

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202308-0329-4

Page: 1 of 48

RF Test Report

FCC ID: 2BCTE-TS-1

Report No. : TBR-C-202308-0329-4

Applicant: Shenzhen Feichang Huapin Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : projector

Model No. : TS-1

T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, TZ-1, TZ-2, TZ-3,

Series Model No. : TZ-4, TZ-5, TZ-6, TZ-7, TZ-8, TZ-9, TS-2, TS-3, TS-4, TS-5,

TS-6, TS-7, TS-8, TS-9

Brand Name : FEEL WOW

Sample ID : 202308-0329-1-1# & 202308-0329-1-2#

Receipt Date : 2023-09-06

Test Date : 2023-09-06 to 2023-11-03

Issue Date : 2023-11-03

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : $\mathcal{W} \mathcal{S} \mathcal{V}$

Engineer Manager :

Wade Lv

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202308-0329-4 Page: 2 of 48

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	8
	1.4 Description of Support Units	
	1.5 Description of Test Mode	9
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	11
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	13
5.	CONDUCTED EMISSION	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	19
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	21
	6.5 EUT Operating Mode	21
	6.6 Test Data	
7.	EMISSIONS IN RESTRICTED BANDS	22
	7.1 Test Standard and Limit	22
	7.2 Test Setup	
	7.3 Test Procedure	

Report No.: TBR-C-202308-0329-4 Page: 3 of 48

	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	24
	7.6 Test Data	24
8.	99% OCCUPIED AND 20DB BANDWIDTH	25
	8.1 Test Standard and Limit	25
	8.2 Test Setup	25
	8.3 Test Procedure	25
	8.4 Deviation From Test Standard	26
	8.5 EUT Operating Mode	26
	8.6 Test Data	26
9.	PEAK OUTPUT POWER TEST	27
	9.1 Test Standard and Limit	27
	9.2 Test Setup	27
	9.3 Test Procedure	27
	9.4 Deviation From Test Standard	28
	9.5 EUT Operating Mode	28
	9.6 Test Data	28
10.	CARRIER FREQUENCY SEPARATION	29
	10.1 Test Standard and Limit	29
	10.2 Test Setup	29
	10.3 Test Procedure	29
	10.4 Deviation From Test Standard	30
	10.5 Antenna Connected Construction	30
	10.6 Test Data	
11.	TIME OF OCCUPANCY (DWELL TIME)	31
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	31
	11.4 Deviation From Test Standard	32
	11.5 Antenna Connected Construction	32
	11.6 Test Data	32
12.	NUMBER OF HOPPING FREQUENCIES	33
	12.1 Test Standard and Limit	33
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	

Report No.: TBR-C-202308-0329-4 Page: 4 of 48

	12.5 Antenna Connected Construction	34
	12.6 Test Data	34
13.	ANTENNA REQUIREMENT	35
	13.1 Test Standard and Limit	35
	13.2 Deviation From Test Standard	35
	13.3 Antenna Connected Construction	35
	13.4 Test Data	35
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	36
ATT	ACHMENT BUNWANTED EMISSIONS DATA	38

Report No.: TBR-C-202308-0329-4 Page: 5 of 48

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202308-0329-4	Rev.01	Initial issue of report	2023-11-03
1000	ann)	TUDE:	
		The state of the s	THE WAY
	min in		
The same of	60		E VIII
	MBY)	2000	
The state of the s		TUDE	And the second
	33	4000	
THO	mnB1	TODA	
	3	On the	
TO THE PARTY	TIME TO THE TANK	033	TO THE

Page: 6 of 48

1. General Information about EUT

1.1 Client Information

Applicant	: Shenzhen Feichang Huapin Technology Co., Ltd.		
Address		11th Floor, Xingbaohe Building, Xianian, Gongmingshang Village, Guangming District, Shenzhen City, Guangdong Province, China	
Manufacturer	rer : Shenzhen Feichang Huapin Technology Co., Ltd.		
Address		11th Floor, Xingbaohe Building, Xianian, Gongmingshang Village, Guangming District, Shenzhen City, Guangdong Province, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	ŀ	projector	4000	
Models No.		TS-1, T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, TZ-1, TZ-2, TZ-4, TZ-5, TZ-6, TZ-7, TZ-8, TZ-9, TS-2, TS-3, TS-4, TS-5, TS-7, TS-8, TS-9		
Model Different		All PCB boards and circuit diagrams are the same, the only difference is that appearance.		
MOSS		Operation Frequency:	Bluetooth 5.2(BR+EDR): 2402MHz~2480MHz	
Duaduat		Number of Channel:	79 channels	
Product Description	:	Antenna Gain:	1.73dBi PCB Antenna	
Description	Modulation Type:	GFSK(1Mbps)		
		Modulation Type:	π /4-DQPSK(2Mbps)	
			8-DPSK(3Mbps)	
The state of the s		Adapter (Model: RSF-DY113B-2202180US)		
Power Rating		Input: 100-240V~ 50/60Hz, 1.5A		
	W	Output: 22V2.2A		
Software Version				
Hardware Version		FCHP-X4352-V1.0		

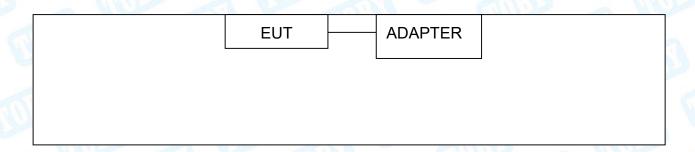
Remark:

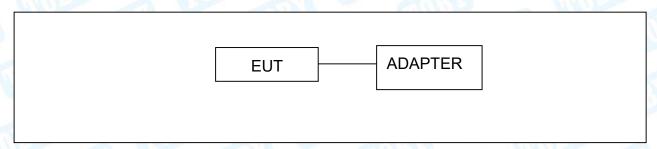
- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Report No.: TBR-C-202308-0329-4 Page: 7 of 48

(4)Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			




Page: 8 of 48

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"	
Adapter	RSF-DY113B-2202180US	20	2017 To	√	
	Ca	ble Information			
Number	Shielded Type	Ferrite Core	Length	Note	
100	670 6713	3 (7)	1000	W	
Note: The ada	pter is provided by the Applica	int.	4000		

Page: 9 of 48

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	TX GFSK Mode Channel 00			
	For Radiated Test			
Final Test Mode	Description			
Mode 1	TX GFSK Mode Channel 00			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6 Hopping Mode(π /4-DQPSK)				
Mode 7	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 48

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	4000	Xshell 5	
Frequency	2402MHz	2441MHz	2480MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty
rest item	Parameters	(U _{Lab})
	Level Accuracy:	$\pm 3.50~\mathrm{dB}$
Conducted Emission	9kHz~150kHz	
MULL	150kHz to 30MHz	$\pm 3.10~\mathrm{dB}$
Dedicted Emission	Level Accuracy:	±4.60 dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	$\pm 4.50~\mathrm{dB}$
Radiated Emission	30MHz to 1000 MHz	±4.50 0B
Radiated Emission	Level Accuracy:	±4.20 dB
Radiated Enlission	Above 1000MHz	±4.20 ub

Page: 11 of 48

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202308-0329-4 Page: 12 of 48

2. Test Summary

Standard Section	T (N	T (O l. / .)	1.1	D
FCC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	202308-0329-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202308-0329-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	202308-0329-1-2#	PASS	N/A
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202308-0329-1-2#	PASS	N/A
FCC 15.247(b)(1)	Peak Output Power	202308-0329-1-2#	PASS	N/A
FCC 15.247(a)(1)	Carrier frequency separation	202308-0329-1-2#	PASS	N/A
FCC 15.247(a)(1)	Time of occupancy	202308-0329-1-2#	PASS	N/A
FCC 15.247(b)(1)	Number of Hopping Frequency	202308-0329-1-2#	PASS	N/A
FCC 15.247(d)	Band Edge	202308-0329-1-2#	PASS	N/A
FCC 15.207	Conducted Unwanted Emissions	202308-0329-1-2#	PASS	N/A
FCC 15.205	Emissions in Restricted Bands	202308-0329-1-2#	PASS	N/A
	On Time and Duty Cycle	202308-0329-1-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202308-0329-4 Page: 13 of 48

4. Test Equipment

Conducted Emiss	sion lest				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
	Compliance	1000	NO	1 6	
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
	Inc	TO COM	BY ST	WWP?	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024
Radiation Emissi	on Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum		50/40 N	100107		1 40 0004
Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conduct	ted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024

Report No.: TBR-C-202308-0329-4 Page: 14 of 48

MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 30, 2023	Aug. 29, 2024
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 30, 2023	Aug. 29, 2024
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 30, 2023	Aug. 29, 2024
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 30, 2023	Aug. 29, 2024
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 30, 2023	Aug. 29, 2024
DE David Carrage	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Aug. 30, 2023	Aug. 29, 2024
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024

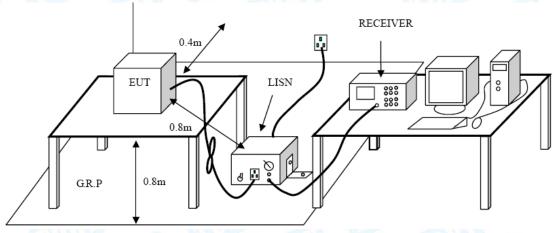
Page: 15 of 48

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

F	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.

Page: 16 of 48

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 17 of 48

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz				
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz		
Frequency	Field strength	Measurement Distance
(MHz)	(µV/m at 3 m)	(meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

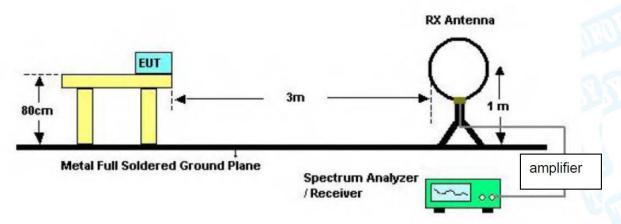
Note:

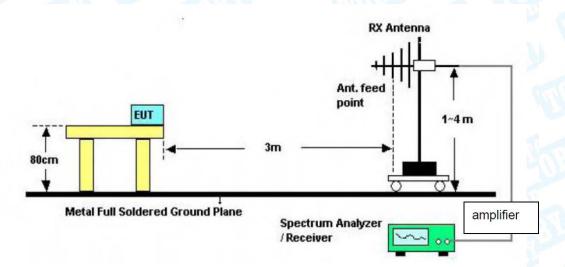
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power

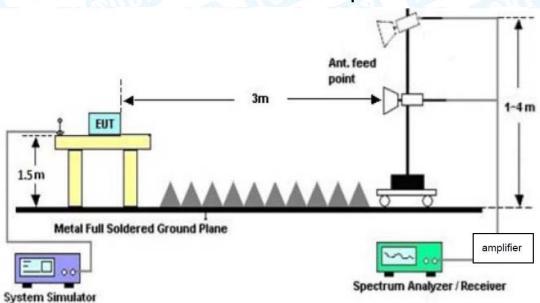
Page: 18 of 48

limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



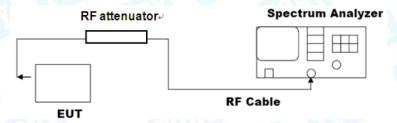

Page: 19 of 48

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 20 of 48

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 21 of 48

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of BT.

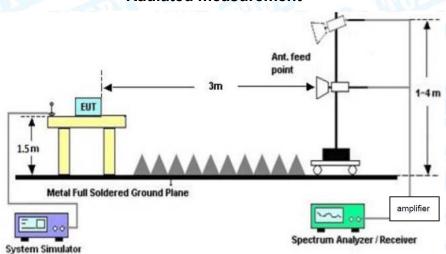
Page: 22 of 48

7. Emissions in Restricted Bands

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		
	Peak (dBm) _{see 7.3 e)}	Average (dBm) see 7.3 e)		
2310 ~2390	-21.20	-41.20		
2483.5 ~2500	-21.20	-41.20		

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 23 of 48

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to
- determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

Page: 24 of 48

$E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

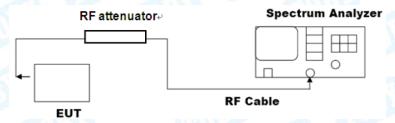
Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the external appendix report of BT.

Page: 25 of 48

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data

Page: 26 of 48

points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

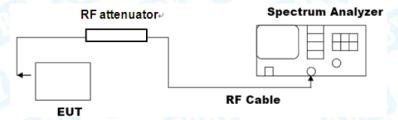
8.6 Test Data

Please refer to the external appendix report of BT.

Page: 27 of 48

9. Peak Output Power Test

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
THU.	<i>P</i> max-pk ≤ 1 W	(100)
	N _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW _{20dB} }	The state of the s
The state of the s	max. BW20dB not specified	TO THE STATE OF TH
	tch ≤ 0.4 s for $T = 0.4*N$ ch	
Peak Output Power	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
	Nch ≥ 15	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }	33
ansis .	OR MAX{25 kHz, BW20dB}]	
MAR	max. BW20dB not specified	
	t ch ≤ 0.4 s for $T = 0.4*N$ ch	

9.2 Test Setup

9.3 Test Procedure

- This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.

Page: 28 of 48

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

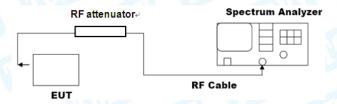
9.6 Test Data

Please refer to the external appendix report of BT.

Page: 29 of 48

10. Carrier frequency separation

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(a)(1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
NO.	<i>P</i> _{max-pk} ≤ 1 W	
	N _{ch} ≥ 75	TOTAL STATE
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	TO THE REAL PROPERTY.
O-minufunction	tch ≤ 0.4 s for $T = 0.4*N$ ch	
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
separation	Nch ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }	
	OR MAX{25 kHz, BW20dB}]	
WILL STATE	max. BW20dB not specified	
	t ch ≤ 0.4 s for $T = 0.4*N$ ch	

10.2 Test Setup

10.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Page: 30 of 48

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

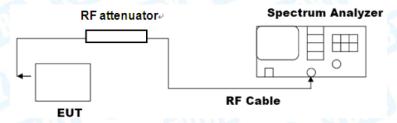
10.6 Test Data

Please refer to the external appendix report of BT.

Page: 31 of 48

11. Time of occupancy (Dwell time)

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
A MUL	max. BW20dB not specified	
Time of engunerate	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch	
Time of occupancy	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
(dwell time)	Nch ≥ 15	
D	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }	
	OR MAX{25 kHz, BW _{20dB} }]	
	max. BW20dB not specified	
	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch	
$t_{\rm ch}$ = average time of c	ccupancy; $T = \text{period}$; $N_{ch} = \# \text{hopping } f$ $f = \text{hopping channel carrier frequency } s$	

11.2 Test Setup

11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be □ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be

Page: 32 of 48

needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

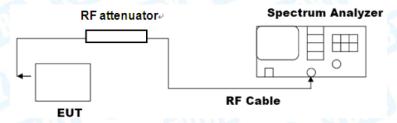
11.6 Test Data

Please refer to the external appendix report of BT.

Page: 33 of 48

12. Number of hopping frequencies

12.1 Test Standard and Limit


12.1.1 Test Standard

FCC Part 15.247(b)(1)

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
A LIVE	P _{max-pk} ≤ 1 W	4000
	<i>N</i> _{ch} ≥ 75	
	f≥MAX { 25 kHz, BW _{20dB} }	
The state of the s	max. BW20dB not specified	
Comion from Long	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch	
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
separation	Nch ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch	
	ccupancy; $T = \text{period}$; $N_{\text{ch}} = \#$ hopping f f = hopping channel carrier frequency s	

12.2 Test Setup

12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.

Page: 34 of 48

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the external appendix report of BT.

Page: 35 of 48

13. Antenna Requirement

13.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

13.2 Deviation From Test Standard

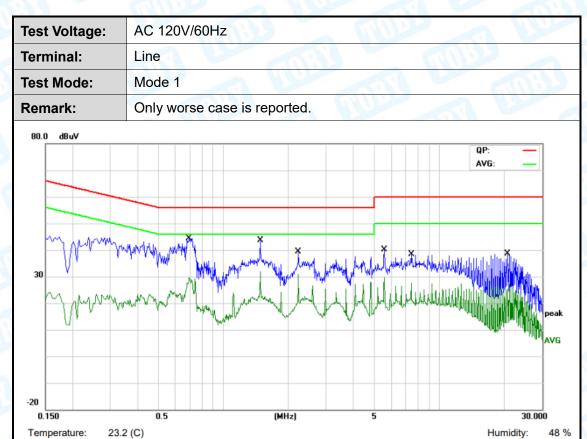
No deviation

13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.73dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

13.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


Antenna Type							
⊠Permanent attached antenna							
Unique connector antenna							
☐Professional installation antenna							

Page: 36 of 48

Attachment A-- Conducted Emission Test Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.6940	25.14	11.01	36.15	56.00	-19.85	QP
2		0.6940	12.22	11.01	23.23	46.00	-22.77	AVG
3		1.4860	20.93	10.91	31.84	56.00	-24.16	QP
4	*	1.4860	17.90	10.91	28.81	46.00	-17.19	AVG
5		2.2260	12.95	10.69	23.64	56.00	-32.36	QP
6		2.2260	7.89	10.69	18.58	46.00	-27.42	AVG
7		5.5658	13.93	9.96	23.89	60.00	-36.11	QP
8		5.5658	7.74	9.96	17.70	50.00	-32.30	AVG
9		7.4219	13.19	10.22	23.41	60.00	-36.59	QP
10		7.4219	7.15	10.22	17.37	50.00	-32.63	AVG
11		20.8020	7.72	10.86	18.58	60.00	-41.42	QP
12		20.8020	1.07	10.86	11.93	50.00	-38.07	AVG

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202308-0329-4 Page: 37 of 48

Humidity:

48 %

Test Voltage:	AC 120V/60Hz	
Terminal:	Neutral	
Test Mode:	Mode 1	
Remark:	Only worse case is report	ed.
30 dBuV	Market Ma	QP: — AVG: — Pea

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.6940	25.07	11.01	36.08	56.00	-19.92	QP
2		0.6940	12.26	11.01	23.27	46.00	-22.73	AVG
3		1.4900	22.03	10.91	32.94	56.00	-23.06	QP
4	*	1.4900	20.64	10.91	31.55	46.00	-14.45	AVG
5		2.6020	15.19	10.68	25.87	56.00	-30.13	QP
6		2.6020	12.11	10.68	22.79	46.00	-23.21	AVG
7		4.4618	16.16	10.07	26.23	56.00	-29.77	QP
8		4.4618	12.57	10.07	22.64	46.00	-23.36	AVG
9		7.4339	14.38	10.22	24.60	60.00	-35.40	QP
10		7.4339	8.38	10.22	18.60	50.00	-31.40	AVG
11		16.3619	13.20	10.71	23.91	60.00	-36.09	QP
12		16.3619	3.92	10.71	14.63	50.00	-35.37	AVG

Temperature:

23.2 (C)

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 38 of 48

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

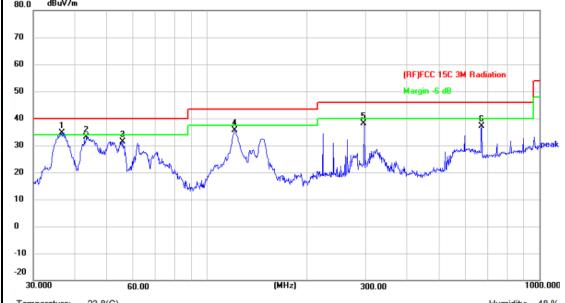
Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

est Vo	Itage:	AC	120	V/60	0Hz					
Ant. Po	ı.	Но	Horizontal							
est Mo	ode:	Mc	Mode 2 TX Mode(GFSK) Channel 00							
Remark	(:	On	ıly wo	orse	case	is reported.		MIL		a V
80.0 d	lBuV/m									
70										
60								(RF)FCC 1	5C 3M Radiation	
50								Margin -6	dВ	
40				<u> </u>		- 3	*		5	Ş.
30			, Å	_		Å		Wax .	سلكر	peak peak
20	Marriage James	Park and Park and In	~~~	range.	pullment	The state of the s	and millioners	Warrander	V	
10										
0										
-10				+						
-20										
30.000 Tempera		.8(C)).00			(MHz)	300	0.00	Hum	1000.000 nidity: 48 %
No.		luenc			ding	Factor	Level	Limit	Margin	Detector

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	70.5835	54.29	-24.45	29.84	40.00	-10.16	peak
2	121.5485	56.07	-23.75	32.32	43.50	-11.18	peak
3	148.4410	55.68	-22.58	33.10	43.50	-10.40	peak
4 *	297.2238	58.97	-20.76	38.21	46.00	-7.79	peak
5	595.1326	48.16	-12.99	35.17	46.00	-10.83	peak
6	893.8564	44.51	-7.64	36.87	46.00	-9.13	peak

^{*:}Maximum data x:Over limit !:over margin


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 48

Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical							
Test Mode:	Mode 2 TX Mode(GFSK) Channel 00							
Remark:	Only worse case is reported.							
80.0 dBuV/m								
70								

Temperature:	23.8(C)	Humid	lity:	48 %
--------------	---------	-------	-------	------

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	36.5090	57.81	-23.06	34.75	40.00	-5.25	peak
2	43.3534	55.93	-22.88	33.05	40.00	-6.95	peak
3	55.8046	54.59	-23.17	31.42	40.00	-8.58	peak
4	121.1230	59.30	-23.77	35.53	43.50	-7.97	peak
5	297.2238	58.93	-20.76	38.17	46.00	-7.83	peak
6	670.4891	48.76	-11.72	37.04	46.00	-8.96	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 40 of 48

Above 1GHz

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V	1	
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2402MHz		OHU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11327.500	43.10	-1.04	42.06	74.00	-31.94	peak
2 *	14438.500	41.43	0.73	42.16	74.00	-31.84	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3°C	Relative Humidity:	49%
Test Voltage:	DC 22V		WORK -
Ant. Pol.	Vertical		and it
Test Mode:	TX GFSK Mode 2402MH	z	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11939.500	42.36	-0.83	41.53	74.00	-32.47	peak
2 *	13571.500	43.38	-0.10	43.28	74.00	-30.72	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 41 of 48

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		7
Ant. Pol.	Horizontal		1000
Test Mode:	TX GFSK Mode 24	41MHz	COMM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11786.500	42.32	-0.80	41.52	74.00	-32.48	peak
2 *	13265.500	43.09	-0.14	42.95	74.00	-31.05	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2441MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	44.25	-1.79	42.46	74.00	-31.54	peak
2	13240.000	42.38	-0.12	42.26	74.00	-31.74	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 42 of 48

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		A FILL
Ant. Pol.	Horizontal		000
Test Mode:	TX GFSK Mode 2480MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	13087.000	42.85	-0.03	42.82	74.00	-31.18	peak
2 *	14872.000	42.44	1.19	43.63	74.00	-30.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V	The state of the s	
Ant. Pol.	Vertical	1000	THURS
Test Mode:	TX GFSK Mode 2480MHz		CHILL:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11327.500	42.35	-1.04	41.31	74.00	-32.69	peak
2 *	13520.500	41.96	0.01	41.97	74.00	-32.03	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 43 of 48

Temperature:	24.3℃	Relative Humidity:	49%			
Test Voltage:	DC 22V	DC 22V				
Ant. Pol.	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2402MHz					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	12118.000	42.37	-0.46	41.91	74.00	-32.09	peak
2	13546.000	41.92	-0.05	41.87	74.00	-32.13	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		
Ant. Pol.	Vertical	THE PARTY OF	
Test Mode:	TX π /4-DQPSK I	Mode 2402MHz	A VIII

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	12322.000	42.46	-0.87	41.59	74.00	-32.41	peak
2 *	13367.500	42.05	0.07	42.12	74.00	-31.88	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 44 of 48

Temperature:	24.3℃	Relative Humidity:	49%		
Test Voltage:	DC 22V		7		
Ant. Pol.	Horizontal				
Test Mode:	TX π /4-DQPSK Mode 2441MHz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	44.51	-1.79	42.72	74.00	-31.28	peak
2	14719.000	41.80	0.81	42.61	74.00	-31.39	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

A STATE OF THE PARTY OF THE PAR		Table 18th California Committee Comm				
Temperature:	24.3℃	Relative Humidity:	49%			
Test Voltage:	DC 22V					
Ant. Pol.	Vertical					
Test Mode:	TX π /4-DQPSK Mode 24	41MHz	A Aller			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10460.500	46.03	-3.68	42.35	74.00	-31.65	peak
2 *	13240.000	43.75	-0.12	43.63	74.00	-30.37	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 45 of 48

Temperature:	24.3°C	Relative Humidity:	49%
Test Voltage:	DC 22V		7
Ant. Pol.	Horizontal		333
Test Mode:	TX π /4-DQPSK Mode 24	80MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11684.500	43.24	-1.13	42.11	74.00	-31.89	peak
2 *	14872.000	41.02	1.19	42.21	74.00	-31.79	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		4000
Ant. Pol.	Vertical	The state of the s	and i
Test Mode:	TX π /4-DQPSK Mode	2480MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	12169.000	41.94	-0.61	41.33	74.00	-32.67	peak
2 *	14515.000	41.26	0.60	41.86	74.00	-32.14	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 46 of 48

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		7
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2	2402MHz	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	12143.500	41.90	-0.53	41.37	74.00	-32.63	peak
2 *	13903.000	41.24	0.76	42.00	74.00	-32.00	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

	APP AND A RESERVE		
Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V	TO THE REAL PROPERTY.	
Ant. Pol.	Vertical	THE PARTY OF THE P	100
Test Mode:	TX 8-DPSK Mode	e 2402MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10970.500	45.54	-1.82	43.72	74.00	-30.28	peak
2	13367.500	42.28	0.07	42.35	74.00	-31.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 47 of 48

Temperature:	24.3℃	Relative Humidity:	49%				
Test Voltage:	DC 22V		7				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 8-DPSK Mode 2	2441MHz	COUNTY OF THE PARTY OF THE PART				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	12092.500	43.50	-0.43	43.07	74.00	-30.93	peak
2	14030.500	42.86	0.04	42.90	74.00	-31.10	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%			
Test Voltage:	DC 22V					
Ant. Pol.	Vertical	THUE TO	110			
Test Mode:	TX 8-DPSK Mode 2441N	ИНz	A Aller			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	12041.500	41.90	-0.52	41.38	74.00	-32.62	peak
2 *	14362.000	42.11	0.58	42.69	74.00	-31.31	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 48 of 48

Te	emperature:	24.3℃	Relative Humidity:	49%			
Te	est Voltage:	DC 22V					
Α	nt. Pol.	Horizontal					
Te	est Mode:	TX 8-DPSK Mode 2480MHz					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11353.000	44.22	-1.01	43.21	74.00	-30.79	peak
2	13571.500	43.17	-0.10	43.07	74.00	-30.93	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.3℃	Relative Humidity:	49%
Test Voltage:	DC 22V		
Ant. Pol.	Vertical		
Test Mode:	TX 8-DPSK Mode 2480MHz		ann.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11990.500	42.58	-0.64	41.94	74.00	-32.06	peak
2	14132.500	41.25	-0.06	41.19	74.00	-32.81	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

--END OF THE REPORT---

