.68	20.60	20.82
		8	4	2	22.69	20.59	20.83
			7	2	22.52	19.97	20.97
		15	0	2	22.62	20.16	21.49


Page 47 of 174

	Conducted Power of LTE Band 12(dBm)											
Don duridth	Meduletien	DD oi=o	RB	Torrect MDD	Channel	Channel	Channel					
Bandwidth	Modulation	RB size	offset	Target MPR	23035	23095	23155					
			0	0	21.58	23.30	19.98					
		1	13	0	21.28	22.06	18.71					
			24	0	23.90	20.76	20.84					
	QPSK		0	1	23.59	21.78	20.29					
		12	6	1	23.31	21.91	20.31					
			13	1	22.95	20.64	21.56					
5MHz		25	0	1	23.18	21.34	18.09					
SIVIFIZ			0	1	22.81	22.45	18.66					
		1	13	1	22.50	21.42	20.72					
	16QAM		24	1	22.11	20.06	21.49					
		16QAM		0	2	22.47	20.90	20.13				
		12	6	2	22.63	20.89	20.22					
			13	2	22.11	19.63	21.43					
		25	0	2	22.41	20.21	21.07					
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel					
Banawiatii	Modulation	ND 3120	offset	rarget wir ix	23060	23095	23130					
			0	0	23.87	23.47	23.13					
		1	25	0	20.15	20.75	20.31					
			49	0	19.06	20.84	21.22					
	QPSK		0	1	19.50	21.62	20.93					
		25	13	1	19.49	21.64	20.94					
			25	1	18.26	20.35	21.77					
10MHz		50	0	1	18.79	21.73	21.93					
I OWN IZ			0	1	19.98	18.89	20.85					
		1	25	1	20.70	20.48	20.41					
			49	1	20.92	20.78	20.94					
	16QAM		0	2	21.67	20.76	20.93					
		25	13	2	20.72	21.76	21.87					
			25	2	19.13	21.61	21.57					
		50	0	2	20.92	20.69	20.02					

	Conducted Power of LTE Band 13(dBm)										
5 1 1 1 1 1			RB	T (MDD	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	Target MPR	23205	23230	23255				
			0	0	20.86	21.23	21.86				
		1	13	0	21.31	21.67	22.28				
			24	0	21.72	21.97	22.43				
	QPSK		0	1	20.34	20.67	20.94				
		12	6	1	20.34	20.61	20.91				
			13	1	20.64	20.87	21.17				
ENALL-		25	0	1	20.37	20.86	20.97				
5MHz			0	1	19.19	20.50	20.73				
		1	13	1	19.92	20.94	20.72				
	16QAM		24	1	20.38	21.19	21.05				
		12	0	2	19.09	19.84	19.80				
			6	2	19.08	19.86	19.70				
			13	2	19.68	19.97	20.12				
		25	0	2	19.64	19.65	20.11				
Bandwidth	Modulation	RB size	RB	Target MPR		Channel					
Banawian	Modulation	NB SIZE	offset	rarget iiii r		23230					
			0	0	21.58						
		1	25	0		21.71					
			49	0		22.34					
	QPSK		0	1		20.36					
		25	13	1		20.34					
			25	1		21.06					
10MHz		50	0	1		20.91					
10141112			0	1		19.84					
		1	25	1		20.71					
			49	1		20.90					
	16QAM		0	2		19.50					
		25	13	2		19.52					
			25	2		20.02					
		50	0	2		19.71					

		Conducte	d Power o	of LTE Band 17(d	dBm)		
D 1 1 1 1 1 1 1			RB	T (MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	23755	23790	23825
			0	0	20.16	18.57	20.10
		1	13	0	19.12	20.99	21.89
			24	0	20.98	20.65	20.10
	QPSK		0	1	18.81	19.95	21.76
		12	6	1	18.81	20.02	20.69
			13	1	20.78	20.51	21.95
ENALL-	5MHz	25	0	1	18.24	20.39	21.59
SIVITZ			0	1	21.44	20.08	21.49
		1	13	1	20.59	20.57	21.53
			24	1	20.68	21.23	20.27
	16QAM	12	0	2	20.64	21.84	20.71
			6	2	20.64	20.79	21.71
			13	2	21.63	20.50	21.03
		25	0	2	20.08	21.34	20.61
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Banawiatii	Woddiation	ND SIZE	offset	rarget wir ix	23780	23790	23800
		1	0	0	21.95	21.80	21.67
			25	0	19.57	20.95	18.38
			49	0	20.06	20.58	19.24
	QPSK		0	1	20.89	21.46	20.13
		25	13	1	21.90	21.54	20.86
			25	1	21.48	21.82	21.72
10MHz		50	0	1	21.90	20.40	21.12
TOWITIE			0	1	18.50	18.27	21.91
		1	25	1	20.53	20.76	20.70
			49	1	21.13	21.73	20.72
	16QAM		0	2	21.88	20.42	21.02
		25	13	2	20.80	20.35	20.96
			25	2	21.40	20.84	21.78
		50	0	2	20.76	21.40	20.88

Page 50 of 174

		Conducte	d Power o	of LTE Band 25(d	dBm)		
5 1 1 11			RB		Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26047	26365	26683
			0	0	21.59	23.80	20.43
		1	2	0	20.72	23.66	20.31
			5	0	20.80	23.56	20.18
	QPSK		0	0	20.73	23.67	21.38
		3	1	0	21.74	23.78	20.37
			3	0	20.84	23.62	20.19
4 4000-		6	0	1	20.76	22.66	20.12
1.4111172	1.4MHz		0	1	19.56	23.00	20.73
		1	2	1	19.61	22.87	20.05
			5	1	19.66	22.76	21.92
	16QAM		0	1	18.47	22.66	21.05
		3	1	1	20.46	22.46	20.05
			3	1	20.57	22.49	21.01
		6	0	2	20.03	21.77	20.50
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Barrawiatir	Modulation		offset	Target III IX	26055	26365	26675
		1	0	0	19.54	23.95	20.53
			8	0	19.77	23.71	20.32
			14	0	19.93	23.34	20.10
	QPSK		0	1	20.75	22.81	20.51
		8	4	1	20.73	22.82	21.53
			7	1	20.95	22.48	21.33
3MHz		15	0	1	21.72	22.64	21.34
OWN IZ			0	1	20.61	22.58	18.44
		1	8	1	18.82	22.25	19.15
			14	1	19.07	21.97	20.03
	16QAM		0	2	17.92	21.98	20.60
		8	4	2	17.96	21.98	20.70
			7	2	18.17	21.76	20.40
		15	0	2	19.87	21.77	20.52

Page 51 of 174

		Conducte	d Power o	of LTE Band 25(d	dBm)		
5 1 1 11			RB		Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26065	26365	26665
			0	0	20.59	24.13	18.95
		1	12	0	19.94	23.53	18.47
			24	0	20.23	23.03	18.09
	QPSK		0	1	18.82	23.02	17.83
		12	6	1	18.81	23.03	17.76
			13	1	19.12	22.42	17.42
5MHz		25	0	1	18.84	22.59	17.55
ЭМП			0	1	18.23	22.48	20.22
		1	12	1	18.59	21.97	20.01
			24	1	18.86	21.40	20.54
	16QAM		0	2	17.86	22.08	20.82
		12	6	2	17.83	22.08	20.84
			13	2	18.21	21.46	20.47
		25	0	2	18.22	21.91	20.71
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Banawiani	Modulation	IND SIZE	offset	Target III IX	26090	26365	26640
		1	0	0	19.54	21.46	20.01
			24	0	20.21	20.46	20.93
			49	0	21.07	22.53	20.04
	QPSK		0	1	19.01	23.04	18.44
		25	12	1	18.86	23.15	18.41
			25	1	19.63	22.05	20.40
10MHz		50	0	1	19.30	22.68	21.96
I OWII IZ			0	1	20.93	23.79	18.86
		1	24	1	18.67	22.76	20.97
			49	1	19.51	21.30	20.14
	16QAM		0	2	18.10	22.12	20.54
		25	12	2	18.11	22.12	20.61
			25	2	18.93	21.07	19.59
		50	0	2	18.49	21.76	20.09

Page 52 of 174

		Conducte	d Power o	of LTE Band 25(c	lBm)		
Don duri déla	Meduletien	DD oi=o	RB	Torrect MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26115	26365	26615
			0	0	19.61	25.02	21.06
		1	38	0	20.61	23.52	19.72
			74	0	22.15	22.19	18.20
	QPSK		0	1	19.79	22.76	18.80
		38	18	1	19.76	22.69	18.86
			37	1	19.75	22.86	18.84
15MU-	15MHz	75	0	1	19.74	22.85	18.84
TOWINZ		1	0	1	18.47	24.05	19.91
			38	1	19.52	22.41	18.49
			74	1	21.01	21.05	20.18
	16QAM		0	2	19.77	22.69	18.86
		38	18	2	19.75	22.88	18.85
			37	2	19.74	22.86	18.84
		75	0	2	18.96	21.98	20.94
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Banawiatii	Modulation	ND 3120	offset	rarget iiii ix	26140	26365	26590
		1	0	0	24.86	24.72	24.78
			49	0	23.33	23.82	22.62
			99	0	24.21	22.10	18.58
	QPSK		0	1	19.37	23.79	20.28
		50	25	1	19.42	23.69	20.10
			50	1	21.57	21.62	18.28
20MHz		100	0	1	20.52	22.80	19.36
ZUMITZ			0	1	18.73	24.24	20.57
		1	49	1	20.25	22.74	19.44
			99	1	23.15	20.89	17.45
	16QAM		0	2	18.59	22.93	19.31
		50	25	2	18.57	22.92	19.35
			50	2	20.63	20.85	20.43
		100	0	2	19.60	21.95	18.46

Page 53 of 174

		Conducted	d Power o	f LTE Band 26A(dBm)		
Dan de dale		DD sins	RB	Towns (MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26797	26915	27033
			0	0	22.64	18.60	21.10
		1	2	0	22.36	18.89	21.24
			5	0	22.21	19.00	21.19
	QPSK		0	0	22.68	18.68	21.05
		3	1	0	22.63	18.63	21.19
			3	0	22.42	18.95	21.53
1 AMU-		6	0	1	21.36	17.71	20.09
1.4MHz		0	1	22.33	20.20	20.39	
		1	2	1	22.02	20.44	20.55
			5	1	21.93	20.56	20.67
	16QAM		0	1	21.25	21.17	19.62
		3	1	1	21.34	20.31	19.72
			3	1	21.16	20.65	19.80
		6	0	2	20.55	20.65	19.72
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
	oudidion	112 0.20	offset		26805	26915	27025
		1	0	0	22.66	18.19	20.38
			8	0	22.00	18.96	21.02
			14	0	21.30	19.47	21.52
	QPSK		0	1	21.32	21.47	19.62
		8	4	1	21.36	20.46	19.61
			7	1	20.77	21.93	20.10
3MHz		15	0	1	20.95	20.56	19.86
JIIII IZ			0	1	21.28	20.91	18.97
		1	8	1	20.67	20.48	19.64
			14	1	20.04	18.00	20.15
	16QAM		0	2	20.36	21.66	18.68
		8	4	2	20.36	20.65	18.67
			7	2	19.85	21.14	19.65
		15	0	2	19.92	20.74	18.90

Page 54 of 174

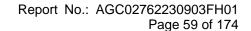
		Conducted	d Power o	f LTE Band 26A(dBm)		
Don duvidala	Madulatian	DD aire	RB	Toward MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26815	26915	27015
			0	0	22.52	21.92	19.36
		1	12	0	21.37	18.77	20.36
			24	0	20.09	19.81	21.35
	QPSK		0	1	21.04	20.22	18.94
	12	6	1	21.06	20.23	18.93	
			13	1	19.86	18.22	20.05
5MH-7	5MHz	25	0	1	20.45	20.66	19.47
JIVII IZ			0	1	20.95	20.16	20.67
		1	12	1	19.66	20.89	18.76
			24	1	18.42	18.98	19.56
	16QAM		0	2	20.01	20.42	20.90
		12	6	2	20.02	20.40	20.90
			13	2	18.71	20.38	18.84
		25	0	2	19.57	21.91	18.49
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
	oudidion	112 0.20	offset		26840	26915	26990
			0	0	22.57	20.80	16.92
		1	24	0	19.74	18.63	19.30
			49	0	17.94	20.99	21.22
	QPSK		0	1	20.33	19.15	20.13
		25	12	1	20.34	19.08	20.22
			25	1	21.51	19.00	19.38
10MHz		50	0	1	19.05	18.25	18.39
. 0 12			0	1	21.49	20.80	21.93
		1	24	1	18.44	20.60	18.07
			49	1	20.94	19.92	19.87
	16QAM		0	2	19.29	20.30	20.53
		25	12	2	19.24	20.30	20.54
			25	2	20.97	18.54	18.32
		50	0	2	18.15	20.39	19.41

Page 55 of 174

	Conducted Power of LTE Band 26A(dBm)										
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel				
Danuwium	Wiodulation	KD SIZE	offset	Target WIFK	26865	26915	26965				
			0	0	24.41	24.11	24.14				
		1	38	0	22.16	22.64	21.57				
			74	0	19.55	22.18	24.61				
QPS	QPSK	38	0	1	18.53	18.75	20.92				
			18	1	18.49	18.68	20.99				
			37	1	18.46	18.66	20.95				
45MU-		75	0	1	18.43	18.65	20.92				
15MHz		1	0	1	21.37	18.09	20.21				
			38	1	20.07	20.62	20.43				
			74	1	18.55	21.27	23.46				
	16QAM		0	2	18.51	18.69	21.01				
		38	18	2	18.47	18.67	20.97				
			37	2	18.44	18.65	20.93				
		75	0	2	17.91	20.87	20.32				

Page 56 of 174

		Conducted	d Power o	f LTE Band 26B((dBm)		
Donducidale	Medulation	DD size	RB	Torrect MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	26697	26740	26783
			0	0	19.60	18.46	19.27
		1	2	0	19.47	18.31	19.05
			5	0	19.38	18.21	19.97
	QPSK		0	0	19.57	18.33	20.11
	3	1	0	19.64	18.32	20.10	
			3	0	19.41	18.19	20.93
1.4MHz		6	0	1	18.30	19.31	20.96
I . 4 IVI∏∠			0	1	19.00	20.11	20.00
		1	2	1	18.80	20.99	20.82
			5	1	18.92	20.82	20.76
	16QAM		0	1	18.12	20.07	20.02
		3	1	1	18.22	20.10	20.04
			3	1	18.09	19.88	20.78
		6	0	2	20.61	19.66	20.58
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
	modulation	112 0120	offset	- Idigot IIII IX	26705	26740	26775
			0	0	19.66	18.69	19.74
		1	8	0	19.31	18.33	20.29
			14	0	18.92	20.93	20.99
	QPSK		0	1	18.46	20.41	20.47
		8	4	1	18.34	19.52	20.38
			7	1	20.97	18.04	20.06
3MHz		15	0	1	18.10	19.27	20.31
JIVII IZ			0	1	19.37	19.44	20.46
		1	8	1	18.08	20.89	20.03
			14	1	20.74	20.49	20.73
	16QAM		0	2	20.43	20.93	20.87
		8	4	2	20.39	20.94	20.87
			7	2	20.13	20.61	20.52
		15	0	2	19.22	20.61	20.67


Page 57 of 174

		Conducted	d Power o	f LTE Band 26B(dBm)		
Don duridáb	Medulation	RB size	RB	Torrect MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB Size	offset	Target MPR	26715	26740	26765
			0	0	19.55	18.73	18.20
		1	12	0	18.80	18.19	20.60
			24	0	18.29	20.46	20.94
	QPSK		0	1	18.32	20.73	20.77
		12	6	1	18.23	20.70	20.90
			13	1	19.75	20.97	20.25
5MU-7	5MHz	25	0	1	19.90	19.28	20.46
SIVITIZ			0	1	20.96	18.08	20.95
		1	12	1	20.31	19.46	20.10
			24	1	20.66	20.80	20.61
	16QAM		0	2	19.21	20.71	20.26
		12	6	2	19.18	20.73	20.27
			13	2	20.72	20.50	20.49
		25	0	2	20.07	20.81	19.02
Bandwidth	Modulation	RB size	RB	Target MPR		Channel	
<u> </u>	modulation	112 0120	offset	_		26740	
			0	0		21.23	
		1	24	0	23.30		
			49	0		21.84	
	QPSK		0	1		22.71	
		25	12	1		22.68	
			25	1		21.58	
10MHz		50	0	1		22.16	
10171112			0	1		23.24	
		1	24	1		22.42	
			49	1		21.03	
	16QAM		0	2		21.57	
		25	12	2		21.56	
			25	2		20.44	
		50	0	2		21.03	

Page 58 of 174

	Conduct	ed Power of LT	E Band 26B	(dBm)	
Bandwidth	Modulation	RB size	RB	Target	Channel
Danuwium	Modulation	RD SIZE	offset	MPR	26765
			0	0	23.23
		1	38	0	20.47
			74	0	21.64
	QPSK	38	0	1	20.48
			18	1	19.46
			37	1	21.46
45MH-		75	0	1	21.46
15MHz		1	0	1	20.43
			38	1	20.4
			74	1	20.49
	16QAM		0	2	21.46
		38	18	2	21.46
			37	2	20.46
		75	0	2	21.94

		Conducte	d Power o	of LTE Band 66(d	dBm)		
D	Mar I ladian	DD at a	RB	Tarrest MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	131979	132422	132665
			0	0	23.54	20.08	23.13
		1	2	0	23.37	20.16	23.18
			5	0	23.28	20.20	23.26
	QPSK		0	0	23.48	20.15	23.17
1.4MHz		3	1	0	23.47	20.07	23.09
			3	0	23.33	20.10	23.16
		6	0	1	22.39	24.23	22.15
1.411172			0	1	22.77	24.67	22.26
		1	2	1	22.66	24.78	22.45
			5	1	22.47	24.78	22.51
	16QAM		0	1	22.12	23.46	21.76
		3	1	1	22.11	23.39	21.85
			3	1	21.92	23.55	21.92
		6	0	2	21.47	23.23	21.43
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Danawiatii	Woddiation	ND SIZE	offset	rarget wir ix	131987	132422	132657
		1	0	0	23.45	24.85	22.73
			8	0	23.06	20.15	22.89
			14	0	22.75	20.39	23.15
	QPSK		0	1	22.28	23.87	21.85
		8	4	1	22.27	24.00	21.87
			7	1	21.93	24.17	22.01
3MHz		15	0	1	22.14	24.12	22.01
SIVII IZ			0	1	22.35	23.57	21.72
		1	8	1	21.88	23.93	21.93
			14	1	21.67	24.15	22.08
	16QAM		0	2	21.55	23.18	21.08
		8	4	2	21.54	23.19	21.08
			7	2	21.19	23.50	21.28
		15	0	2	21.24	23.27	21.13

Page 60 of 174

		Conducte	d Power o	of LTE Band 66(d	dBm)		
Don duvidala	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	131997	132422	132647
			0	0	23.42	24.65	22.65
		1	12	0	22.72	20.06	22.90
			24	0	22.52	20.57	23.19
	QPSK		0	1	22.17	23.93	21.76
		12	6	1	22.16	23.93	21.74
			13	1	21.65	24.34	22.03
5MHz	25	0	1	21.88	24.14	21.90	
JIVII IZ			0	1	21.83	23.05	21.08
		1	12	1	21.18	23.52	21.24
			24	1	21.00	24.04	21.72
	16QAM		0	2	21.24	23.96	20.84
		12	6	2	21.23	23.97	20.83
			13	2	12.75	23.41	21.10
		25	0	2	21.02	23.28	21.12
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Buridwidth	Modulation	IND SIZE	offset	rarget iii ix	132022	132422	132622
		1	0	0	23.34	24.58	25.02
			24	0	23.22	25.14	25.09
			49	0	24.53	24.93	25.66
	QPSK		0	1	22.99	23.77	24.83
		25	12	1	23.01	23.80	24.84
			25	1	23.73	24.39	25.39
10MHz		50	0	1	23.32	24.10	25.09
10.71112			0	1	23.18	23.74	25.16
		1	24	1	23.01	24.31	25.20
			49	1	23.35	25.13	24.85
	16QAM		0	2	23.97	22.75	23.92
		25	12	2	22.02	22.74	23.93
			25	2	22.69	23.42	24.42
		50	0	2	22.34	23.08	24.18

Page 61 of 174

		Conducte	d Power o	of LTE Band 66(d	dBm)		
Don duvidala	Madulation	DD oi-o	RB	Toward MDD	Channel	Channel	Channel
Bandwidth	Wodulation	RB Size	offset	Target MPR	132047	132422	132597
			0	0	23.24	Channel Channel Channel 132047 132422 132597	
	Modulation RB size Offset Target MPR 132047 132422		22.45				
Bandwidth Modulation RB size RB offset Target MPR offset 13	22.95	21.82	22.96				
	QPSK		0	1	22.46	24.51	21.73
		38	18	1	22.44	24.41	21.66
			37	1	22.44	24.35	21.65
15MU-		75	0	1	22.42	24.36	21.64
ISMINZ			0	1	22.18	23.13	21.71
Description of the second of t	1	38	1	21.71	24.01	21.57	
	16QAM		74	1	23.78	20.75	22.11
			0	2	22.45	24.49	21.66
		38	18	2	22.44	24.47	21.65
			37	2	22.43	24.38	21.64
		75	0	2	21.52	23.47	20.71
Randwidth	Modulation	ulation RB size RB offset Target I		Target MPR	Channel	Channel	Channel
Banawiani	Modulation			rarget wir ix	132072	132422	132572
			0	1 22.18 23.13 21.71 1 21.71 24.01 21.57 1 23.78 20.75 22.11 2 22.45 24.49 21.66 2 22.44 24.47 21.65 2 22.43 24.38 21.64 2 21.52 23.47 20.71 2 25.36 25.26 24.85 0 25.36 25.26 24.85 0 23.80 20.38 22.76 0 23.81 22.46 23.19 1 21.87 23.42 21.80 1 22.04 20.28 21.62 1 23.11 24.55 21.78 1 22.03 23.41 22.11 1 22.48 23.58 22.01	24.85		
		1	49	1 22.44 24.35 21.65 1 22.42 24.36 21.64 1 22.18 23.13 21.71 3 1 21.71 24.01 21.57 4 1 23.78 20.75 22.11 2 22.45 24.49 21.66 3 2 22.44 24.47 21.65 7 2 22.43 24.38 21.64 2 21.52 23.47 20.71 3 132072 132422 13257 0 25.36 25.26 24.85 0 23.80 20.38 22.76 0 23.80 20.38 22.76 0 23.81 22.46 23.19 1 21.87 23.42 21.80 1 21.87 23.42 21.80 1 22.04 20.28 21.62 1 23.11 24.55 21.78 1 22.03 23.41 22.11 2 2.04 20.28 21.62 1 22.48 23.58 22.01 2 21.01 23.69 20.90		22.76	
			99	0	23.11	22.46	23.19
	QPSK		0	1	21.87	23.42	21.80
		50	25	1	21.87	23.40	21.71
			50	1	22.04	20.28	21.62
20MHz		100	0	1	23.11	24.55	21.78
ZOIVII IZ			0	1	22.03	23.41	22.11
	16QAM	1	49	1	22.48	23.58	22.01
			99	1	22.69	20.90	22.37
			0	2	21.01	23.69	20.92
		50	25	2	21.01	23.68	20.93
			50	2	23.21	24.45	20.79
		100	0	2	22.28	23.69	20.93

Page 62 of 174

		Conducte	d Power o	of LTE Band 71(d	dBm)		
Dan de dalle	Mandadata.	DD sins	RB	Towns (MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB SIZE	offset	Target MPR	133147	133297	133447
			0	0	Channel Channel Channel Channel 133147 133297 13344 0 21.51 21.36 21.19 0 21.59 21.28 20.97 1 20.63 20.40 20.22 1 20.61 20.36 20.09 1 20.82 20.25 19.90 1 20.73 20.33 20.16 1 20.06 20.32 19.53 1 20.15 20.30 19.45 1 19.91 20.27 19.35 1 19.91 20.27 19.35 2 19.87 19.47 19.20 2 19.87 19.47 19.20 2 19.87 19.47 19.20 2 19.87 19.47 19.20 2 19.87 19.47 19.20 3 19.75 19.58 18.91 4 19.87 19.34 19.13	21.24	
	Modulation RB size offset offset offset Target MPR 133147 133127 133127 133127 133127 133127 133127 133127 13322 121.3 121			21.36	21.19		
Bandwidth Modulation RB size C C C C C C C C C			24	0	21.59	21.28	20.97
	QPSK		0	1	20.63	20.40	20.24
		12	6	1	20.61	20.36	20.09
			13	1	20.82	20.25	19.90
EMU-		25	0	1	20.73	20.33	20.16
SIVIFIZ			0	1	20.06	20.32	19.53
		1	12	1	20.15	20.30	19.45
	16QAM		24	1	19.91	20.27	19.35
			0	2	19.89	19.47	19.21
		12	6	2	19.87	19.47	19.20
			13	2	19.75	19.58	18.91
		25	0	2	19.87	19.34	19.13
Randwidth	Modulation	RR size		Target MPR	Channel	Channel	Channel
Banawiani	Modulation	ND 3120	offset	rarget wir ix	133172	133297	133422
			0	0	20.82 20.25 19 20.73 20.33 20 20.06 20.32 19 20.15 20.30 19 19.91 20.27 19 19.89 19.47 19 19.87 19.47 19 19.87 19.58 18 19.87 19.34 19 Channel Channel Channel Channel 19.76 19.81 19 19.97 19.85 19 18.99 18.94 18 18.97 18.99 18 18.84 18.92 18 18.89 18.90 18 18.90 19.31 18 19.13 19.29 18	19.75	
		1	24	0		19.38	
Bandwidth			49	0	19.97	19.85	19.16
	QPSK		0	1	18.99	18.94	18.66
		25	12	1	18.97	18.99	18.66
			25	1	18.84	18.92	18.32
10MH -		50	0	1	18.89	18.90	18.46
I OIVITIZ			0	1	19.30	19.42	18.98
		1	24	1	18.90	19.31	18.52
	16QAM		49	1	19.13	19.29	18.40
			0	2	17.92	18.01	17.67
		25	12	2	17.92	18.00	17.66
			25	2	17.80	17.93	17.36
		50	0	2	17.86	17.84	17.43

Page 63 of 174

		Conducte	d Power o	of LTE Band 71(c	iBm)		
Dan druidth	Madulation	DD oi-o	RB	RB Fset Target MPR Channel Channel	Channel	Channel	
Bandwidth	wodulation	RB Size	O O O O O O O O O O	133197	133297	133397	
			0	0	Channel Channel Channel 133197 133297 13337 13337 13337 13337 133372 13		
	Modulation RB size offset Target MPR 133197 133297 QPSK 1 0 0 21.67 21.34 QPSK 1 38 0 21.49 21.40 74 0 1 20.22 20.62 37 1 20.08 20.92 75 0 1 20.37 20.45 74 1 20.06 20.92 74 1 20.06 20.92 74 1 20.06 20.92 38 18 2 19.96 20.57 37 2 20.04 20.91 75 0 2 19.76 19.48 Modulation RB size RB methods Channel 133222 133322 13322 133322						

Page 64 of 174

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1 of the 3GPP TS36.101.

Table 6.2.3.3-1 Maximum Power Reduction (MPR) for Power class3

NA LLC	Maximum Power Reduction (MPR) for Power[RB]										
Modulation	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	MPR(dB)				
QPSK	>5	>4	>8	>12	>16	>18	≤1				
16QAM	≤5	≤4	≤8	≤12	≤16	≤18	≤1				
16QAM	>5	>4	>8	>12	>16	>18	≤2				

The allowed A-MPR values specified below in Table 6.2.4.3-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".3

Page 65 of 174

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signaling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,15,20	Table 5.4.2-1	N/A
			3	>5	≤1
		2 4 40 22	5	>6	≤1
NS_03	6.6.2.2.3.1	2,4,10, 23, 25,35,36	10	>6	≤1
		25,55,50	15	>8	≤1
			20	>10	≤1
NC 04	6.6.2.2.3.2	41	5	>6	≤1
NS_04	0.0.2.2.3.2	41	10, 15, 20	Table 6	.2.4.3-4
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2-1	N/A
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.3.4	21	10, 15	> 40	≤ 1 ≤ 2
NO 40		20	45.00	> 55	
NS_10	0.0004	20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3
NS_11	6.6.2.2.1 6.6.3.3.13	231	1.4, 3, 5, 10,15,20	Table 6.2.4.3-5	Table 6.2.4.3-5
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table 6.2.4.3-6	Table 6.2.4.3-6
NS_13	6.6.3.3.6	26	5	Table 6.2.4.3-7	Table 6.2.4.3-7
NS_14	6.6.3.3.7	26	10, 15	Table 6.2.4.3-8	Table 6.2.4.3-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table 6.2.4.3-9	Table 6.2.4.3-9,
110_13	0.0.3.3.0	20	1.4, 0, 0, 10, 10	Table 6.2.4.3-10	
NS_16	6.6.3.3.9	27	3, 5, 10		Table 6.2.4.3-12, 2.4.3-13
NO 47	6.6.3.3.10	28	5, 10	Table 5.4.2-1	N/A
NS_17	6.6.3.3.11	28	5	≥ 2	≤ 1
NS_18			10, 15, 20	≥ 1	≤ 4
NS_19			10, 15, 20	Table 6.2.4.3-15	Table 6.2.4.3-15
NS_20			5, 10, 15, 20	Table 6.2.4.3-14	
NS_20	-	-	-	-	-

Page 66 of 174

Bluetooth_V5.0(BR/EDR)

Diactootii_vo.o(Bit	·		
Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	-2.631
GFSK	39	2441	-2.803
	78	2480	-2.602
	0	2402	-1.408
π /4-DQPSK	39	2441	-1.592
	78	2480	-1.309
	0	2402	-0.999
8-DPSK	39	2441	-1.180
	78	2480	-0.935

Page 67 of 174

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/kg, SAR testing with a headset connected is not required.
- 5. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 6. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result
- 7. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1RB allocation using the RB offset and required test channel combination with highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 8. Per KDB 941125 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 9. Per KDB 941125 D05v02r05. For QPSK with 100% RB allocation. SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1RB allocation and the highest reported SAR is >1.45 W/kg, the remaining required test channels must also be tested.
- 10. Per KDB 941125 D05v02r05. 16QAM output power for each RB allocation configuration is not 1/2 dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤1.45W/kg, Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.

Page 68 of 174

11. Per KDB 941125 D05v02r05. Smaller bandwidth output power for each RB allocation configuration is >not 1/2 dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤1.45W/kg. Per KDB 941125 D05v02r05, smaller bandwidth SAR testing is not required.

Page 69 of 174

13.1.3. Test Result

SAR MEASUREMENT	
Depth of Liquid (cm):>15	Relative Humidity (%): 60.8
Product: 4G Feature Phone	

Test Mode: WCDMA Band V with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.4	-0.18	0.671	21.30	21.17	0.691	1.6
Left Tilt	RMC 12.2kbps	4183	836.4	0.32	0.343	21.30	21.17	0.353	1.6
Right Cheek	RMC 12.2kbps	4183	836.4	-0.25	0.676	21.30	21.17	0.697	1.6
Right Tilt	RMC 12.2kbps	4183	836.4	-0.17	0.362	21.30	21.17	0.373	1.6
Body back	RMC 12.2kbps	4183	836.4	-0.29	0.741	21.30	21.17	0.764	1.6
Body front	RMC 12.2kbps	4183	836.4	0.22	0.630	21.30	21.17	0.649	1.6

Note:

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back andbody front is 10mm of all above table.

Page 70 of 174

|--|

Depth of Liquid (cm):>15 Relative Humidity (%): 59.4

Product: 4G Feature Phone

Test Mode: LTE Band 2

ВМ		Position	Test Mode			Freq.	Power	SAR	Max. Tune	Meas. output	Scaled	Limit
MHz	MOD		UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	up Power (dBm)	Power (dBm)	SAR (W/kg)	(W/kg)
		Left Cheek	1	0	18900	1880	-0.28	0.483	24.20	23.76	0.534	1.6
	QPSK	Left Tilt	1	0	18900	1880	0.33	0.230	24.20	23.76	0.255	1.6
		Right Cheek	1	0	18900	1880	-0.37	0.526	24.20	23.76	0.582	1.6
20		Right Tilt	1	0	18900	1880	0.15	0.237	24.20	23.76	0.262	1.6
20		Body back	1	0	18700	1860	-0.10	1.050	24.20	23.87	1.133	1.6
		Body back	1	0	18900	1880	-0.12	0.994	24.20	23.76	1.100	1.6
		Body back	1	0	19100	1900	0.38	1.052	24.20	23.72	1.175	1.6
		Body front	1	0	18900	1880	-0.18	0.612	24.20	23.72	0.684	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation for body back andbody front is 10mm of all above table.

Page 71 of 174

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 60.6

Product: 4G Feature Phone

Test Mode: LTE Band 4

ВМ		Position	Test Mode			Freq.	Power	SAR	Max. Tuneu	Meas. output	Scaled	Limit
MHz	MOD		UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	p Power (dBm)	Power (dBm)	SAR (W/kg)	(W/kg)
	QPSK -	Left Cheek	1	0	20175	1732.5	-0.30	0.315	24.00	23.73	0.335	1.6
		Left Tilt	1	0	20175	1732.5	0.13	0.187	24.00	23.73	0.199	1.6
		Right Cheek	1	0	20175	1732.5	-0.27	0.375	24.00	23.73	0.399	1.6
20		Right Tilt	1	0	20175	1732.5	-0.52	0.251	24.00	23.73	0.267	1.6
20		Body back	1	0	20050	1720	0.17	0.966	24.00	23.79	1.014	1.6
		Body back	1	0	20175	1732.5	-0.53	1.048	24.00	23.73	1.115	1.6
		Body back	1	0	20300	1745	-0.61	1.029	24.00	23.80	1.077	1.6
		Body front	1	0	20175	1732.5	0.42	0.431	24.00	23.73	0.459	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation for body back andbody front is 10mm of all above table.

Page 72 of 174

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 60.8

Product: 4G Feature Phone

Test Mode: LTE Band 5

ВМ		Position	Test Mode			Freg.	Power	SAR (1g)	Max. Tuneup	Meas. output	Scaled	Limit
MHz	MOD		UL RB Allocati on	UL RB START	Ch.	(MHz)	Drift (<±5%)	(W/kg)	Power (dBm)	Power (dBm)	SAR (W/kg)	(W/kg)
		Left Cheek	1	0	20525	836.5	-0.31	0.745	22.50	21.68	0.900	1.6
	QPSK	Left Tilt	1	0	20525	836.5	-0.28	0.355	22.50	21.68	0.429	1.6
		Right Cheek	1	0	20525	836.5	0.32	0.726	22.50	21.68	0.877	1.6
10		Right Tilt	1	0	20525	836.5	-0.25	0.356	22.50	21.68	0.430	1.6
		Body back	1	0	20450	829	-0.30	0.836	22.50	22.31	0.873	1.6
		Body back	1	0	20525	836.5	0.19	0.835	22.50	21.68	1.009	1.6
		Body back	1	0	20600	844	-0.78	0.754	22.50	21.63	0.921	1.6
		Body front	1	0	20525	836.5	-0.20	0.657	22.50	21.68	0.794	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body back andbody front is 10mm of all above table.

Page 73 of 174

SAR MEA	SAR MEASUREMENT												
Depth of Liquid (cm):>15 Relative Humidity (%): 57.9													
Product: 4	Product: 4G Feature Phone												
Test Mode: LTE Band 7													
							Max	Mana					

BM MHz	MOD	Position	Test Mo	ode	Ch.	Freq.	Power Drift	SAR	Max. Tuneup	Meas. output	Scaled SAR	Limit
	MOD	Position	UL RB Allocation	UL RB START	On.	(MHz)	(<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	(W/kg)	(W/kg)
		Left Cheek	1	0	21100	2535	-0.07	0.168	24.70	24.41	0.180	1.6
		Left Tilt	1	0	21100	2535	-0.34	0.111	24.70	24.41	0.119	1.6
20	QPSK	Right Cheek	1	0	21100	2535	-0.15	0.202	24.70	24.41	0.216	1.6
		Right Tilt	1	0	21100	2535	-0.28	0.096	24.70	24.41	0.103	1.6
		Body back	1	0	21100	2535	0.26	0.728	24.70	24.41	0.778	1.6
		Body front	1	0	21100	2535	-0.24	0.120	24.70	24.41	0.128	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back andbody front is 10mm of all above table.

Page 74 of 174

SAR MEASUREMENT							
Depth of Liquid (cm):>15 Relative Humidity (%): 62.3							
Product: 4G Feature Phone							

Test Mode: LTE Band 12 Max. Meas. **Test Mode** SAR Scaled Power BM Freq. Tuneup output Limit MOD Position (1g) (W/kg) SAR Ch. Drift MHz **UL RB** UL RB (MHz) Power Power (W/kg) (<±5%) (W/kg) Allocation **START** (dBm) (dBm) Left Cheek 23095 707.5 -0.30 0.502 23.47 0.554 0 23.90 1.6 Left Tilt 1 0 23095 707.5 -0.15 0.271 23.90 23.47 0.299 1.6 Right 1 0 23095 707.5 0.70 0.511 23.90 23.47 0.564 1.6 Cheek 1 0 23095 707.5 0.262 23.90 23.47 0.289 Right Tilt -0.691.6 10 **QPSK** Body back 1 0 23060 704 -0.120.702 23.90 23.87 0.707 1.6 Body back 1 0 23095 707.5 -0.01 0.809 23.90 23.47 0.893 1.6 711 Body back 1 0 23130 -0.21 0.756 23.90 23.13 0.903 1.6

707.5

0.20

0.225

23.90

23.47

0.248

1.6

Note:

23095

0

1

Body front

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back andbody front is 10mm of all above table.

Page 75 of 174

SAR MEASUREMENT										
Depth of Liquid (cm):>15	Relative Humidity (%): 62.3									
Product: 4G Feature Phone										
Test Mode: LTE Band 13										

BM MHz	MOD	Position	Test Mo	ode	Ch.	Freq.	Power Drift	SAR	Max. Tuneup	Meas. output	Scaled SAR	Limit
	WIOD	Position	UL RB Allocation	UL RB START	Oil.	(MHz)	(<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	(W/kg)	(W/kg)
		Left Cheek	1	0	23230	782	-0.41	0.436	22.50	21.58	0.539	1.6
		Left Tilt	1	0	23230	782	-0.75	0.270	22.50	21.58	0.334	1.6
10	QPSK	Right Cheek	1	0	23230	782	0.51	0.414	22.50	21.58	0.512	1.6
		Right Tilt	1	0	23230	782	-0.68	0.266	22.50	21.58	0.329	1.6
		Body back	1	0	23230	782	-0.06	0.598	22.50	21.58	0.739	1.6
		Body front	1	0	23230	782	-0.62	0.336	22.50	21.58	0.415	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back andbody front is 10mm of all above table.

Page 76 of 174

SAR I	MEASUR	EMENT										
Depth	of Liquic	l (cm):>15			Relative I	Humidity (9	%): 62.3					
Produ	Product: 4G Feature Phone											
Test N	Test Mode: LTE Band 17											
BM MOD Recition Test Mode Freq. Power SAR Max. Meas. Tuneup output										Scaled	Limit	
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/kg)	(W/kg)
		Left Cheek	1	0	23790	710	-0.38	0.517	22.00	21.80	0.541	1.6
		Left Tilt	1	0	23790	710	0.51	0.246	22.00	21.80	0.258	1.6
10	QPSK	Right Cheek	1	0	23790	710	-0.44	0.521	22.00	21.80	0.546	1.6
		Right Tilt	1	0	23790	710	-0.21	0.270	22.00	21.80	0.283	1.6
		Body back	1	0	23790	710	-0.14	0.739	22.00	21.80	0.774	1.6
		Body front	1	0	23790	710	0.25	0.405	22.00	21.80	0.424	1.6

Note:

[•] When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back andbody front is 10mm of all above table.

Page 77 of 174

SAR MEASUREMENT									
Depth of Liquid (cm):>15	Relative Humidity (%): 59.4								
Product: 4G Feature Phone									
Test Mode: LTF Band 25									

ВМ	MOD	Position	Test Mo	ode	Ch.	Freq.	Power Drift	SAR	Max. Tuneup	Meas. output	Scaled SAR	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Oil.	(MHz)	(<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	(W/kg)	(W/kg)
	ODSK	Left Cheek	1	0	26365	1882.5	-0.16	0.515	25.10	24.72	0.562	1.6
		Left Tilt	1	0	26365	1882.5	-0.18	0.216	25.10	24.72	0.236	1.6
		Right Cheek	1	0	26365	1882.5 -0.60 0.49	0.498	25.10	24.72	0.544	1.6	
20	QPSK	Right Tilt	1	0	26365	1882.5	-0.51	0.182	25.10	24.72	0.199	1.6
		Body back	1	0	26140	1860	-0.39	1.091	25.10	24.86	1.153	1.6
		Body back	1	0	26365	1882.5	0.22	1.092	25.10	24.72	1.192	1.6
		Body back	1	0	26590	1905	-0.71	1.085	25.10	24.78	1.168	1.6
		Body front	1	0	26365	1882.5	-0.34	0.541	25.10	24.72	0.590	1.6

Note:

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

⁻The test separation for body back andbody front is 10mm of all above table.

Page 78 of 174

SAR MEASUREMENT									
Depth of Liquid (cm):>15	Relative Humidity (%): 60.8								
Product: LTE smartphone									
Test Mode: LTE Band 26A									

вм	MOD	Position	Test Mo	ode	Ch.	Freq.	Power Drift	SAR (1s)	Max. Tuneup	Meas. output	Scaled SAR	Limit
MHz	WIOD	Position	UL RB Allocation	UL RB START	GII.	(MHz)	(<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	(W/Kg)	(W/kg)
		Left Cheek	1	0	26915	836.5	-0.43	0.748	78 24.70 24.11 0.43 28 24.70 24.11 0.83	0.857	1.6	
		Left Tilt	1	0	26915	836.5	-0.13	0.378	24.70	24.11	0.433	1.6
		Right Cheek	1	0	26915	836.5	0.18	0.728	24.70	24.11	0.834	1.6
15	QPSK	Right Tilt	1	0	26915	836.5	-0.19	0.383	24.70	24.11	0.439	1.6
		Body back	1	0	26865	831.5	-0.39	0.941	24.70	24.41	1.006	1.6
		Body back	1	0	26915	836.5	0.13	0.878	24.70	24.11	1.006	1.6
		Body back	1	0	26965	841.5	-0.28	0.836	24.70	24.14	0.951	1.6
		Body front	1	0	26915	836.5	-0.22	0.673	24.70	24.11	0.771	1.6

Note:

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

⁻The test separation for body back andbody front is 10mm of all above table.

Page 79 of 174

SAR MEASU	SAR MEASUREMENT												
Depth of Liquid (cm):>15 Relative Humidity (%): 60.8													
Product: LTE smartphone													
Test Mode: LTE Band 26B													

вм	MOD	Position	Test Mo	ode	Ch.	Freq.	Power Drift	SAR	Max. Tuneup	Meas. output	Scaled SAR	Limit
MHz	WIOD	Position	UL RB Allocation	UL RB START	51.	(MHz)	(<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	(W/Kg)	(W/kg)
	QPSK	Left Cheek	1	0	26765	821.5	-0.21	0.683	23.40	23.23	0.710	1.6
		Left Tilt	1	0	26765	821.5	-0.04	0.281	23.40	23.23	0.292	1.6
15		Right Cheek	1	0	26765	821.5	-0.13	0.696	23.40	23.23	0.724	1.6
		Right Tilt	1	0	26765	821.5	0.05	0.424	23.40	23.23	0.441	1.6
		Body back	1	0	26765	821.5	-0.17	0.817	23.40	23.23	0.850	1.6
		Body front	1	0	26765	821.5	0.29	0.667	23.40	23.23	0.694	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back andbody front is 10mm of all above table.

Page 80 of 174

0.436

1.6

25.26

SAR	SAR MEASUREMENT											
Depth	Depth of Liquid (cm):>15 Relative Humidity (%): 60.6											
Produ	Product: LTE smartphone											
Test I	Mode: LT	E Band 66										
BW			Test M	ode		Freq.	Power	SAR (1g)	Max. Tuneup	Meas. output	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
		Left Cheek	1	0	132422	1755	-0.13	0.249	25.70	25.26	0.276	1.6
		Left Tilt	1	0	132422	1755	-0.14	0.136	25.70	25.26	0.151	1.6
		Right Cheek	1	0	132422	1755	-0.41	0.256	25.70	25.26	0.283	1.6
20	QPSK	Right Tilt	1	0	132422	1755	0.12	0.111	25.70	25.26	0.123	1.6
20	QF3N	Body back	1	0	132072	1720	-0.13	0.786	25.70	25.36	0.850	1.6
		Body back	1	0	132422	1755	-0.34	1.013	25.70	25.26	1.121	1.6
		Body back	1	0	132572	1770	-0.72	0.939	25.70	24.85	1.142	1.6

1755

0.37

0.394

25.70

Note:

Body front

132422

0

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back andbody front is 10mm of all above table

Page 81 of 174

SAR			

Depth of Liquid (cm):>15 Relative Humidity (%): 62.3

Product: LTE smartphone

Test Mode: LTE Band 71

BW	MOD	Position	Test Mode		Ch.	Freq.	Power Drift	SAR (1g)	Max. Tuneup	Meas. output Power	Scaled SAR	Limit
MHz	WIOD	Position	UL RB Allocation	UL RB START	CII.	(MHz)	(<±5%)	(W/kg)	Power (dBm)	(dBm)	(W/Kg)	(W/kg)
		Left Cheek	1	0	133322	683	-0.05	0.413	21.80	21.40	0.453	1.6
		Left Tilt	1	0	133322	683	0.35	0.217	21.80	21.40	0.238	1.6
		Right Cheek	1	0	133322	683	-0.10	0.416	21.80	21.40	0.456	1.6
20	QPSK	Right Tilt	1	0	133322	683	-0.31	0.219	21.80	21.40	0.240	1.6
20	QFSK	Body back	1	0	133222	673	-0.04	0.740	21.80	21.69	0.759	1.6
		Body back	1	0	133322	683	-0.14	0.781	21.80	21.40	0.856	1.6
		Body back	1	0	133372	688	0.28	0.721	21.80	21.33	0.803	1.6
		Body front	1	0	133322	683	0.42	0.309	21.80	21.40	0.339	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back andbody front is 10mm of all above table

Page 82 of 174

Repeated SAR

Product: 4G Feature Phone

Test Mode: LTE Band 2& LTE Band 4& LTE Band 5& LTE Band 12& LTE Band 25& LTE Band 26A& LTE Band 26B & LTE Band 66& LTE Band 71

Position	Мос	de	Ch	Fr.	Power Drift	Once SAR	Power Drift	Twice SAR	Power Drift	Third SAR	Limit
Position	UL RB Allocation	UL RB START	Ch. (MHz)		(1g) (1g) (W/kg)		(<±5%)	(1g) (W/kg)	(<±5%)	(1g) (W/kg)	W/kg
Body back	1	0	19100	1900	0.13	1.053		1	1	1	1.6
Body back	1	0	20175	1732.5	-0.05	1.039					1.6
Body back	1	0	20450	829	-0.21	0.836		-		-	1.6
Body back	1	0	23095	707.5	0.03	0.782					1.6
Body back	1	0	26365	1882.5	-0.04	0.935		-		-	1.6
Body back	1	0	26865	821.5	-0.17	0.928		1	1	1	1.6
Body back	1	0	26765	821.5	0.21	0.813		1	1	1	1.6
Body back	1	0	132422	1755	0.26	1.033		-	1	1	1.6
Body back	1	0	133322	683	0.32	0.777					1.6

The second repeated SAR judge reference

Product: 4G Feature Phone

		Мо	de		Fr.	Original SAR	First SAR		
Band	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	(1g) (W/kg)	(1g) (W/kg)	Ratio	Limit
LTE Band 2	Body back	1	0	19100	1900	1.052	1.053	1.001	<1.2
LTE Band 4	Body back	1	0	20175	1732.5	1.048	1.039	1.009	<1.2
LTE Band 5	Body back	1	0	20450	829	0.836	0.836	1.000	<1.2
LTE Band 12	Body back	1	0	23095	707.5	0.809	0.782	1.035	<1.2
LTE Band 25	Body back	1	0	26365	1882.5	1.092	0.935	1.168	<1.2
LTE Band 26A	Body back	1	0	26865	821.5	0.941	0.928	1.014	<1.2
LTE Band 26B	Body back	1	0	26765	821.5	0.817	0.813	1.005	<1.2
LTE Band 66	Body back	1	0	132422	1755	1.013	1.033	1.020	<1.2
LTE Band 71	Body back	1	0	133322	683	0.781	0.777	1.081	<1.2

Page 83 of 174

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Simultaneous state	Portable Handset				
NO	Simulaneous state	Head	Body-worn	Hotspot		
1	WCDMA+ Bluetooth(data)	Yes	Yes	-		
2	LTE + Bluetooth(data)	Yes	Yes	-		

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- 3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
- 4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Page 84 of 174

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR			luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)
		dBm	mW	Distance (min)	(VV/Kg)
ВТ	Head	-0.5	0.891	0	0.037
	Body	-0.5	0.891	10	0.019

Page 85 of 174

Sum of the SAR for WCDMA Band V & BT:

RF Exposure	Test	Simultaneous Trai	Σ1-g SAR	SPLSR		
Conditions	Position	WCDMA Band V	MA Band V Bluetooth		(Yes/No)	
	Left Touch	0.691	0.037	0.728	No	
Head	Left Tilt	0.353	0.037	0.390	No	
пеац	Right Touch	0.697	0.037	0.734	No	
	Right Tilt	0.373	0.037	0.410	No	
Dody worm	Rear	0.764	0.019	0.783	No	
Body-worn	Front	0.649	0.019	0.668	No	

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 86 of 174

Sum of the SAR for LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 7 & BT:

RF Exposure	Test	Simultaneous Trans		Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 2	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.534	0.037	0.571	No
	Left Tilt	0.255	0.037	0.292	No
Head	Right Touch	0.582	0.037	0.619	No
	Right Tilt	0.262	0.037	0.299	No
Body-worn	Rear	1.175	0.019	1.194	No
Body-worn	Front	0.684	0.019	0.703	No
RF Exposure	Test	Simultaneous Trans	smission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 4	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.335	0.037	0.372	No
	Left Tilt	0.199	0.037	0.236	No
Head	Right Touch	0.399	0.037	0.436	No
	Right Tilt	0.267	0.037	0.304	No
Body-worn	Rear	1.115	0.019	1.134	No
Body-worn	Front	0.459	0.019	0.478	No
RF Exposure	Test	Simultaneous Trans	Σ1-g SAR	SPLSR	
Conditions	Position	LTE Band 5	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.900	0.037	0.937	No
	Left Tilt	0.429	0.037	0.466	No
Head	Right Touch	0.877	0.037	0.914	No
	Right Tilt	0.430	0.037	0.467	No
Body-worn	Rear	1.009	0.019	1.028	No
Body-worn	Front	0.794	0.019	0.813	No
RF Exposure	Test	Simultaneous Trans	smission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 7	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.180	0.037	0.217	No
	Left Tilt	0.119	0.037	0.156	No
Head	Right Touch	0.216	0.037	0.253	No
		0.400	0.037	0.140	No
	Right Tilt	0.103	0.037	00	
Body-worn	Right Tilt Rear	0.103	0.019	0.797	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/kg, SPLSR assessment is not required.

SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 87 of 174

Sum of the SAR for LTE Band 12, LTE Band 13, LTE Band 17, LTE Band 25 & BT:

RF Exposure	Test	Simultaneous Tr	ansmission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 12	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.554	0.037	0.591	No
	Left Tilt	0.299	0.037	0.336	No
Head	Right Touch	0.564	0.037	0.601	No
	Right Tilt	0.289	0.037	0.326	No
Body-worn	Rear	0.903	0.019	0.922	No
Dody-Worli	Front	0.248	0.019	0.267	No
RF Exposure	Test	Simultaneous Tr	ansmission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 13	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.539	0.037	0.576	No
	Left Tilt	0.334	0.037	0.371	No
Head	Right Touch	0.512	0.037	0.549	No
	Right Tilt	0.329	0.037	0.366	No
Dady	Rear	0.739	0.019	0.758	No
Body-worn	Front	0.415	0.019	0.434	No
RF Exposure	Test		0.019 ansmission Scenario	Σ1-g SAR	SPLSR
-					
RF Exposure	Test	Simultaneous Tr	ansmission Scenario	Σ1-g SAR	SPLSR
RF Exposure Conditions	Test Position Left Touch Left Tilt	Simultaneous Tr LTE Band 17	ansmission Scenario Bluetooth	Σ1-g SAR (W/kg)	SPLSR (Yes/No)
RF Exposure	Test Position Left Touch	Simultaneous Tr LTE Band 17 0.541	ansmission Scenario Bluetooth 0.037	Σ1-g SAR (W/kg) 0.578	SPLSR (Yes/No) No
RF Exposure Conditions	Test Position Left Touch Left Tilt Right	Simultaneous Tr LTE Band 17 0.541 0.258	ansmission Scenario Bluetooth 0.037 0.037	Σ1-g SAR (W/kg) 0.578 0.295	SPLSR (Yes/No) No
RF Exposure Conditions	Test Position Left Touch Left Tilt Right Touch	Simultaneous Tr LTE Band 17 0.541 0.258 0.546	Bluetooth 0.037 0.037 0.037	Σ1-g SAR (W/kg) 0.578 0.295 0.583	SPLSR (Yes/No) No No
RF Exposure Conditions	Test Position Left Touch Left Tilt Right Touch Right Tilt	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019 0.019	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320	SPLSR (Yes/No) No No No
RF Exposure Conditions Head Body-worn RF Exposure	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793	SPLSR (Yes/No) No No No
RF Exposure Conditions Head Body-worn	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019 0.019	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443	SPLSR (Yes/No) No No No No
RF Exposure Conditions Head Body-worn RF Exposure	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test Position Left Touch	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424 Simultaneous Tr	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019 0.019 ansmission Scenario	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443 Σ1-g SAR	SPLSR (Yes/No) No No No No No SPLSR
RF Exposure Conditions Head Body-worn RF Exposure Conditions	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test Position Left Touch Left Touch	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424 Simultaneous Tr LTE Band 25	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019 0.019 ansmission Scenario Bluetooth	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443 Σ1-g SAR (W/kg)	SPLSR (Yes/No) No No No No No SPLSR (Yes/No)
RF Exposure Conditions Head Body-worn RF Exposure	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test Position Left Touch	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424 Simultaneous Tr LTE Band 25 0.562	Scenario Bluetooth 0.037 0.037 0.037 0.037 0.019 0.019 0.019 0.019 0.019 0.019 0.037	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443 Σ1-g SAR (W/kg) 0.599	SPLSR (Yes/No) No No No No No No SPLSR (Yes/No) No
RF Exposure Conditions Head Body-worn RF Exposure Conditions	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test Position Left Touch Left Tilt Right	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424 Simultaneous Tr LTE Band 25 0.562 0.236	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.019 0.019 ansmission Scenario Bluetooth 0.037 0.037	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443 Σ1-g SAR (W/kg) 0.599 0.273	SPLSR (Yes/No) No No No No No No No No No
RF Exposure Conditions Head Body-worn RF Exposure Conditions	Test Position Left Touch Left Tilt Right Touch Right Tilt Rear Front Test Position Left Touch Left Tilt Right Touch	Simultaneous Tr LTE Band 17 0.541 0.258 0.546 0.283 0.774 0.424 Simultaneous Tr LTE Band 25 0.562 0.236 0.544	ansmission Scenario Bluetooth 0.037 0.037 0.037 0.019 0.019 ansmission Scenario Bluetooth 0.037 0.037 0.037 0.037	Σ1-g SAR (W/kg) 0.578 0.295 0.583 0.320 0.793 0.443 Σ1-g SAR (W/kg) 0.599 0.273 0.581	SPLSR (Yes/No) No No No No No No No No No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/kg, SPLSR assessment is not required.

SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 88 of 174

Sum of the SAR for LTE Band 26A, LTE Band 26B, LTE Band 66, LTE Band 71 & BT:

RF Exposure	Test	Simultaneous Tran	<u> </u>	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 26A	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.857	0.037	0.894	No
	Left Tilt	0.433	0.037	0.470	No
Head	Right Touch	0.834	0.037	0.871	No
	Right Tilt	0.439	0.037	0.476	No
Body-worn	Rear	1.006	0.019	1.025	No
воау-worn	Front	0.771	0.019	0.790	No
RF Exposure	Test	Simultaneous Tran	smission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	LTE Band 26B	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.710	0.037	0.747	No
	Left Tilt	0.292	0.037	0.329	No
Head	Right Touch	0.724	0.037	0.761	No
	Right Tilt	0.441	0.037	0.478	No
Dady warn	Rear	0.850	0.019	0.869	No
Body-worn	Front	0.694	0.019	0.713	No
RF Exposure	Test	Simultaneous Tran	Σ1-g SAR	SPLSR	
Conditions	Position	LTE Band 66	Bluetooth	(W/kg)	(Yes/No)
	Left Touch	0.276	0.037	0.313	No
	Left Tilt	0.151	0.037	0.188	No
Head	Right Touch	0.283	0.037	0.320	No
	Right Tilt	0.123	0.037	0.160	No
Body-worn	Rear	0.850	0.019	0.869	No
Body-worn	Front	0.436	0.019	0.455	No
RF Exposure	_	Simultaneous Tran	Σ1-g SAR	SPLSR	
	Test	Simultaneous Tran	3111331011 Occitario		
Conditions	Test Position	LTE Band 71	Bluetooth	(W/kg)	(Yes/No)
					(Yes/No) No
Conditions	Position	LTE Band 71	Bluetooth	(W/kg)	
	Position Left Touch	LTE Band 71 0.453	Bluetooth 0.037	(W/kg) 0.490	No
Conditions	Position Left Touch Left Tilt Right	0.453 0.238	0.037 0.037	(W/kg) 0.490 0.275	No No
Conditions Head	Position Left Touch Left Tilt Right Touch	0.453 0.238 0.456	0.037 0.037 0.037	(W/kg) 0.490 0.275 0.493	No No No
Conditions	Position Left Touch Left Tilt Right Touch Right Tilt	0.453 0.238 0.456 0.240	0.037 0.037 0.037 0.037	(W/kg) 0.490 0.275 0.493 0.277	No No No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/kg, SPLSR assessment is not required.

SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 89 of 174

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Sep. 18, 2023

System Check Head 750 MHz

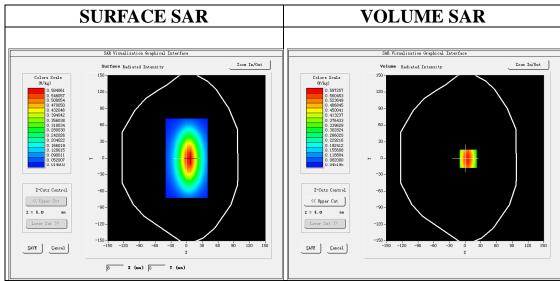
DUT: Dipole 750 MHz Type: SID 750

Communication System CW; Communication System Band: D750 (750.0 MHz); Duty Cycle: 1:1; Conv.F=2.10 Frequency: 750 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 42.13$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

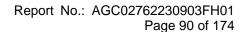
Ambient temperature ($^{\circ}$ C):21.7, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

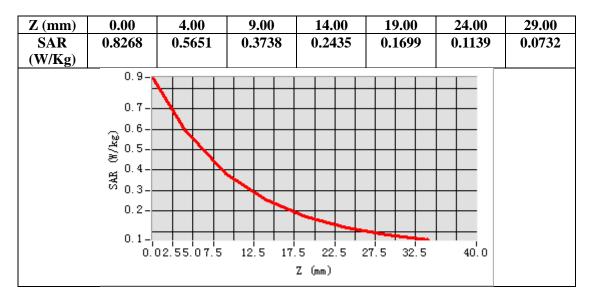

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

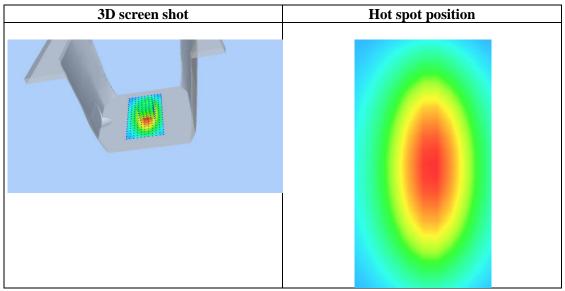
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_32

Configuration/System Check 750MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 750MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm




Maximum location: X=6.00, Y=-1.00 SAR Peak: 0.86 W/kg

SAR 10g (W/Kg)	0.343701
SAR 1g (W/Kg)	0.553682

Date: Sep. 19, 2023

Page 91 of 174

Test Laboratory: AGC Lab System Check Head 835 MHz

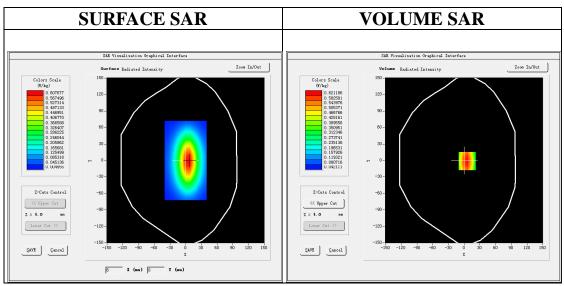
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.85 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 41.68$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

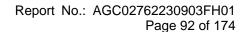
Ambient temperature (°C):21.4, Liquid temperature (°C): 21.1

SATIMO Configuration:

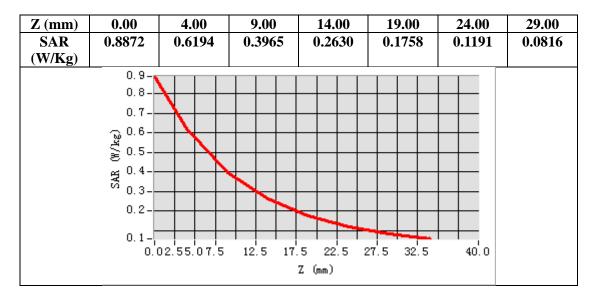

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

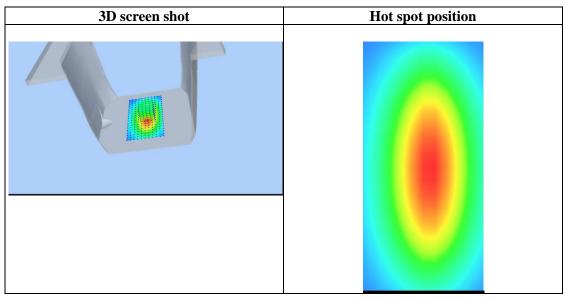
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm




Maximum location: X=6.00, Y=-1.00 SAR Peak: 0.88 W/kg

SAR 10g (W/Kg)	0.376212	
SAR 1g (W/Kg)	0.594579	

Date: Sep. 16, 2023

Page 93 of 174

Test Laboratory: AGC Lab
System Check Head 1750MHz

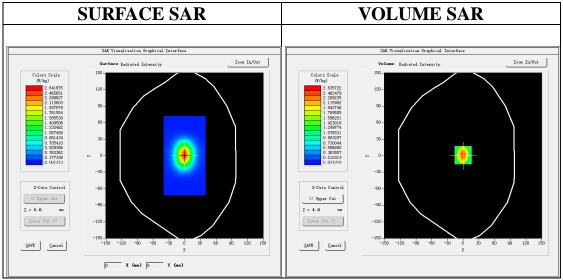
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.43 \text{ mho/m}$; $\epsilon r = 40.55$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

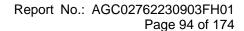
Ambient temperature (°C): 20.5, Liquid temperature (°C): 20.2

SATIMO Configuration:

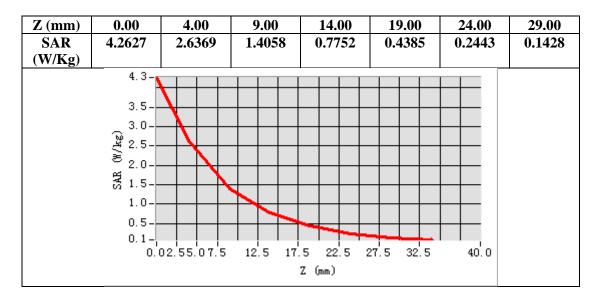

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

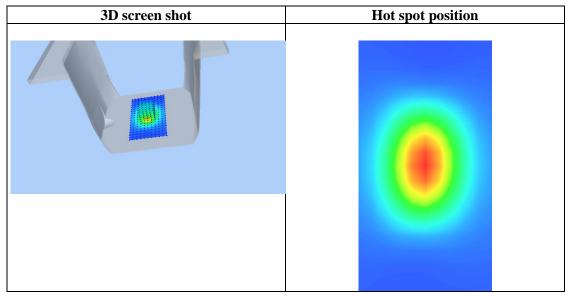
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1750MHz Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm




Maximum location: X=0.00, Y=1.00 SAR Peak: 4.24 W/kg

SAR 10g (W/Kg)	1.253788
SAR 1g (W/Kg)	2.478106

Date: Sep. 15, 2023

Page 95 of 174

Test Laboratory: AGC Lab System Check Head 1900MHz

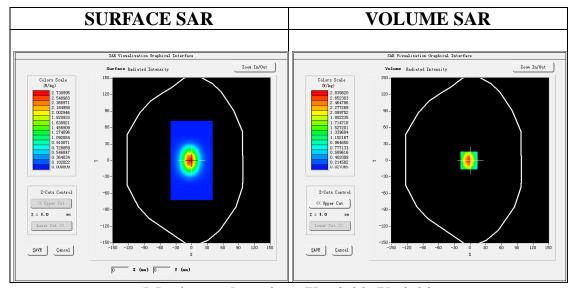
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.43$ mho/m; $\epsilon r = 39.98$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

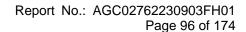
Ambient temperature (°C):20.8, Liquid temperature (°C): 20.5

SATIMO Configuration:

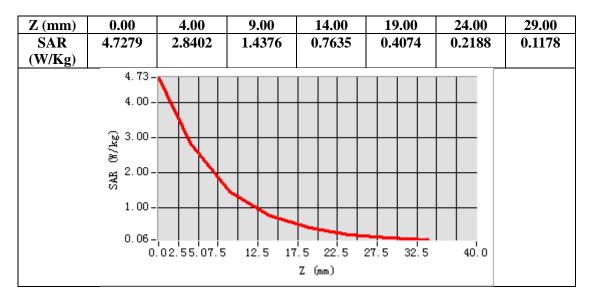

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

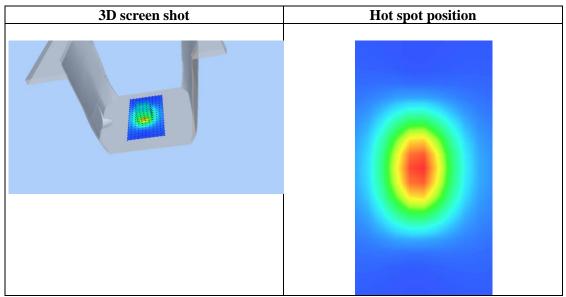
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm




Maximum location: X=-2.00, Y=0.00 SAR Peak: 4.72 W/kg

SAR 10g (W/Kg) 1.295670 SAR 1g (W/Kg) 2.672912

Date: Sep. 17, 2023

Page 97 of 174

Test Laboratory: AGC Lab System Check Head 2600MHz

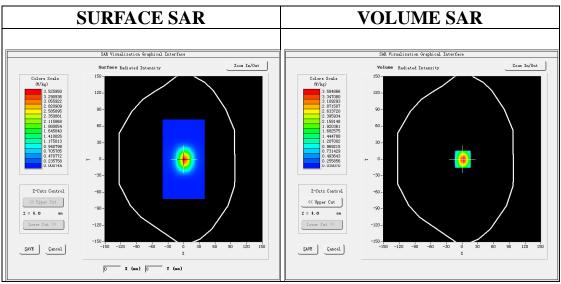
DUT: Dipole 2600 MHz; Type: SID 2600

Communication System: CW; Communication System Band: D2600 (2600.0 MHz); Duty Cycle: 1:1; Conv.F=2.29 Frequency:2600 MHz; Medium parameters used: f = 2600 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon r = 38.67$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

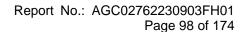
Ambient temperature ($^{\circ}$): 21.1, Liquid temperature ($^{\circ}$): 20.9

SATIMO Configuration:

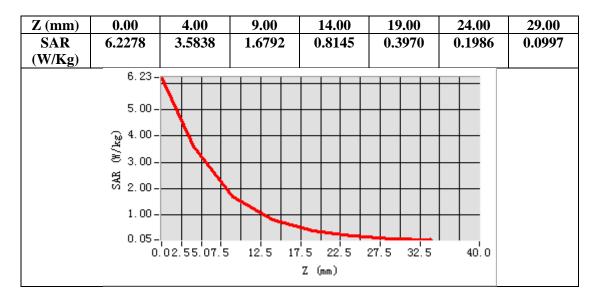

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

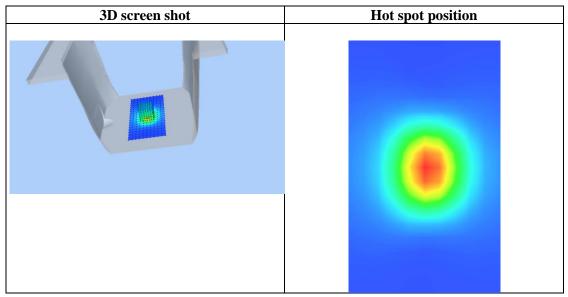
• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2600 Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 2600 Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm




Maximum location: X=1.00, Y=0.00 SAR Peak: 6.21 W/kg

SAR 10g (W/Kg)	1.484096	
SAR 1g (W/Kg)	3.313407	

Page 99 of 174

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Sep. 19, 2023

WCDMA Band V Mid-Touch-Right (RMC) DUT: 4G Feature Phone; Type: S10

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.85;

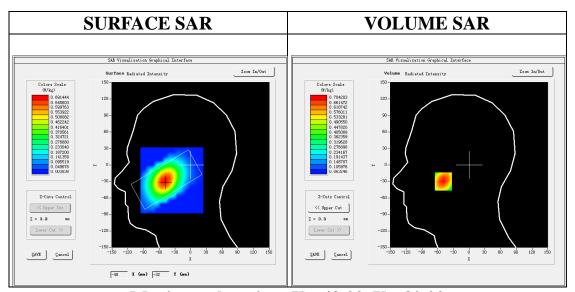
Frequency: 836.4 MHz; Medium parameters used: f = 835MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 40.37$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.4, Liquid temperature (°C): 21.1

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

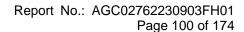

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

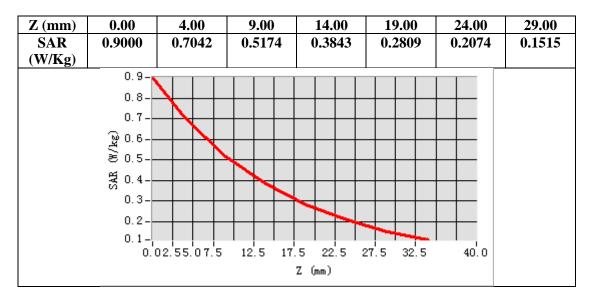
Measurement SW: OpenSAR V4_02_32

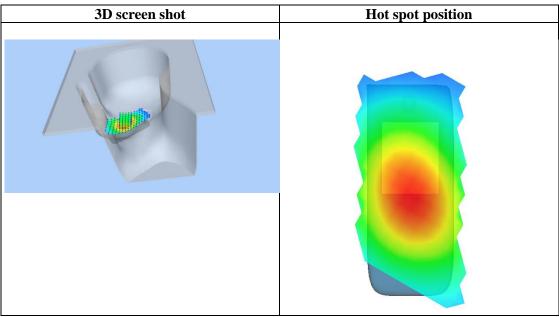
Configuration/ WCDMA Band V Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Right head			
Device Position	Cheek			
Band	WCDMA Band V			
Channels	Middle			
Signal	CDMA (Crest factor: 1.0)			



Maximum location: X=-49.00, Y=-30.00 SAR Peak: 0.90 W/kg


SAR 10g (W/Kg)	0.463254
SAR 1g (W/Kg)	0.676236


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 101 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

WCDMA Band V Mid-Body-Towards Grounds (RMC)

DUT: 4G Feature Phone; Type: S10

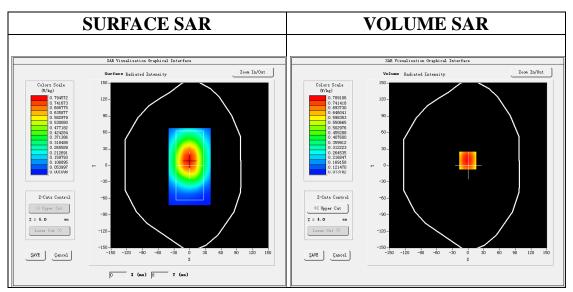
Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.85; Frequency: 836.4 MHz; Medium parameters used: f = 835MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon = 40.37$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.4, Liquid temperature (°C): 21.1

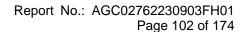
SATIMO Configuration:

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

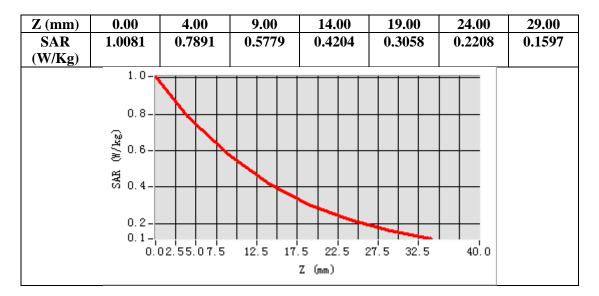

Sensor-Surface: 4mm (Mechanical Surface Detection)

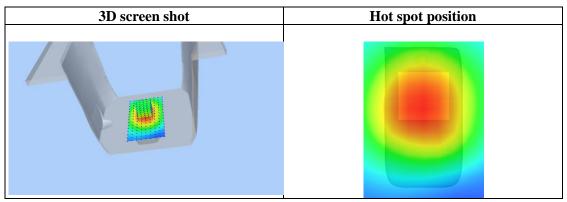
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 32


Configuration/ WCDMA Band V Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band	WCDMA Band V			
Channels	Middle			
Signal	CDMA (Crest factor: 1.0)			




Maximum location: X=-1.00, Y=9.00 SAR Peak: 1.01 W/kg

SAR 10g (W/Kg)	0.531114	
SAR 1g (W/Kg)	0.741370	

Page 103 of 174

Test Laboratory: AGC Lab Date: Sep. 15, 2023

LTE Band 2 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

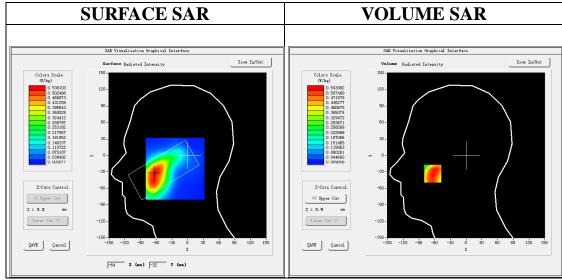
Communication System: LTE; Communication System Band: LTE Band 2; Duty Cycle:1:1; Conv.F=2.32; Frequency:1880MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon = 40.67$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C): 20.8, Liquid temperature (°C): 20.5

SATIMO Configuration:

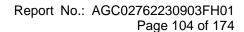
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391


• Sensor-Surface: 4mm (Mechanical Surface Detection)

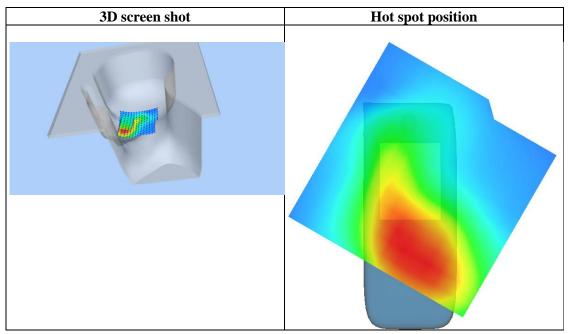
• Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 2 Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 2 Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	LTE Band 2			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			

Maximum location: X=-64.00, Y=-33.00 SAR Peak: 0.81 W/kg


SAR 10g (W/Kg)	0.308117		
SAR 1g (W/Kg)	0.525503		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
a not been signed	l bu coutborized on	nearior or borring	baan altarad withs	t atharization	ar barring not been	atamanad buttha	"Dadicated Tootis

Page 105 of 174

Test Laboratory: AGC Lab Date: Sep. 15, 2023

LTE Band 2 High-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

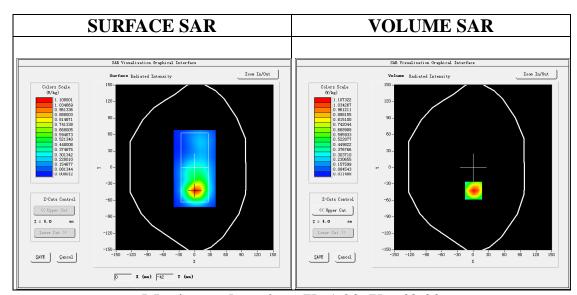
Communication System: LTE; Communication System Band: LTE Band 2; Duty Cycle:1:1; Conv.F=2.32; Frequency:1900MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon = 38.62$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 20.8, Liquid temperature (°C): 20.5

SATIMO Configuration:

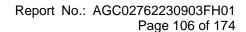
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

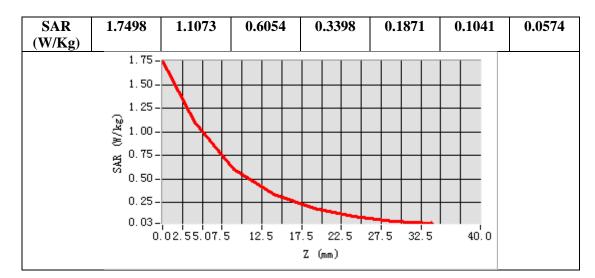

• Sensor-Surface: 4mm (Mechanical Surface Detection)

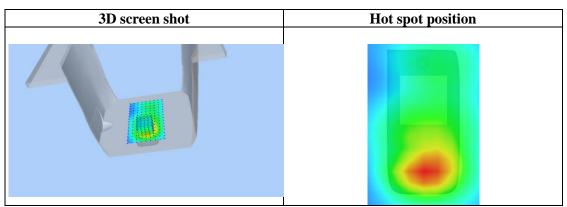
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 2 High -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 2 High -Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	LTE Band 2		
Channels	High		
Signal	OFDM (Crest factor: 1.0)		


Maximum location: X=1.00, Y=-42.00 SAR Peak: 1.75 W/kg


SAR 10g (W/Kg)	0.550876
SAR 1g (W/Kg)	1.051677

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 107 of 174

Test Laboratory: AGC Lab Date: Sep. 16, 2023

LTE Band 4 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

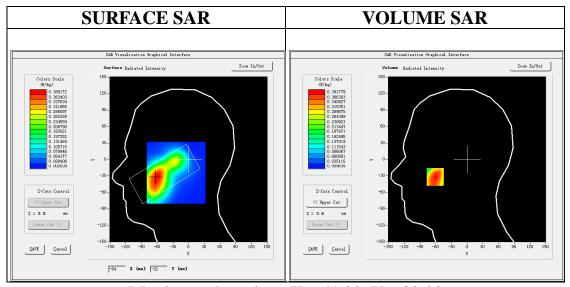
Communication System: LTE; Communication System Band: LTE Band 4; Duty Cycle:1:1; Conv.F=2.32; Frequency:1732.5 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.40$ mho/m; $\epsilon = 42.68$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 20.5, Liquid temperature ($^{\circ}$ C): 20.2

SATIMO Configuration:

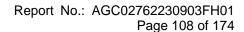
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

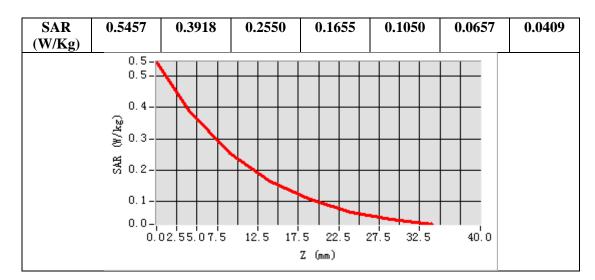

• Sensor-Surface: 4mm (Mechanical Surface Detection)

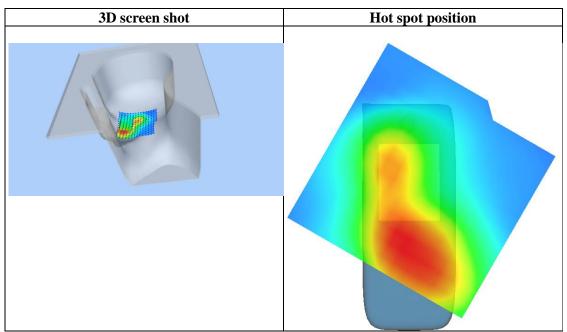
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 4 Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 4 Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	LTE Band 4			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			


Maximum location: X=-61.00, Y=-32.00 SAR Peak: 0.57 W/kg


3	0
SAR 10g (W/Kg)	0.227277
SAR 1g (W/Kg)	0.375129

	Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
as not been alread by sutherized approver, or begins been altered without authorization, or begins not been ataroned by the "Dadie						"Dadicated Toot		

Page 109 of 174

Test Laboratory: AGC Lab Date: Sep. 16, 2023

LTE Band 4 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

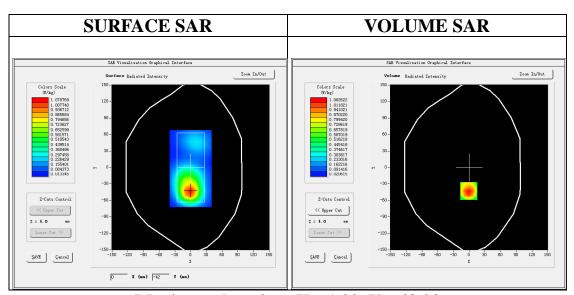
Communication System: LTE; Communication System Band: LTE Band 4; Duty Cycle:1:1; Conv.F=2.32; Frequency:1732.5 MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon = 42.68$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 20.5, Liquid temperature (°C): 20.2

SATIMO Configuration:

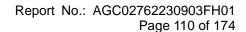
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

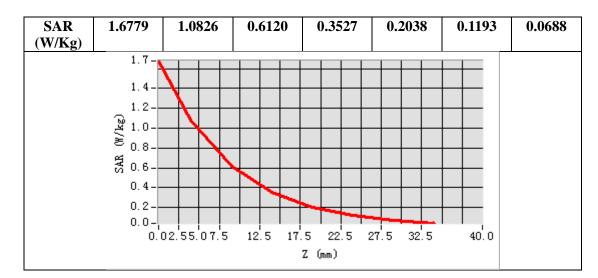

• Sensor-Surface: 4mm (Mechanical Surface Detection)

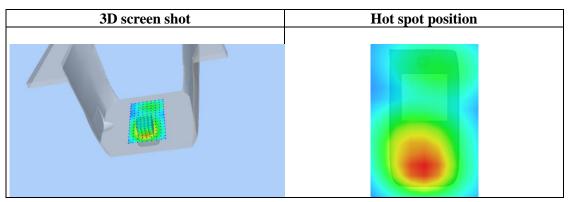
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 4 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 4 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	LTE Band 4		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		


Maximum location: X=-1.00, Y=-43.00 SAR Peak: 1.71 W/kg


SAR 10g (W/Kg)	0.565062	
SAR 1g (W/Kg)	1.047701	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 111 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 5 Mid-Touch-Left (1 RB#0) DUT: 4G Feature Phone; Type: S10

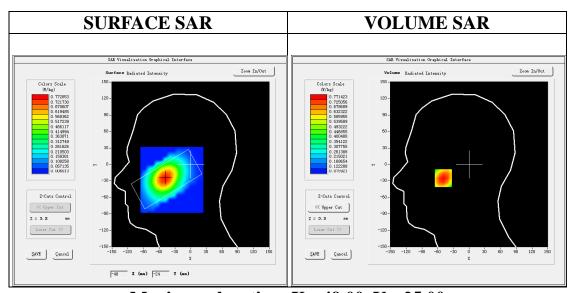
Communication System: LTE; Communication System Band: LTE Band 5; Duty Cycle:1:1; Conv.F=1.85 Frequency: 836.5 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\epsilon = 40.37$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

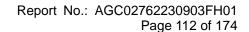

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

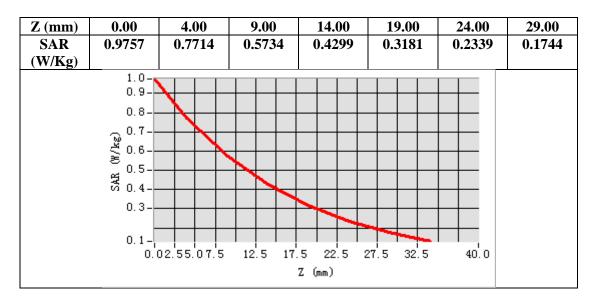
Measurement SW: OpenSAR V4_02_32

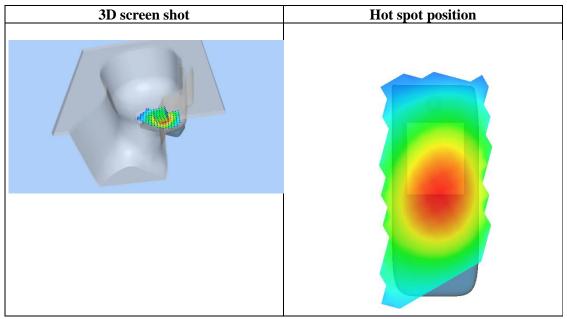
Configuration/ LTE Band 5 Mid- Touch-Left /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 5 Mid- Touch-Left /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Left head		
Device Position	Cheek		
Band	LTE Band 5		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		



Maximum location: X=-49.00, Y=-25.00 SAR Peak: 0.99 W/kg


SAR 10g (W/Kg)	0.515351		
SAR 1g (W/Kg)	0.744886		


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 113 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 5 Low-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

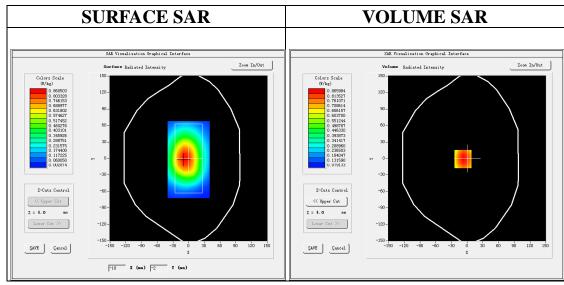
Communication System: LTE; Communication System Band: LTE Band 5; Duty Cycle:1:1; Conv.F=1.85 Frequency:829 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.86$ mho/m; $\epsilon r = 44.66$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.4, Liquid temperature ($^{\circ}$ C): 21.1

SATIMO Configuration:

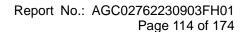
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

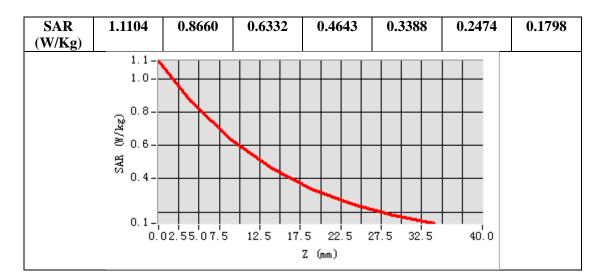

• Sensor-Surface: 4mm (Mechanical Surface Detection)

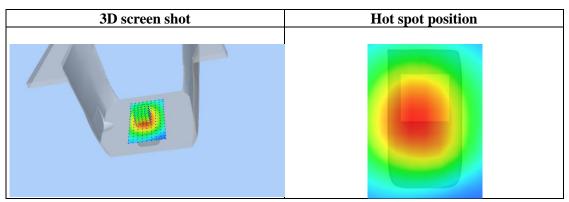
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 5 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 5 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	LTE Band 5		
Channels	Low		
Signal	OFDM (Crest factor: 1.0)		


Maximum location: X=-8.00, Y=-1.00 SAR Peak: 1.11 W/kg


SAR 10g (W/Kg)	0.585325	
SAR 1g (W/Kg)	0.836337	

\mathbf{Z} (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Date: Sep. 17, 2023

Page 115 of 174

Test Laboratory: AGC Lab

LTE Band 7 Mid-Touch-Right (1RB#0) DUT: 4G Feature Phone; Type: S10

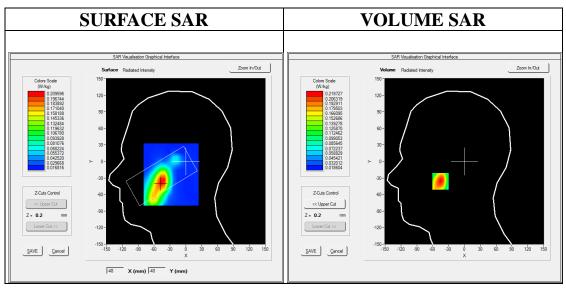
Communication System: LTE; Communication System Band: LTE Band 7; Duty Cycle:1:1; Conv.F=2.29 Frequency: 2535MHz; Medium parameters used: f = 2600 MHz; $\sigma = 1.96 \text{ mho/m}$; $\epsilon r = 39.96$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C): 21.1, Liquid temperature (°C): 20.9

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

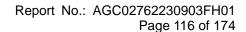

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

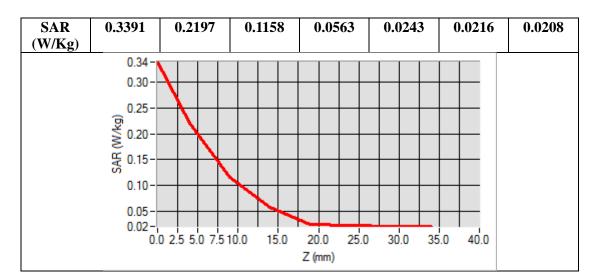
• Measurement SW: OpenSAR V4_02_32

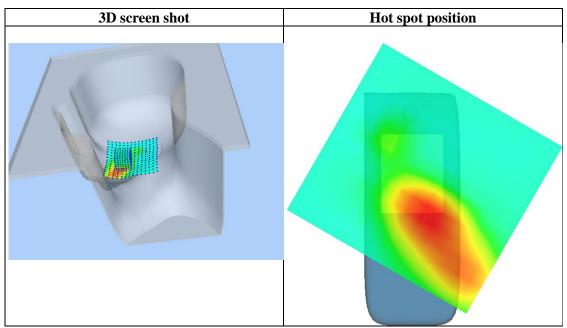
Configuration/ LTE BAND 7 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, y=8mm Configuration/ LTE BAND 7 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Area Scan	dx=8mm dy=8mm, h= 5.00 mm		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Right head		
Device Position	Cheek		
Band	LTE BAND 7		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		


Maximum location: X=-45.00, Y=-36.00 SAR Peak: 0.34 W/kg

SAR 10g (W/Kg)	0.105180		
SAR 1g (W/Kg)	0.201984		


Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 117 of 174

Test Laboratory: AGC Lab Date: Sep. 17, 2023

LTE Band 7 Mid-Body-Back (1RB#0) DUT: 4G Feature Phone; Type: S10

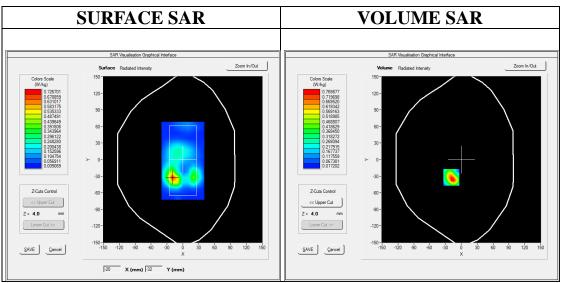
Communication System: LTE; Communication System Band: LTE Band 7; Duty Cycle:1:1; Conv.F=2.29 Frequency: 2535MHz; Medium parameters used: f = 2600 MHz; $\sigma = 1.96 \text{ mho/m}$; $\epsilon r = 39.96$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.1, Liquid temperature ($^{\circ}$): 20.9

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

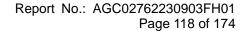

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

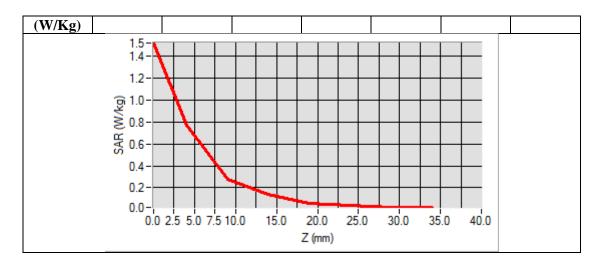
• Measurement SW: OpenSAR V4_02_32

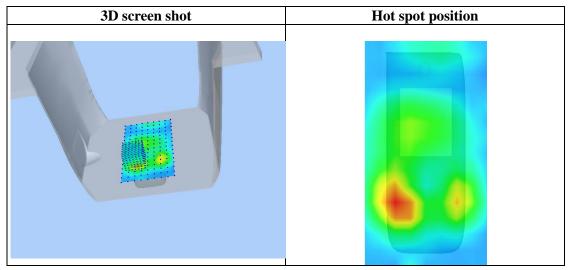
Configuration/ LTE BAND 7 Mid-Body-Back /Area Scan: Measurement grid: dx=10mm, y=10mm Configuration/ LTE BAND 7 Mid-Body-Back /Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Area Scan	surf_sam_plan.txt, h= 5.00 mm		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	LTE BAND 7		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		



Maximum location: X=-19.00, Y=-32.00


SAR Peak: 1.43 W/kg


SAR 10g (W/Kg)	0.299662
SAR 1g (W/Kg)	0.727709

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.5215	0.7699	0.2791	0.1402	0.0591	0.0362	0.0224

Page 119 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 12 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

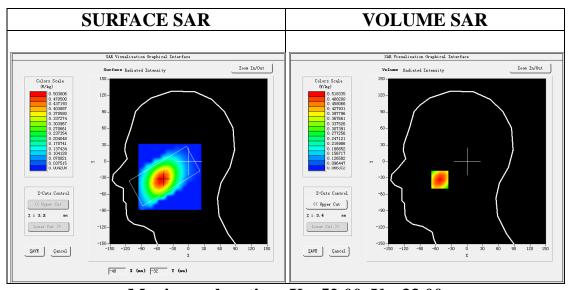
Communication System: LTE; Communication System Band: LTE Band 12; Duty Cycle:1:1; Conv.F=2.10 Frequency: 707.5 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.87$ mho/m; $\epsilon r = 43.92$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

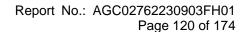
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

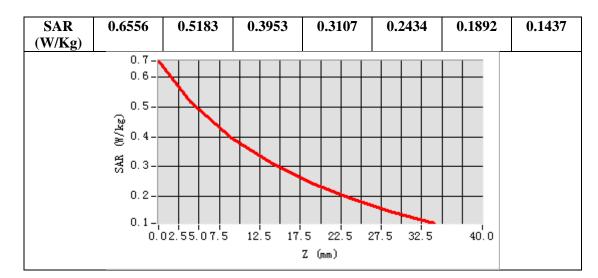

Sensor-Surface: 4mm (Mechanical Surface Detection)

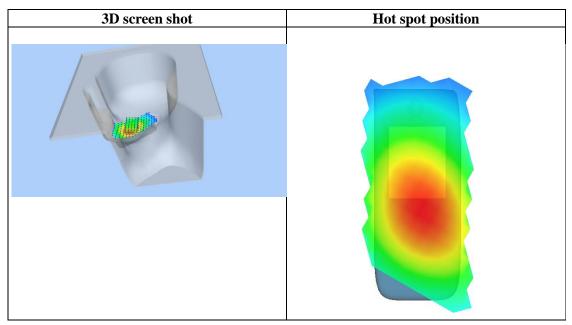
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 12 Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 12 Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	LTE Band 12			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			


Maximum location: X=-52.00, Y=-33.00 SAR Peak: 0.65 W/kg


	<u> </u>	
SAR 10g (W/Kg)	0.365246	
SAR 1g (W/Kg)	0.510947	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 121 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 12 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

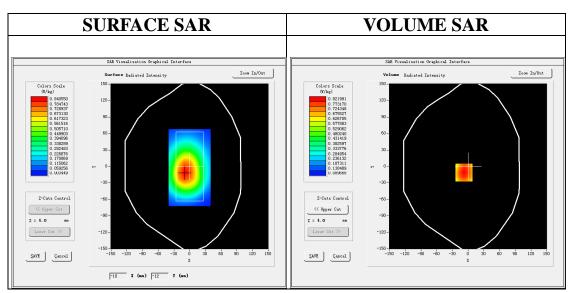
Communication System: LTE; Communication System Band: LTE Band 12; Duty Cycle:1:1; Conv.F=2.10; Frequency: 707.5 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.87$ mho/m; $\epsilon r = 43.92$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

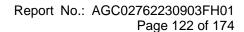
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

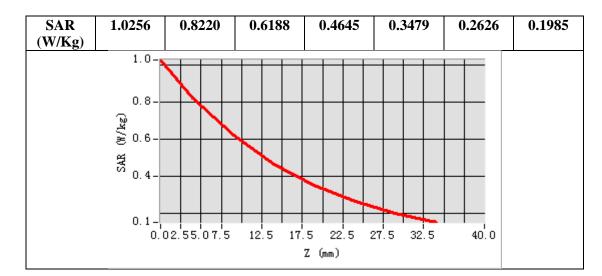

• Sensor-Surface: 4mm (Mechanical Surface Detection)

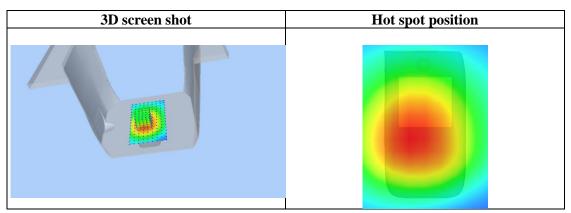
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 12 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 12 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	LTE Band 12			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			


Maximum location: X=-8.00, Y=-11.00 SAR Peak: 1.03 W/kg


SAR 10g (W/Kg)	0.578755
SAR 1g (W/Kg)	0.808842

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 123 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 13 Mid-Touch-Left (1 RB#0) DUT: 4G Feature Phone; Type: S10

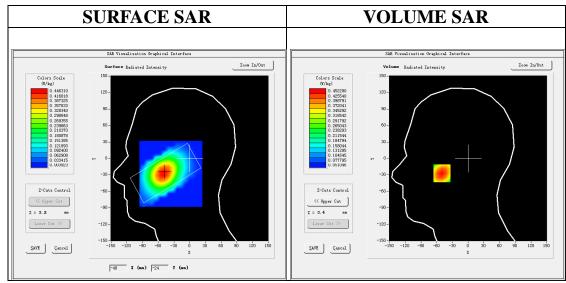
Communication System: LTE; Communication System Band: LTE Band 13; Duty Cycle:1:1; Conv.F=2.10 Frequency: 782 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.93$ mho/m; $\epsilon = 41.32$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

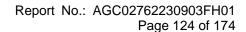
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391


Sensor-Surface: 4mm (Mechanical Surface Detection)

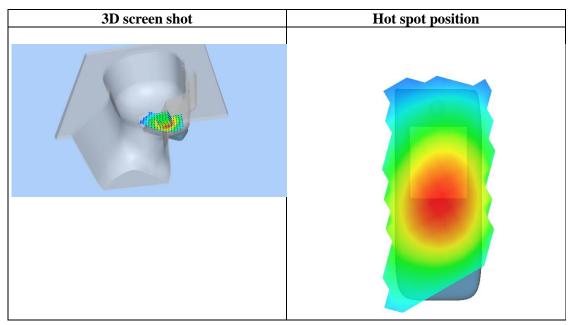
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 13 Mid- Touch-Left /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 13 Mid- Touch-Left /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Left head	
Device Position	Cheek	
Band	LTE Band 13	
Channels	Middle	
Signal OFDM (Crest factor: 1.0)		


Maximum location: X=-50.00, Y=-27.00 SAR Peak: 0.57 W/kg


	0	
SAR 10g (W/Kg)	0.308546	
SAR 1g (W/Kg)	0.436487	

	Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
in	a not boon giange	by outhorized on	prover or boving	boon altored with	out outhorization	or hoving not hoor	atampad by the	"Dodicated Loct

Page 125 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 13 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

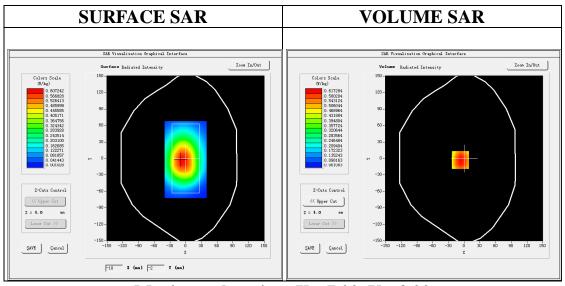
Communication System: LTE; Communication System Band: LTE Band 13; Duty Cycle:1:1; Conv.F=2.10; Frequency: 782 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.93$ mho/m; $\epsilon = 41.32$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

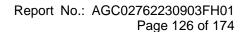
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

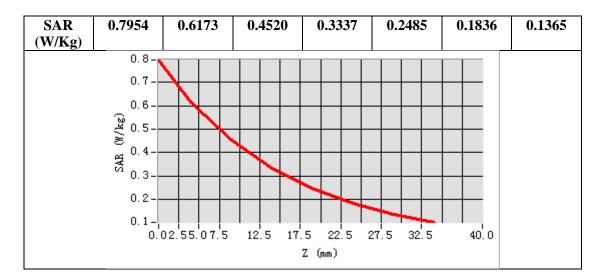

• Sensor-Surface: 4mm (Mechanical Surface Detection)

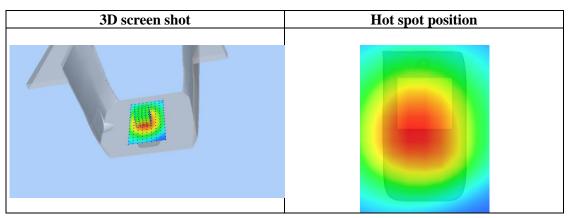
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 13 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 13 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	LTE Band 13			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			


Maximum location: X=-7.00, Y=-3.00 SAR Peak: 0.80 W/kg


	0
SAR 10g (W/Kg)	0.419766
SAR 1g (W/Kg)	0.597934

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 127 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 17 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

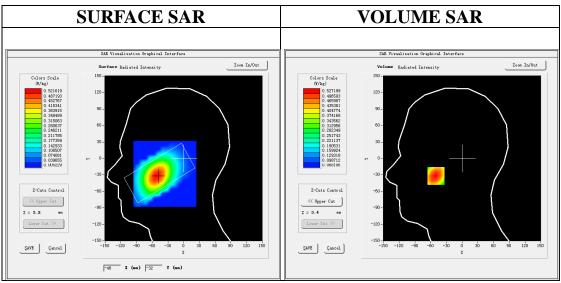
Communication System: LTE; Communication System Band: LTE Band 17; Duty Cycle:1:1; Conv.F=2.10 Frequency: 710 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.89$ mho/m; $\epsilon = 43.21$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

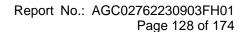

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

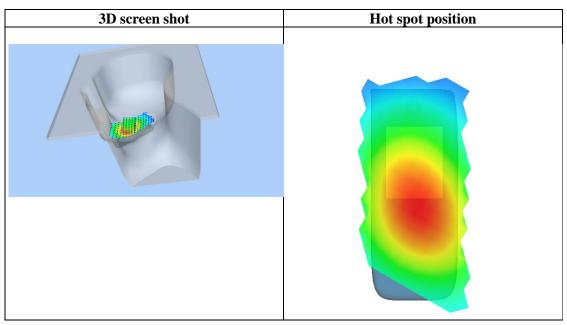
Configuration/ LTE Band 17 Mid-Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 17 Mid-Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	LTE Band 17
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-50.00, Y=-32.00 SAR Peak: 0.66 W/kg

	8
SAR 10g (W/Kg)	0.375263
SAR 1g (W/Kg)	0.521312

Z (mm) 0.00 4.00 9.00 14.00 19.00 24.00 29.00 Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing" is described in the initial of the original to the original of the


Any report naving not been signed by authorized approver, or naving been altered without authorization, or naving not been stamped by the "Decicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 129 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 17 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

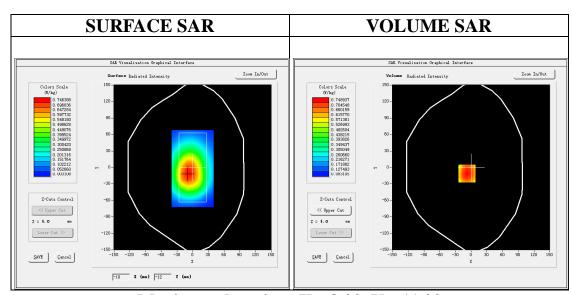
Communication System: LTE; Communication System Band: LTE Band 17; Duty Cycle:1:1; Conv.F=2.10; Frequency: 710 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.89$ mho/m; $\epsilon = 43.21$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

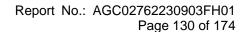
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

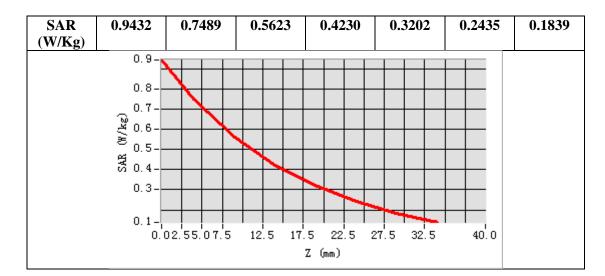

• Sensor-Surface: 4mm (Mechanical Surface Detection)

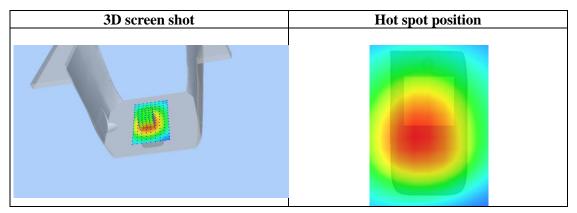
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 17 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 17 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	LTE Band 17
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-8.00, Y=-11.00 SAR Peak: 0.95 W/kg


	0
SAR 10g (W/Kg)	0.528653
SAR 1g (W/Kg)	0.738711

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 131 of 174

Test Laboratory: AGC Lab Date: Sep. 15, 2023

LTE Band 25 Mid-Touch-Left (1 RB#0) DUT: 4G Feature Phone; Type: S10

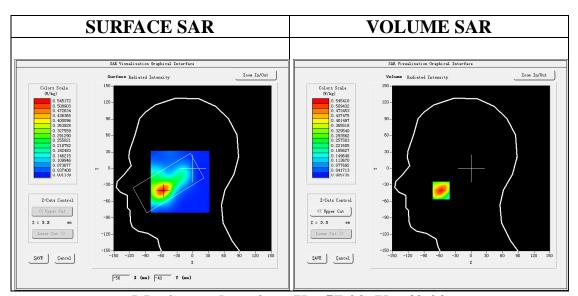
Communication System: LTE; Communication System Band: LTE Band 25; Duty Cycle:1:1; Conv.F=2.32; Frequency:1882.5MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon = 40.32$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C): 20.8, Liquid temperature (°C): 20.5

SATIMO Configuration:

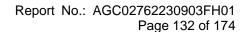
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391


• Sensor-Surface: 4mm (Mechanical Surface Detection)

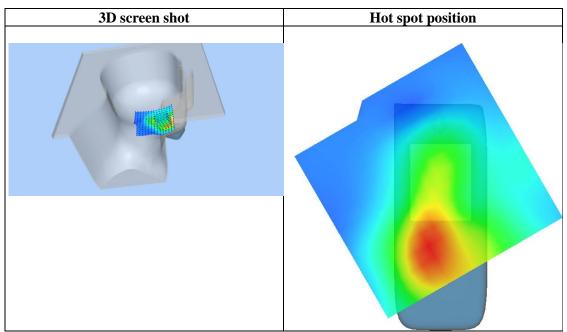
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 25 Mid- Touch-Left /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 25 Mid- Touch-Left /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	LTE Band 25
Channels	Middle
Signal	OFDM (Crest factor: 1.0)

Maximum location: X=-57.00, Y=-40.00 SAR Peak: 0.82 W/kg


3	0
SAR 10g (W/Kg)	0.286268
SAR 1g (W/Kg)	0.514795

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 133 of 174

Test Laboratory: AGC Lab Date: Sep. 15, 2023

LTE Band 25 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

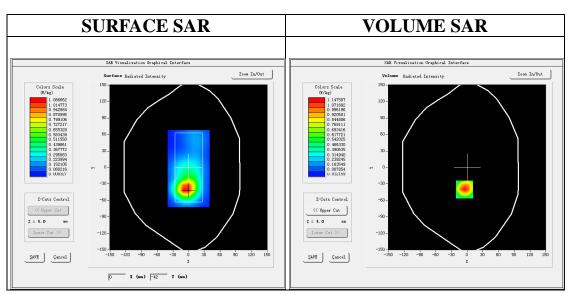
Communication System: LTE; Communication System Band: LTE Band 25; Duty Cycle:1:1; Conv.F=2.32; Frequency:1882.5MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon = 40.32$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 20.8, Liquid temperature (°C): 20.5

SATIMO Configuration:

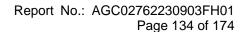
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

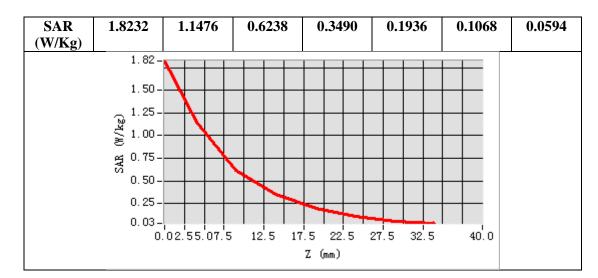

• Sensor-Surface: 4mm (Mechanical Surface Detection)

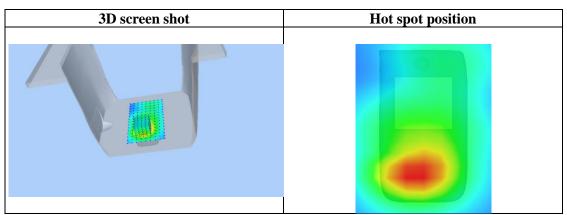
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 25 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 25 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	LTE Band 25
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-5.00, Y=-40.00 SAR Peak: 1.82 W/kg


SAR 10g (W/Kg)	0.572046
SAR 1g (W/Kg)	1.091819

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 135 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 26A Mid-Touch-Left (1 RB#0) DUT: 4G Feature Phone; Type: S10

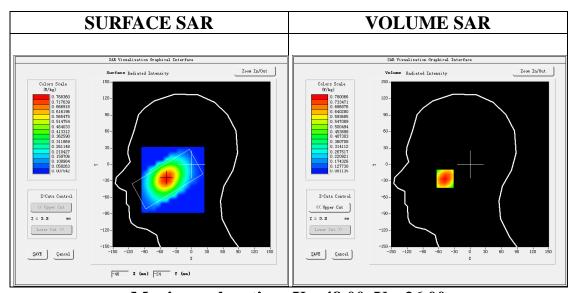
Communication System: LTE; Communication System Band: LTE Band 26A; Duty Cycle:1:1; Conv.F=1.85 Frequency: 836.5 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 40.37$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

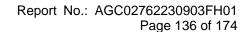

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

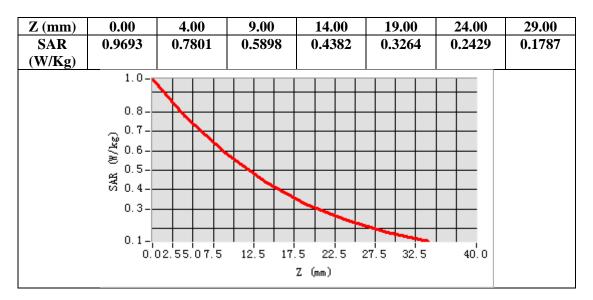
Measurement SW: OpenSAR V4 02 32

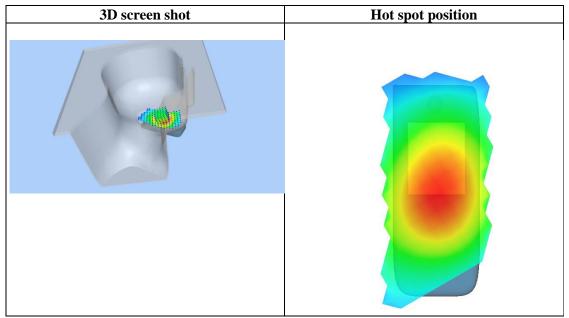
Configuration/ LTE Band 26A Mid- Touch-Left /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 26A Mid- Touch-Left /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Left head			
Device Position	Cheek			
Band	LTE Band 26A			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			



Maximum location: X=-48.00, Y=-26.00 SAR Peak: 0.97 W/kg


SAR 10g (W/Kg)	0.522311
SAR 1g (W/Kg)	0.748341


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 137 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 26A Low-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

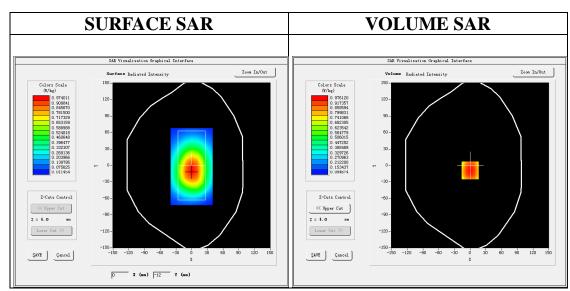
Communication System: LTE; Communication System Band: LTE Band 26A; Duty Cycle:1:1; Conv.F=1.85 Frequency:831.5 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.87$ mho/m; $\epsilon = 43.23$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration:

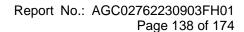
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

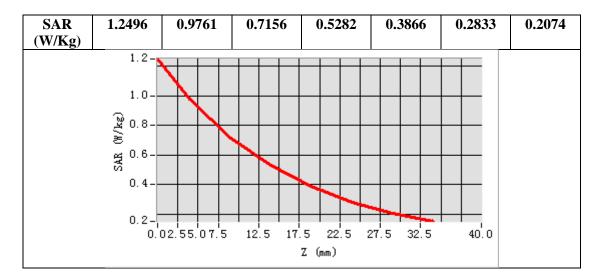

• Sensor-Surface: 4mm (Mechanical Surface Detection)

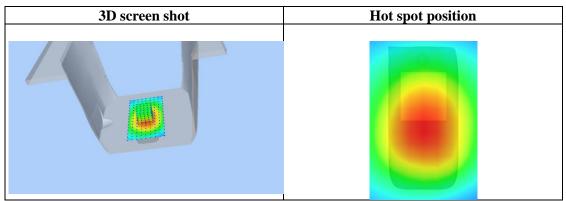
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 26A Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 26A Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	LTE Band 26A			
Channels	Low			
Signal	OFDM (Crest factor: 1.0)			


Maximum location: X=0.00, Y=-9.00 SAR Peak: 1.25 W/kg


	0		
SAR 10g (W/Kg)	0.660657		
SAR 1g (W/Kg)	0.941275		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 139 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 26B Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

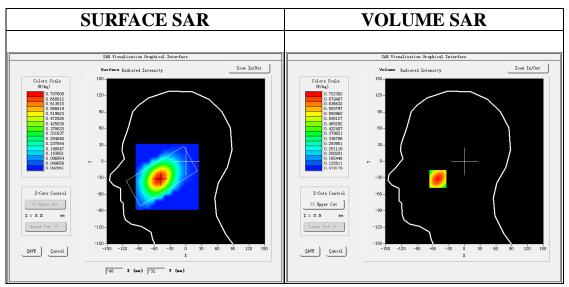
Communication System: LTE; Communication System Band: LTE Band 26B; Duty Cycle:1:1; Conv.F=1.85 Frequency: 821.5 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.83$ mho/m; $\epsilon r = 45.12$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

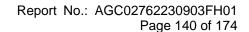

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

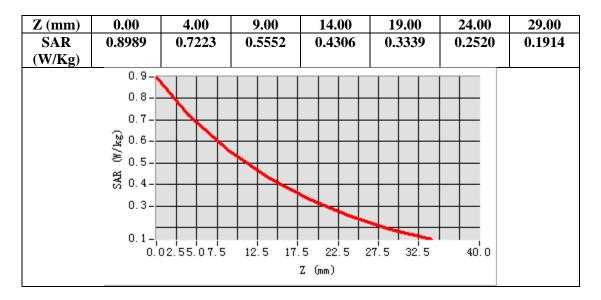
Measurement SW: OpenSAR V4 02 32

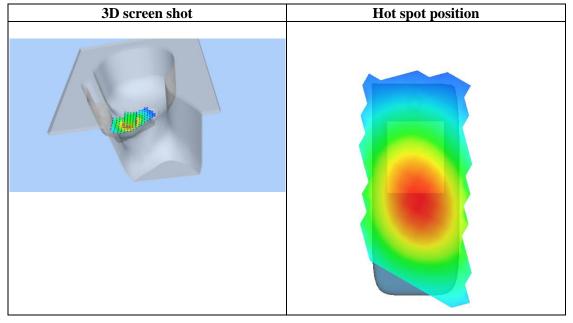
Configuration/ LTE Band 26B Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 26B Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	LTE Band 26B			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			



Maximum location: X=-51.00, Y=-32.00 SAR Peak: 0.90 W/kg


SAR 10g (W/Kg)	0.492902
SAR 1g (W/Kg)	0.695880


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 141 of 174

Test Laboratory: AGC Lab Date: Sep. 19, 2023

LTE Band 26B Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

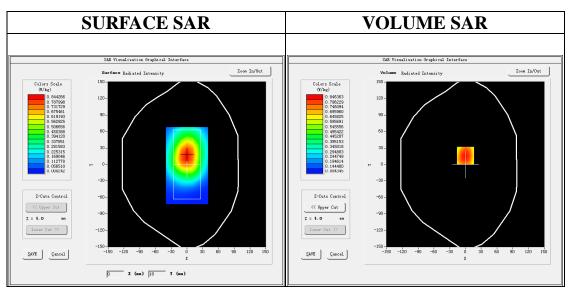
Communication System: LTE; Communication System Band: LTE Band 26B; Duty Cycle:1:1; Conv.F=1.85 Frequency:821.5 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.83$ mho/m; $\epsilon = 45.12$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration:

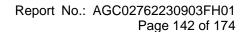
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

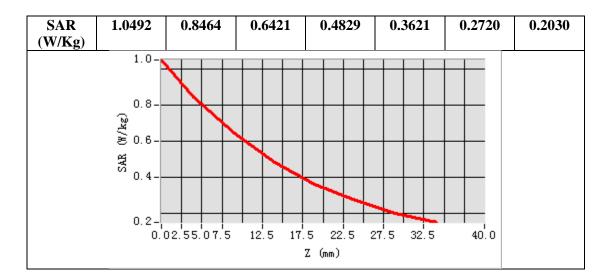

• Sensor-Surface: 4mm (Mechanical Surface Detection)

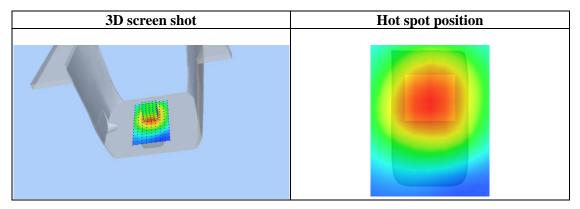
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 26B Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 26B Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm Validation plane				
Phantom					
Device Position	Body Back				
Band	LTE Band 26B Middle				
Channels					
Signal	OFDM (Crest factor: 1.0)				


Maximum location: X=0.00, Y=16.00 SAR Peak: 1.05 W/kg


SAR 10g (W/Kg)	0.584131		
SAR 1g (W/Kg)	0.816645		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 143 of 174

Test Laboratory: AGC Lab Date: Sep. 16, 2023

LTE Band 66 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

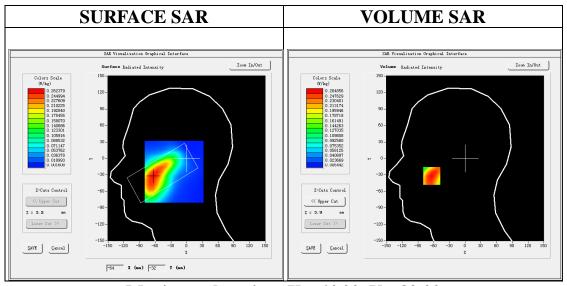
Communication System: LTE; Communication System Band: LTE Band 66; Duty Cycle:1:1; Conv.F=2.32; Frequency:1755 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.45$ mho/m; $\epsilon r = 39.66$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 20.5, Liquid temperature (°C): 20.2

SATIMO Configuration:

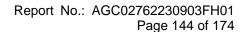
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

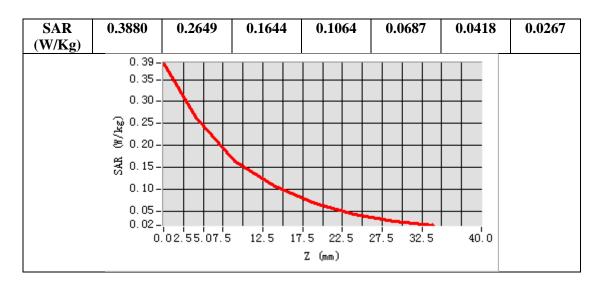

• Sensor-Surface: 4mm (Mechanical Surface Detection)

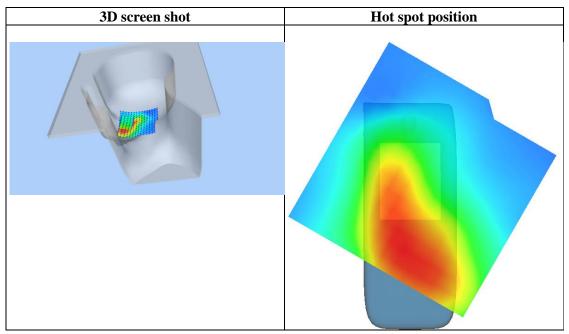
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 66 Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 66 Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	LTE Band 66
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-64.00, Y=-32.00 SAR Peak: 0.39 W/kg


	0
SAR 10g (W/Kg)	0.155404
SAR 1g (W/Kg)	0.255617

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 145 of 174

Test Laboratory: AGC Lab Date: Sep. 16, 2023

LTE Band 66 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

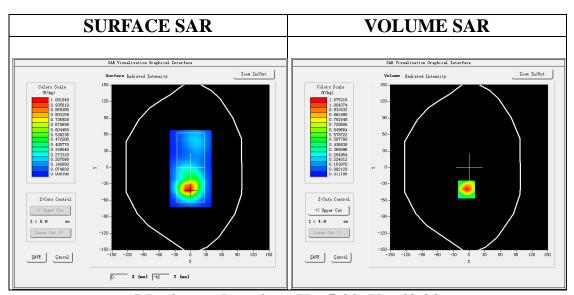
Communication System: LTE; Communication System Band: LTE Band 66; Duty Cycle:1:1; Conv.F=2.32; Frequency:1755 MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.45$ mho/m; $\epsilon r = 39.66$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 20.5, Liquid temperature (°C): 20.2

SATIMO Configuration:

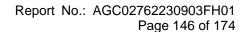
Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

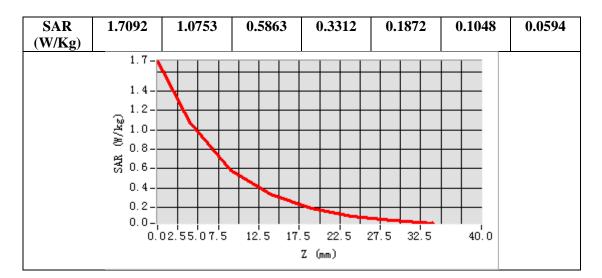

• Sensor-Surface: 4mm (Mechanical Surface Detection)

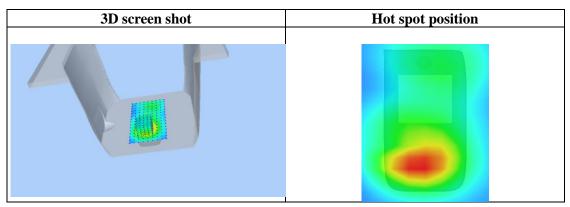
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 66 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 66 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	LTE Band 66
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-5.00, Y=-40.00 SAR Peak: 1.70 W/kg


SAR 10g (W/Kg)	0.522049
SAR 1g (W/Kg)	1.013236

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 147 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 71 Mid-Touch-Right (1 RB#0) DUT: 4G Feature Phone; Type: S10

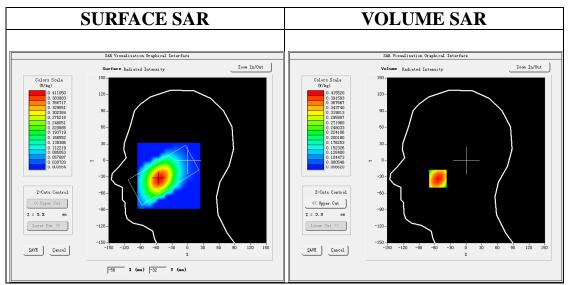
Communication System: LTE; Communication System Band: LTE Band 71; Duty Cycle:1:1; Conv.F=2.10 Frequency: 683 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.82$ mho/m; $\epsilon = 45.19$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

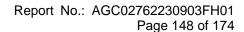
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

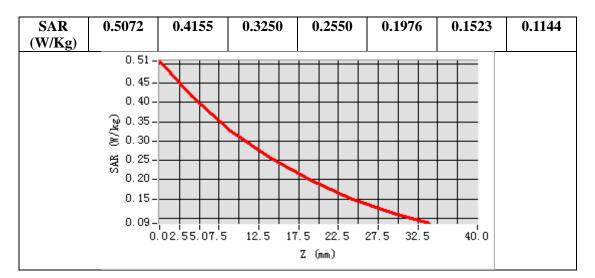

• Sensor-Surface: 4mm (Mechanical Surface Detection)

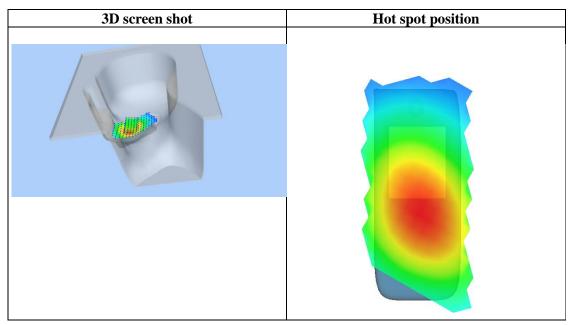
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 71 Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 71 Mid- Touch-Right /Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	LTE Band 71
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=-54.00, Y=-33.00 SAR Peak: 0.51 W/kg


SAR 10g (W/Kg)	0.301136		
SAR 1g (W/Kg)	0.415913		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
--------	------	------	------	-------	-------	-------	-------

Page 149 of 174

Test Laboratory: AGC Lab Date: Sep. 18, 2023

LTE Band 71 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

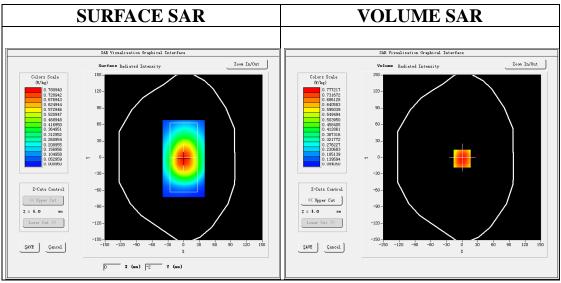
Communication System: LTE; Communication System Band: LTE Band 71; Duty Cycle:1:1; Conv.F=2.10; Frequency: 683 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.82$ mho/m; $\epsilon = 45.19$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.7, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

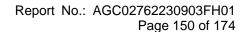
• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

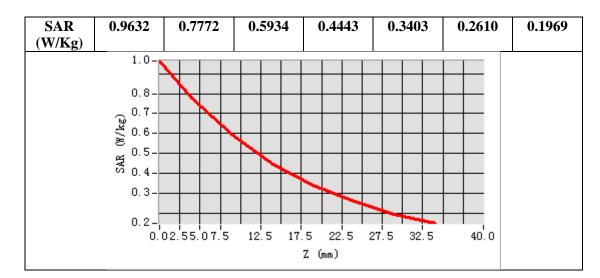

• Sensor-Surface: 4mm (Mechanical Surface Detection)

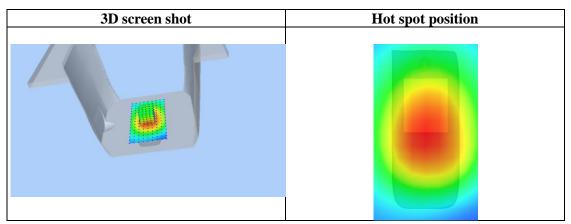
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 71 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 71 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	LTE Band 71
Channels	Middle
Signal	OFDM (Crest factor: 1.0)


Maximum location: X=0.00, Y=-2.00 SAR Peak: 0.98 W/kg


	0
SAR 10g (W/Kg)	0.559851
SAR 1g (W/Kg)	0.780524

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00

Page 151 of 174

Repeated SAR

Test Laboratory: AGC Lab Date: Sep. 15, 2023

LTE Band 2 High-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

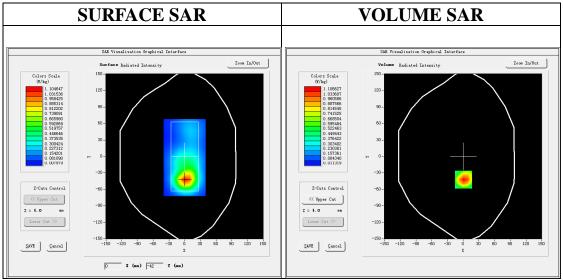
Communication System: LTE; Communication System Band: LTE Band 2; Duty Cycle:1:1; Conv.F=2.32; Frequency:1900MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon = 38.62$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 20.8, Liquid temperature ($^{\circ}$ C): 20.5

SATIMO Configuration:

• Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

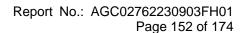

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

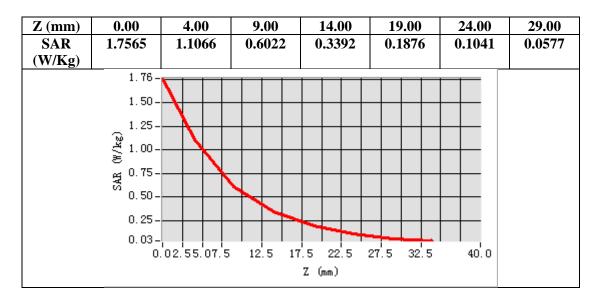
• Measurement SW: OpenSAR V4 02 32

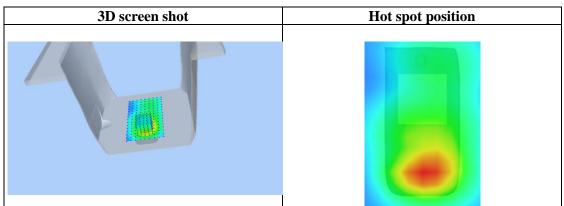
Configuration/ LTE Band 2 High -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 2 High -Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;

Area Scan	surf_sam_plan.txt, h= 5.00 mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	LTE Band 2			
Channels	High			
Signal	OFDM (Crest factor: 1.0)			



Maximum location: X=1.00, Y=-42.00 SAR Peak: 1.75 W/kg


O	
SAR 10g (W/Kg)	0.550524
SAR 1g (W/Kg)	1.052772


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 153 of 174

Test Laboratory: AGC Lab Date: Sep. 16, 2023

LTE Band 4 Mid-Body-Back (1 RB#0) DUT: 4G Feature Phone; Type: S10

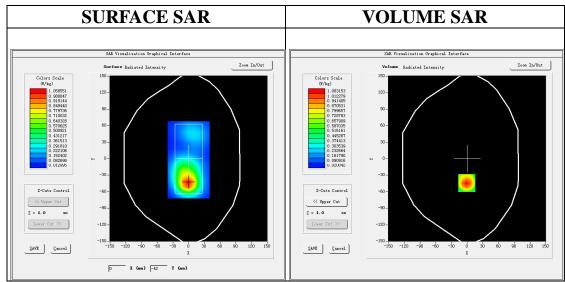
Communication System: LTE; Communication System Band: LTE Band 4; Duty Cycle:1:1; Conv.F=2.32; Frequency:1732.5 MHz; Medium parameters used: f = 1800 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon = 42.68$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 20.5, Liquid temperature (°C): 20.2

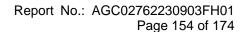
SATIMO Configuration:

Probe: SSE2; Calibrated: Dec. 02, 2022; Serial No.: SN 45/22 EPGO391

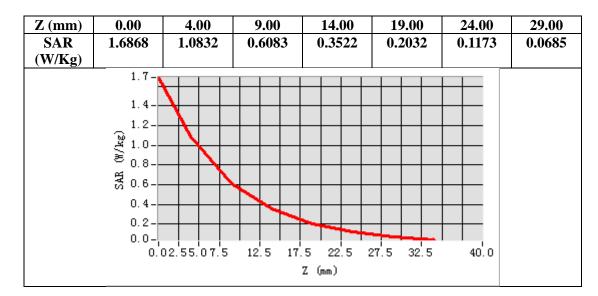

• Sensor-Surface: 4mm (Mechanical Surface Detection)

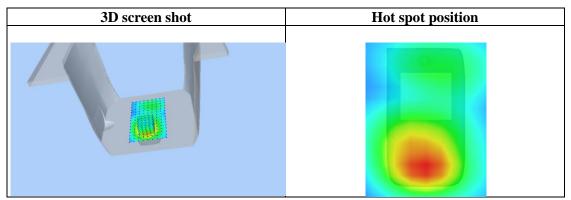
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_32


Configuration/ LTE Band 4 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band 4 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	LTE Band 4
Channels	Middle
Signal	OFDM (Crest factor: 1.0)




Maximum location: X=-1.00, Y=-44.00 SAR Peak: 1.70 W/kg

	<u> </u>
SAR 10g (W/Kg)	0.559796
SAR 1g (W/Kg)	1.038699

