

FCC Test Report

Report No: FCS202409449W01

Issued for

Applicant:	Zhongshan Hanfan Electronic Technology Co., Ltd.				
Address:	Floor 3, Building 2, No.4 Lefengliu Road, Zhongshan City, Guangdong Province, China				
Product Name:	2.4G Fan Light Controller				
Brand Name:	N/A				
Model Name:	17179				
Series Model:	GX-19K-2.4G				
FCC ID:	2BCS9-17179				
Add: Room 105 Floor Bao	d By: Flux Compliance Service Laboratory hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan 769-27280901 http://www.FCS-lab.com				

TEST RESULT CERTIFICATION

Applicant's Name:	Zhongshan Hanfan Electronic Technology Co., Ltd.
Address	Floor 3, Building 2, No.4 Lefengliu Road, Zhongshan City, Guangdong Province,China
Manufacture's Name:	Zhongshan Hanfan Electronic Technology Co., Ltd.
Address:	Floor 3, Building 2, No.4 Lefengliu Road, Zhongshan City, Guangdong Province,China
Product Description	
Product Name:	2.4G Fan Light Controller
Brand Name	N/A
Model Name:	17179
Series Model	GX-19K-2.4G
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.:	September 26, 2024 ~September 29, 2024
Date of Issue	September 29, 2024

:

Test Result..... Pass

Tested by

Sole sher

(Scott Shen)

Reviewed by

Approved by

(Duke Qian

11108

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3. CONDUCTED EMISSION MEASUREMENT	13
4. 6DB BANDWIDTH	16
4.1 Limit	16
4.2 Test Procedure	16
4.3 Test setup	16
4.4 Test results	16
4.5 Original Test Data	17
5. CONDUCTED OUTPUT POWER	18
5.1 LIMIT	18
5.2 TEST PROCEDURE	18
5.3 TEST SETUP	18
5.5 TEST RESULTS	18
6. BAND EDGE AND SPURIOUS(CONDUCTED)	19
6.1 LIMIT	19
6.2 TEST PROCEDURE	19
6.3 TEST SETUP	19
6.4 TEST RESULTS	20
6.5 Original test data	20
7. POWER SPECTRAL DENSITY	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 TEST SETUP	22
7.4 TEST RESULTS	22

Table of Contents

Page

7.5 original test data	23
8. RADIATED EMISSION MEASUREMENT	24
8.1 RADIATED EMISSION LIMITS	24
8.2 TEST PROCEDURE	25
8.3 TESTSETUP	
8.4. TEST RESULTS	27
9. RADIATED EMISSION (30MHZ-1000MHZ)	
■ 9.1 RADIATED EMISSION ABOVE 1GHZ	30
9.2 RADIATED BAND EDGE DATA	
10. ANTENNA REQUIREMENT	
10.1 STANDARD REQUIREMENT	34
10.2 RESULT	

Revision History

Rev.	Issue Date	Effect Page	Contents
00	September 29, 2024	N/A	N/A

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C						
Standard Section	Judgment	Remark				
15.207	Conducted Emission	N/A				
15.247 (b)(3)	Output Power	PASS				
15.209	Radiated Spurious Emission	PASS				
15.247(d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247(a)(2)	6dB Bandwidth 99% Bandwidth	PASS				
15.205	Restricted bands of operation	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

	Flux Compliance Service Laboratory			
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan			
elephone:	+86-769-27280901			
ax:	+86-769-27280901			
CC Test Firm Regist Designation number: A2LA accreditation nu SED Number: 2580 CAB ID : CN0097	umber: 5545.01			

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	\pm 4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	\pm 4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	\pm 5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth	±0.3 dB
10	Power Spectral Density	±0.48 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Page 8 of 35

Product Name	2.4G Fan Light Controller					
Trade Name	N/A					
Model Name	17179					
Series Model	GX-19K-2.4G					
Model Difference	We (Zhongshan Hanfan Electronic Technology Co., Ltd.) hereby state that all the models are electrical identical including the same software parameter and hardware design (i.e., circuit design, PCB Layout, RF module/circuit, ntenna type(s) and antenna location, components on PCB, etc.,), same mechanical structure and design (including product enclosure, materials, etc.,), the only difference is the model name and appearance color.					
	Operation Frequency:	2402-2480 MHz				
	Modulation Type:	GFSK				
	Radio Technology:	2.4G				
Product Description	Number Of Channel:	40 CH				
	Antenna Gain (dBi)	1.87				
	Transmitter rate:	1Mbps				
Channel List	Please refer to the Note 2	2.				
Power Supply	DC 3V					
Battery	DC 3V					
Hardware version number	V1.0					
Software version number	V1.0					
Connecting I/O Port(s)	Please refer to the User's Manual					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List

Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	NA	N/A	PCB antenna	N/A	1.87	Antenna

Page 10 of 35

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Mode 1		1
	EUT	

Test software:

🔒 FCCTestTool V1.6

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
U	

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2024.08.28	2025.08.27
Signal Analyzer	R&S	FSV40-N	FCS-E012	2024.08.28	2025.08.27
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2024.08.28	2025.08.27
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2024.08.28	2025.08.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2024.08.28	2025.08.27
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2024.08.28	2025.08.27
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2024.08.28	2025.08.27
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2024.08.28	2025.08.27
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2024.08.28	2025.08.27
Temperature & Humidity	HTC-1	victor	FCS-E005	2024.08.28	2025.08.27
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2024.08.28	2025.08.27
LISN	R&S	ENV216	FCS-E007	2024.08.28	2025.08.27
LISN	ETS	3810/2NM	FCS-E009	2024.08.28	2025.08.27
Temperature & Humidity	HTC-1	victor	FCS-E008	2024.08.28	2025.08.27
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)				

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2024.08.28	2025.08.27
Spectrum Analyzer	Agilent	E4447A	MY50180039	2024.08.28	2025.08.27
Spectrum Analyzer	R&S	FSV-40	101499	2024.08.28	2025.08.27
Power Sensor	Agilent	UX2021XA	FCS-E021	2024.08.28	2025.08.27
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

3. CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

		Conducted Emiss	sionlimit (dBuV)
	FREQUENCY (MHz)	Quasi-peak	Average
	0.15 -0.5	66 - 56 *	56 - 46 *
	0.50 -5.0	56.00	46.00
Ī	5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

3.4 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	N/A	Test Voltage:	N/A
Result:	N/A	Result:	N/A

4. 6DB BANDWIDTH

4.1 Limit

	FCC Part 15.247, Subpart C					
		RSS-Gen Clause 6.7	7			
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5	PASS		
RSS-Gen Clause 6.7	99% Bandwidth	For reporting purposes only.	2400-2483.5	PASS		

4.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
	For 6 dB Bandwidth :100KHz	
RBW	For 99% Bandwidth :1% to 5% of the occupied bandwidth	
	For 6dB Bandwidth : ≥3 × RBW	
VBW	For 99% Bandwidth : approximately 3×RBW	
Trace	Max hold	
Sweep	Auto	

Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3 Test setup

Spectrum Analyzer

EUT

4.4 Test results

TestMode	Channel (MHz)	99% Bandwidth(MHz)	6dB Bandwidth (MHz)	Limit [MHz]	Verdict
Lowest	2402MHz	1.037	0.738	0.5	Pass
Middle	2440MHz	1.031	0.726	0.5	Pass
Highest	2480MHz	1.025	0.722	0.5	Pass

4.5 Original Test Data

5. CONDUCTED OUTPUT POWER

5.1 LIMIT

FCC Part 15 Subpart C			
Section Test Item Limit Frequency Range			
15.247(b)(3)	Peak output power	Power <1W(30dBm)	2400-2483.5

5.2 TEST PROCEDURE

- (1) The EUT was directly connected to the Power sensor and antenna output port as show in The block diagram adove.
- (2) The EUT was set to continuously transmitting in the max power during the test.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	-5.82	30	Pass
Middle	2440MHz	-3.36	30	Pass
Highest	2480MHz	-4.07	30	Pass

6. BAND EDGE AND SPURIOUS(CONDUCTED)

6.1 LIMIT

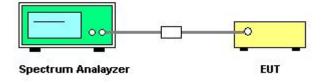
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center
	frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Number of measurement points Detector Mode:	≥span/RBW Peak
•	

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

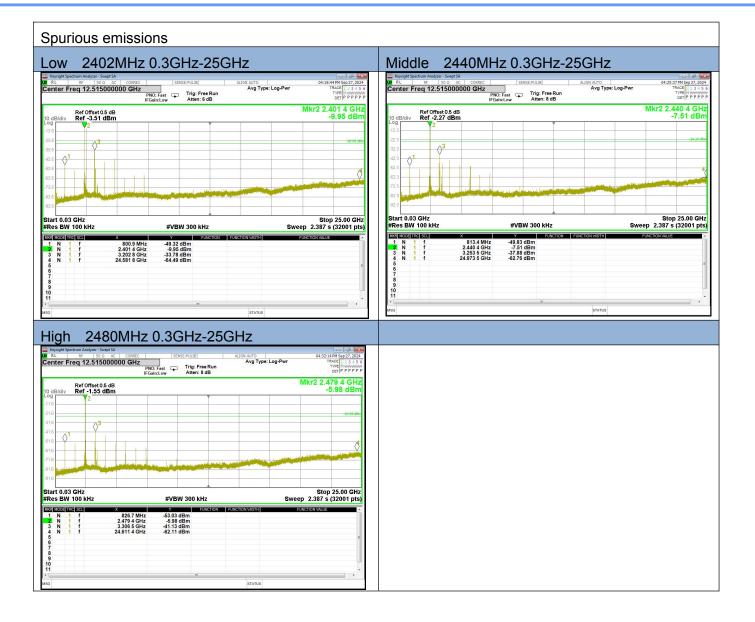
6.3 TEST SETUP

6.4 TEST RESULTS

Eut set mode	CH or Frequency	Result
GFSK	CH0	Pass
	CH39	Pass

6.5 Original test data

ow channel	High chan		
prograf Spectrum Analyser - Sweys 5A. RL 8F IS 8. AC CORPEC SINGE-PULSE ALIGN AUTO nter Freq 2.3750000000 GHz PNO: Fast Trig: Free Run Arten: 35 dB	Off: John Source Sector Off: John Source Sector Off: John Source Sector Sec. Log-Pwr Trace Trace J. 3.4.5.5 Center Freq 2.505000 DEI P P P P	AC CORREC SENSE PULISE ALTON	04:31:17PM Sep 27, 20: Type: Log-Pwr TRACE 1 2 3 4 5 TYPE MWWW DET P P P F
Ref Offiset 0.5 dB IB/div Ref 3.11 dBm	Mkr1 2.402 15 GHz -6.89 dBm		Mkr1 2.479 95 GH -4.89 dBr
	-4.89		-24 89 d
	-24.9	3	×44.000
anding-alade in a definition of the second	Republication with an analysis of the second		an all all and a state and a state of the second state of the seco
	-74.9		
rt 2.30000 GHz es BW 100 kHz #VBW 300 kHz	Stop 2.45000 GHz Sweep 14.40 ms (1001 pts) #Res BW 100 kHz	#VBW 300 kHz	Stop 2.58000 GH Sweep 14.40 ms (1001 pt
VICOBE TRES SCI. Y FUNCTION FUNCTION FUNCTION FUNCTION MODIFIE N 1 f 2.402 15 GHz -6.89 dBm -6.89 dBm N 1 f 2.398 40 GHz -46.85 dBm N 1 f 2.399 90 GHz -44.95 dBm	AUXCTION VALUE AUXCTION VALUE AUX OF RECEIPTING SCL AUX OF RECEIP	X Y FUNCTION FUNCTION FUNCTION/ 2479 95 GHz -4.89 dBm 2483 55 GHz -47.31 dBm 2.484 00 GHz -48.69 dBm	FUNCTION VALUE
	8 9 10		
-	* 11		


 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

7. POWER SPECTRAL DENSITY

7.1 LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

7.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

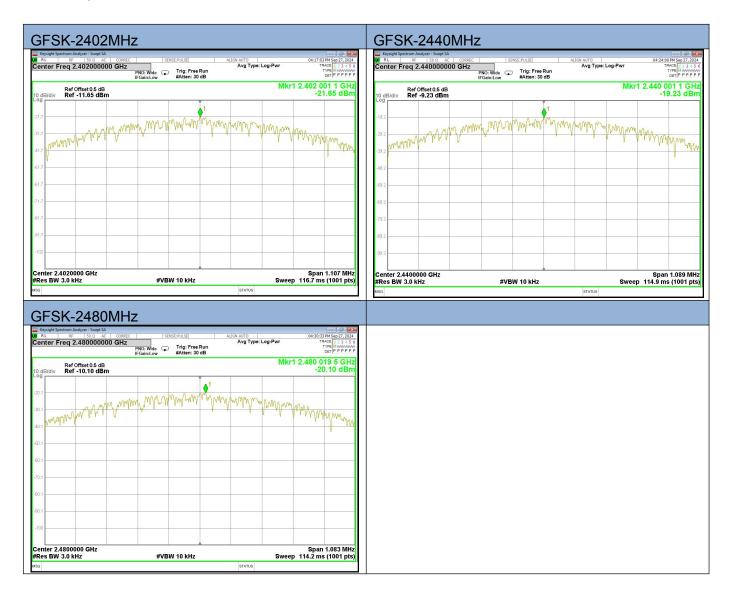
(2) Set the spectrum analyzer as follows:

Center frequency	DTS Channel center frequency
RBW:	3 kHz ≤ RBW ≤ 100 kHz
VBW:	≥ 3RBW
Span	1.5 times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

(3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW

(4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3 TEST SETUP


7.4 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
GFSK	2402MHz	-21.65	8	Pass
GFSK	2440MHz	-19.23	8	Pass
GFSK	2480MHz	-20.10	8	Pass

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

7.5 original test data

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz

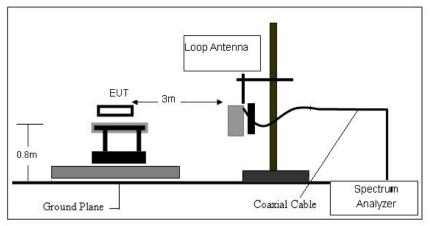
For Band edge

Setting
Peak/AV
Lower Band Edge: 2300 to 2403 MHz
Upper Band Edge: 2479 to 2500 MHz
PK=1MHz / 1MHz, AV=1 MHz / 10 Hz

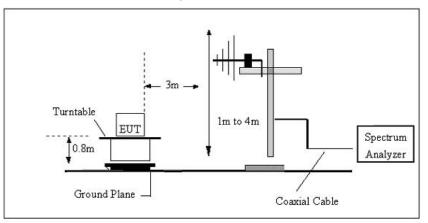
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

8.2 TEST PROCEDURE

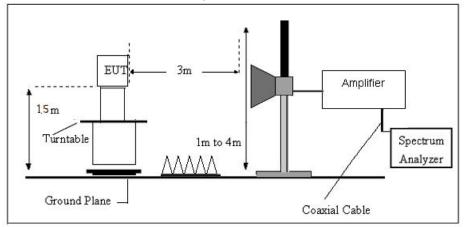
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

8.4. TEST RESULTS

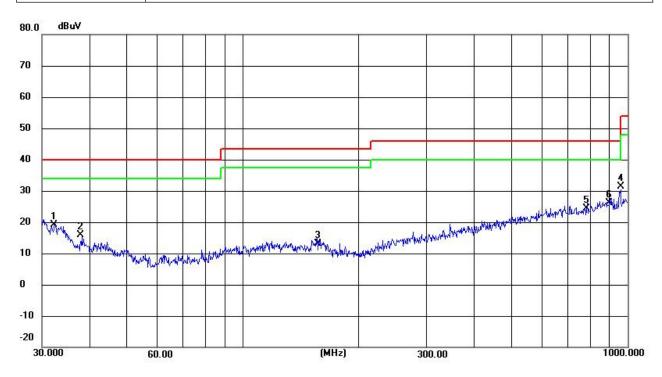
(9KHz-30MHz)

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	DC 3V	Test Mode:	GFSK

Freq.	Reading	Limit Margin		State	Toot Docult
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m) (dB) P/F		Test Result
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

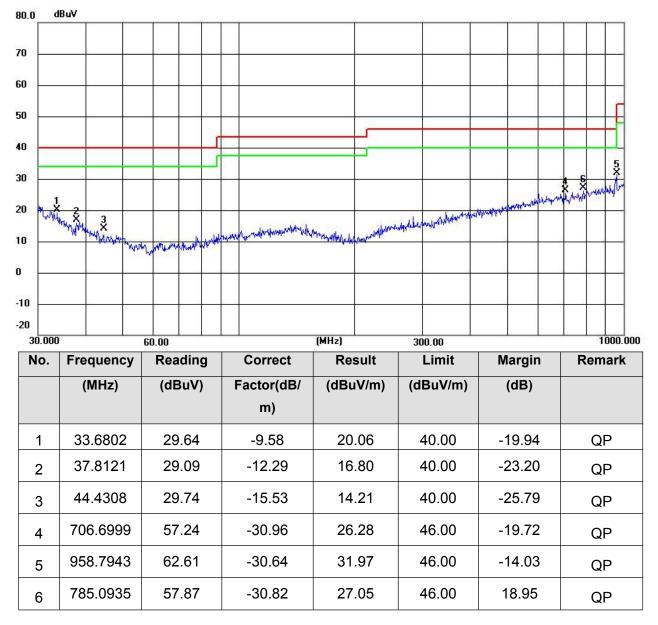

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

9. RADIATED EMISSION (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 3V	Phase:	Horizontal
Test Mode:	GFSK		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	32.2925	27.73	-8.67	19.06	40.00	-20.94	QP
2	37.8121	28.09	-12.29	15.80	40.00	-24.20	QP
3	156.4578	45.37	-32.12	13.25	43.50	-30.25	QP
4	958.7943	62.11	-30.64	31.47	46.00	-14.53	QP
5	782.3453	55.17	-30.83	24.34	46.00	-21.66	QP
6	896.9965	56.76	-30.70	26.06	46.00	-19.94	QP


Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3V	Phase:	Vertical
Test Mode:	GFSK		

Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Page 30 of 35

■ 9.1 RADIATED EMISSION ABOVE 1GHZ

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	41.66	31.78	8.60	32.09	49.95	74.00	-24.05	Vertical
7206.00	33.94	36.15	11.65	32.00	49.74	74.00	-24.26	Vertica
9608.00	31.52	37.95	14.14	31.62	51.99	74.00	-22.01	Vertica
12010.00	*					74.00	3 () ()	Vertical
14412.00	*			53	52 (c)	74.00		Vertical
4804.00	45.42	31.78	8.60	32.09	53.71	74.00	-20.29	Horizontal
7206.00	37.54	36.15	11.65	32.00	53.34	74.00	-20.66	Horizontal
9608.00	34.08	37.95	14.14	31.62	54.55	74.00	-19.45	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.57	31.78	8.60	32.09	36.86	54.00	-17.14	Vertica
7206.00	22.93	36.15	11.65	32.00	38.73	54.00	-15.27	Vertica
9608.00	23.63	37.95	14.14	31.62	44.10	54.00	-9.90	Vertica
12010.00	*	¢.				54.00	2	Vertica
14412.00	*					54.00		Vertica
4804.00	32.34	31.78	8.60	32.09	40.63	54.00	-13.37	Horizontal
7206.00	23.49	36.15	11.65	32.00	39.29	54.00	-14.71	Horizontal
9608.00	23.20	37.95	14.14	31.62	43.67	54.00	-10.33	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizonta

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Middle CH (GFSK)

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4880.00	36.07	31.85	8.67	32.12	44.47	74.00	-29.53	Vertical
7320.00	31.01	36.37	11.72	31.89	47.21	74.00	-26.79	Vertical
9760.00	30.74	38.35	14.25	31.62	51.72	74.00	-22.28	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	40.10	31.85	8.67	32.12	48.50	74.00	- 25.50	Horizontal
7320.00	32.66	36.37	11.72	31.89	48.86	74.00	-25.14	Horizontal
9760.00	30.04	38.35	14.25	31.62	51.02	74.00	-22.98	Horizonta
12200.00	*					74.00		Horizonta
14640.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4880.00	25.12	31.85	8.67	32.12	33.52	54.00	-20.48	Vertica
7320.00	19.84	36.37	11.72	31.89	36.04	54.00	-17.96	Vertical
9760.00	18.99	38.35	14.25	31.62	39.97	54.00	-14.03	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	29.22	31.85	8.67	32.12	37.62	54.00	-16.38	Horizontal
7320.00	21.93	36.37	11.72	31.89	38.13	54.00	-15.87	Horizontal
9760.00	18.62	38.35	14.25	31.62	39.60	54.00	-14.40	Horizontal
12200.00	*		3			54.00		Horizontal
14640.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

High CH (GFSK)

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	36.30	31.93	8.73	32.16	44.80	74.00	-29.20	Vertica
7440.00	32.66	36.59	11.79	31.78	49.26	74.00	-24.74	Vertica
9920.00	29.25	38.81	14.38	31.88	50.56	74.00	-23.44	Vertica
12400.00	*			92 (s	52 	74.00		Vertica
14880.00	*					74.00		Vertica
4960.00	37.89	31.93	8.73	32.16	46.39	74.00	-27.61	Horizonta
7440.00	30.52	36.59	11.79	31.78	47.12	74.00	-26.88	Horizontal
9920.00	30.14	38.81	14.38	31.88	51.45	74.00	-22.55	Horizontal
12400.00	*			3	3	74.00		Horizonta
14880.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	30.50	31.93	8.73	32.16	39.00	54.00	-15.00	Vertical
7440.00	24.84	36.59	11.79	31.78	41.44	54.00	-12.56	Vertical
9920.00	22.36	38.81	14.38	31.88	43.67	54.00	-10.33	Vertica
12400.00	*			2	2	54.00		Vertica
14880.00	*	8	10	si is		54.00		Vertical
4960.00	33.09	31.93	8.73	32.16	41.59	54.00	-12.41	Horizonta
7440.00	24.42	36.59	11.79	31.78	41.02	54.00	-12.98	Horizonta
9920.00	24.57	38.81	14.38	31.88	45.88	54.00	-8.12	Horizontal
12400.00	*					54.00		Horizonta
14880.00	*					54.00		Horizonta

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

9.2 RADIATED BAND EDGE DATA

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	39.25	27.59	5.38	30.18	42.04	74.00	-31.96	Horizontal
2400.00	52.93	27.58	5.39	30.18	55.72	74.00	-18.28	Horizontal
2390.00	38.89	27.59	5.38	30.18	41.68	74.00	-32.32	Vertical
2400.00	52.07	27.58	5.39	30.18	54.86	74.00	-19.14	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	31.79	27.59	5.38	30.18	34.58	54.00	-19.42	Horizontal
2400.00	39.60	27.58	5.39	30.18	42.39	54.00	-11.61	Horizontal
2390.00	31.57	27.59	5.38	30.18	34.36	54.00	-19.64	Vertical
2400.00	41.24	27.58	5.39	30.18	44.03	54.00	-9.97	Vertical

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.49	27.53	5.47	29.93	45.56	74.00	-28.44	Horizontal
2500.00	43.75	27.55	5.49	29.93	46.86	74.00	-27.14	Horizontal
2483.50	42.07	27.53	5.47	29.93	45.14	74.00	-28.86	Vertical
2500.00	40.90	27.55	5.49	29.93	44.01	74.00	-29.99	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.27	27.53	5.47	29.93	36.34	54.00	-17.66	Horizontal
2500.00	32.65	27.55	5.49	29.93	35.76	54.00	-18.24	Horizontal
2483.50	33.81	27.53	5.47	29.93	36.88	54.00	-17.12	Vertica
2500.00	34.43	27.55	5.49	29.93	37.54	54.00	-16.46	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

10.2 RESULT

The antennas used for this product are PCB and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 1.87 dBi.

*****END OF THE REPORT****

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com