

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.239

Report Reference No...... CTA23071101602 FCC ID......: 2BCRB-BTFM1013

(position+printed name+signature)... File administrators Zoey Cao

Supervised by

(position+printed name+signature)... Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue......Jul. 20, 2023

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......SHENZHEN MAIXINDA INTELLIGENCE CO., LTD

R704-706, FuTong No.1 International building, Gushu, Bao'an

District, Shenzhen, China, 518126

Test specification:

Standard FCC Part 15.239

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description...... Bluetooth Transmitter/receiver

Trade Mark: N/A

Manufacturer SHENZHEN MAIXINDA INTELLIGENCE CO., LTD CTA TESTIN

Model/Type reference...... AHF9-1013-BLK

Listed Models100079037

Modulation: GFSK

Ratings DC 12.0V From Battery

Result..... PASS

Report No.: CTA23071101602 Page 2 of 23

TEST REPORT

CTA TESTING **Equipment under Test** Bluetooth Transmitter/receiver

Model /Type AHF9-1013-BLK

Listed Models 100079037

Applicant SHENZHEN MAIXINDA INTELLIGENCE CO., LTD

R704-706, FuTong No.1 International building, Gushu, Bao'an Address

District, Shenzhen, China. 518126

Manufacturer SHENZHEN MAIXINDA INTELLIGENCE CO., LTD

R704-706, FuTong No.1 International building, Gushu, Bao'an Address

District, Shenzhen, China. 518126

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Report No.: CTA23071101602 Page 3 of 23

Contents

1.11	TEST STANDARDS	<u></u>	
	SUMMARY	NG E	
<u>Z</u>			
		5 5 5	
2.1	General Remarks	5	
2.2	Product Description	5	
2.3	Equipment Under Test	5	
2.4	Short description of the Equipment under Test (EUT)	5	, , ,
2.5	EUT operation mode	5 5 6	
2.6	Block Diagram of Test Setup	6	
2.7	Related Submittal(s) / Grant (s)	6	
2.8	Modifications	6	
2.0	Modifications	O	
<u>3</u>	TEST ENVIRONMENT	7	
<u>~</u>			
	Address of the test laboratory Test Facility		
3.1	Address of the test laboratory	7	
3.2		7	
3.3	Environmental conditions	C7 7	
3.4	Summary of measurement results	CTATES 77 7 8 8 8	
3.5	Statement of the measurement uncertainty	8	
3.6	Equipments Used during the Test	9	
	1G	•	
<u>4</u>	TEST CONDITIONS AND RESULTS	<u> 10</u>	
4.1	AC Power Conducted Emission	40	
	AC Power Conducted Emission	10	
4.2	RADIATED MEASUREMENT	TING 11	
4.3	99% AND 20DB BANDWIDTH	20	
4.4	Antenna Requirement	22	
		10 11 20 22	
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	22	
<u>J</u>	TEST SETOF FILOTOS OF THE EUT		
6-11/6	PHOTOS OF THE EUT		
7E21,,			
TAIL			
	CTATESTING CTATESTING		

Report No.: CTA23071101602 Page 4 of 23

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA23071101602 Page 5 of 23

SUMMARY

General Remarks

CTATE			
2.1 General Remarks			
Date of receipt of test sample	TO THE	Jul. 06, 2023	TESTING
Testing commenced on		Jul. 06, 2023	CTA
Testing concluded on	:	Jul. 20, 2023	

2.2 Product Description

Testing commenced on	: Jul. 06, 2023
Testing concluded on	: Jul. 20, 2023
2.2 Product Descrip	otion
Product Description:	Bluetooth Transmitter/receiver
Model/Type reference:	AHF9-1013-BLK
Power supply:	DC 12.0V From battery
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA230711016-1# (Engineer sample) CTA230711016-2# (Normal sample)
FM	
Modulation:	FM
Operation frequency:	88.1MHz~107.9MHz
Channel number:	199
Channel separation:	100KHz
Channel frequency	88.1MHz~107.9MHz(Channel Number: 199, Channel Frequency=88.1+0.1(K-1), K=1, 2, 3199)
Antenna type:	Internal antenna

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank bel	low)	-e, INC
		<u>]</u>	DC 12.0V From Battery		CTATE
2.4 Short description of	the Ed	iυμ	pment under Test (EU)	Γ)	

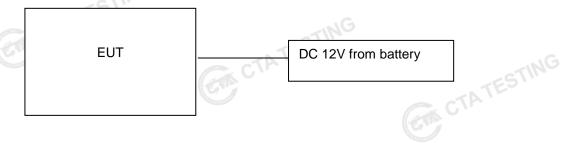
DC 12.0V From Battery

Short description of the Equipment under Test (EUT)

This is a Bluetooth FM Transmitter.

For more details, refer to the user's manual of the EUT.

Report No.: CTA23071101602 Page 6 of 23


2.5 **EUT** operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 199 channels provided to the EUT and Channel Low/Mid/High were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	88.1
19	98.1
39	107.9

2.6 **Block Diagram of Test Setup**

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria.

Page 7 of 23 Report No.: CTA23071101602

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission:

Temperature:	15 m 116	23 ° C		
Humidity:	The state of the s	44 %		
Atmospheric pressure:		950-1050mbar		

Conducted testing. CTATES

Temperature:	24 ° C	
Humidity:	46 %	_
Atmospheric pressure:	950-1050mbar	TING
		TATESI

Page 8 of 23 Report No.: CTA23071101602

Summary of measurement results

	Applied Standard: FCC CFR 47 PART 15.239	
FCC Rules	Description of Test	Result
§15.239 (a)	Occupied Bandwidth	Compliant
§15.239 (b)	Field Strength of Fundamental frequency	Compliant
§15.205 (a) §15.209 (a)	Radiated Spurious Emissions	Compliant
§15.207 (a)	AC Conducted Emissions	N/A
§15.203	Antenna Requirements	Compliant

Remark:

- CTATESTIN The measurement uncertainty is not included in the test result.
 - We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

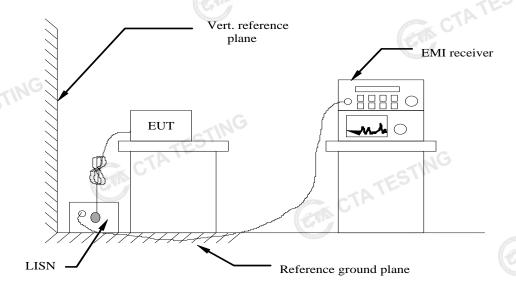
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTA TESTING

Page 9 of 23 Report No.: CTA23071101602

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
TE	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
,	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/0
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/0
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/0
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/0
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/0
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/0
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/0
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
-68	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/0
1-	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/0
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/0
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/0
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/0
			Circ		GW CT	ATES

Page 10 of 23 Report No.: CTA23071101602

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

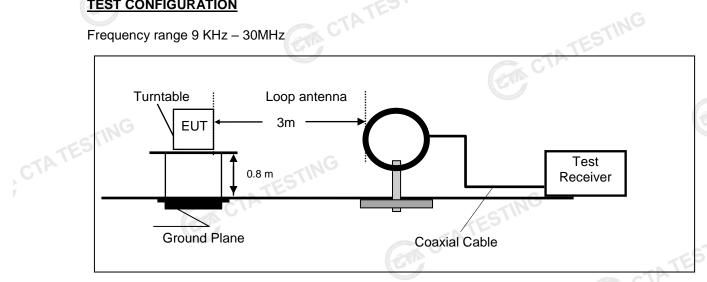
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

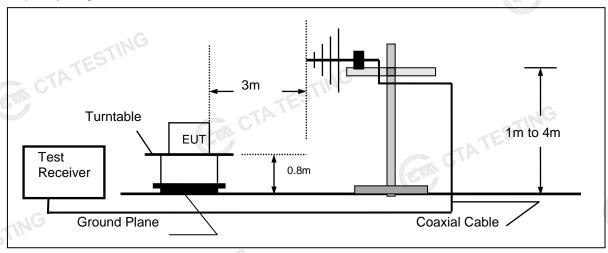
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)		
Frequency range (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequen	ncy.		

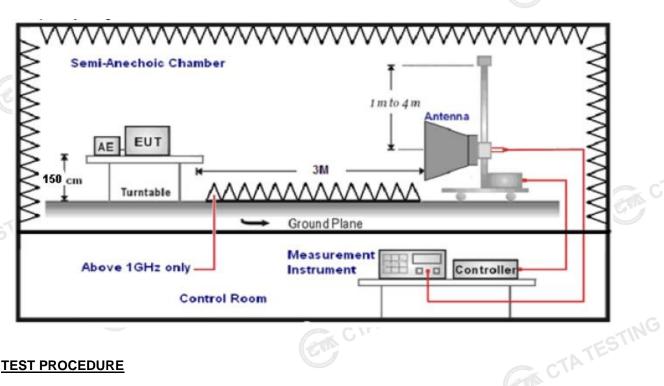

The EUT is a Car Equipment, So this test item is not applicable for the EUT.

Report No.: CTA23071101602 Page 11 of 23


RADIATED MEASUREMENT

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 12 of 23 Report No.: CTA23071101602

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

The distance between test	antenna and EUT as following tab	le states:		
Test Frequency range	Test Antenna Type	Test Distance		TA 75
9KHz-30MHz	Active Loop Antenna	3	Sec. 11d	
30MHz-1GHz	Ultra-Broadband Antenna	3	T. Carrie	
1GHz-18GHz	Double Ridged Horn Antenna	3	N S Hantage	
18GHz-25GHz	Horn Anternna	1		

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

de calculation is as follows.					
RA + AF + CL - AG					
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor	Cal				

Page 13 of 23 Report No.: CTA23071101602

Transd=AF +CL-AG

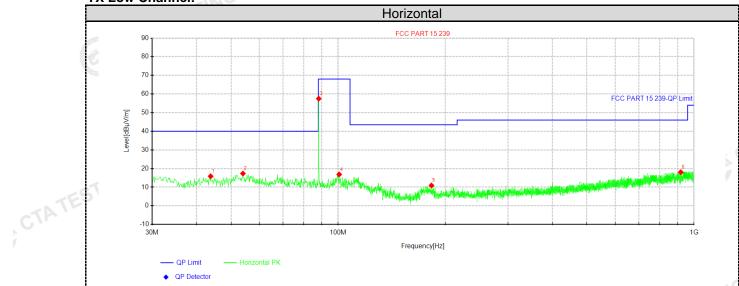
RADIATION LIMIT

According to §15.239 (b): The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
TE	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
CIP.	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30		20log(30)+ 40log(30/3)	30
,	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

TEST RESULTS

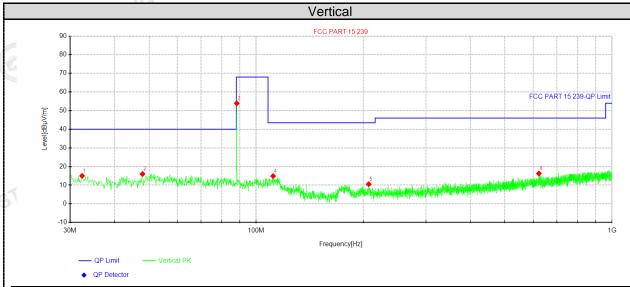

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. fm were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATES

For 30MHz-1GHz

Report No.: CTA23071101602 Page 14 of 23

TX Low Channel:


Susp	ected Data	List								
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity	
1	43.8225	32.47	15.85	-16.62	40.00	24.15	100	Peak	Horizontal	
2	54.0075	34.25	17.33	-16.92	40.00	22.67	100	Peak	Horizontal	
3	88.1	77.67	57.49	-20.18	68.00	10.51	100	Peak	Horizontal	
/	88.1	57.59	37.41	-20.18	48.00	10.59	100	AVG	Horizontal	
4	100.6888	35.22	16.82	-18.40	68.00	51.18	100	Peak	Horizontal	
5	182.8962	31.26	10.90	-20.36	43.50	32.60	100	Peak	Horizontal	
6	917.9138	27.24	18.05	-9.19	46.00	27.95	100	Peak	Horizontal	
Note:1	I).Level (dB	μV/m)= Rea	ading (dBµV	')+ Factor	r (dB/m)					
2)	Footor/dD	/m) Antonn	o Footor (di	D/m) . C.	abla laga (dE	O) Dro An	aplifior ac	ات (مات)		

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

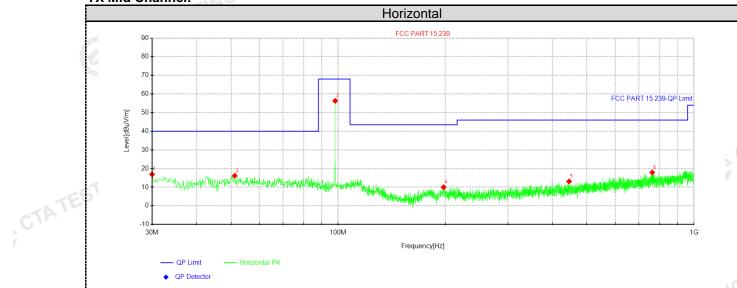
CTATE

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA23071101602 Page 15 of 23

	Suspected Data List											
	NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity		
	1	32.425	33.32	15.00	-18.32	40.00	25.00	100	Peak	Vertical		
	2	47.945	32.22	16.00	-16.22	40.00	24.00	100	Peak	Vertical		
	3	88.1	74.10	53.92	-20.18	68.00	14.08	100	Peak	Vertical		
	/	88.1	53.76	49.58	-20.18	48.00	14.42	100	AVG	Vertical		
	4	111.6012	33.97	14.89	-19.08	43.50	28.61	100	Peak	Vertical		
	5	207.1462	29.69	10.53	-19.16	43.50	32.97	100	Peak	Vertical		
18	6	623.0338	28.44	16.26	-12.18	46.00	29.74	100	Peak	Vertical		

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

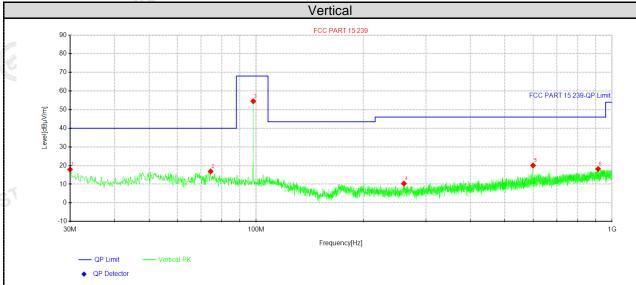

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTATE

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA23071101602 Page 16 of 23

TX Mid Channel:


Susp	ected Data	List								
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity	
1	30	35.68	16.91	-18.77	40.00	23.09	100	Peak	Horizontal	
2	51.2188	32.45	16.13	-16.32	40.00	23.87	100	Peak	Horizontal	
3	98.1000	74.99	56.34	-18.65	68.00	12.16	100	Peak	Horizontal	
/	98.1000	55.75	37.10	-18.65	48.00	10.90	100	AVG	Horizontal	
4	197.81	29.40	9.98	-19.42	43.50	33.52	100	Peak	Horizontal	
5	445.5238	28.18	13.07	-15.11	46.00	32.93	100	Peak	Horizontal	
6	763.1988	28.56	17.92	-10.64	46.00	28.08	100	Peak	Horizontal	
Note:1).Level (dB	μV/m)= Rea	ading (dBµV	')+ Factor	r (dB/m)					
2)	Easter/dD	/m) Antonn	o Footor (di	D/m) . C.	oblo logo (dE	O) Dro An	aplifior ac	ات (مات)		

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

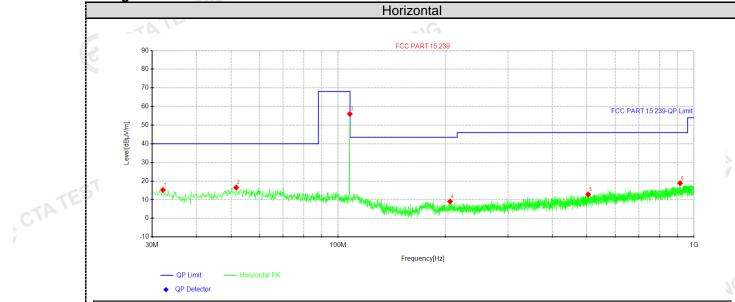
ETATE

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA23071101602 Page 17 of 23

Susp	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity				
1	30	36.63	17.86	-18.77	40.00	22.14	100	Peak	Vertical				
2	74.4988	37.93	16.85	-21.08	40.00	23.15	100	Peak	Vertical				
3	98.1425	73.15	54.50	-18.65	68.00	12.50	100	Peak	Vertical				
/	98.1425	54.37	35.72	-18.65	48.00	12.28	100	AVG	Vertical				
4	260.1325	28.07	10.32	-17.75	46.00	35.68	100	Peak	Vertical				
5	599.9962	32.29	20.07	-12.22	46.00	25.93	100	Peak	Vertical				
6	914.0338	27.35	18.15	-9.20	46.00	27.85	100	Peak	Vertical				

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

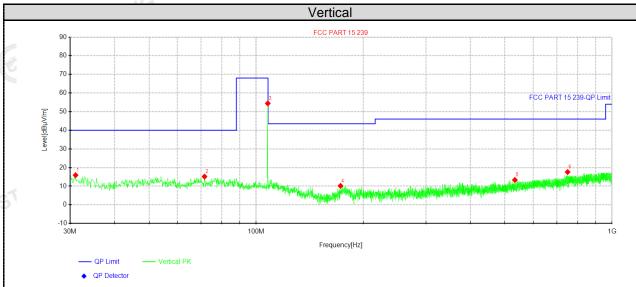
CTATE

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA23071101602 Page 18 of 23

TX High Channel:

	Suspected Data List												
	NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity			
	1	32.1825	33.58	15.22	-18.36	40.00	24.78	100	Peak	Horizontal			
	2	51.7038	32.91	16.49	-16.42	40.00	23.51	100	Peak	Horizontal			
	3	107.900	74.72	55.98	-18.74	68.00	12.02	100	Peak	Horizontal			
(5)	/	107.9005	55.16	36.42	-18.74	48.00	11.58	100	AVG	Horizontal			
đ	4	206.2975	28.19	9.02	-19.17	43.50	34.48	100	Peak	Horizontal			
18	5	504.33	27.05	12.82	-14.23	46.00	33.18	100	Peak	Horizontal			
	6	914.0338	28.03	18.83	-9.20	46.00	27.17	100	Peak	Horizontal			
	Note:1).Level (dBuV/m)= Reading (dBuV)+ Factor (dB/m)												


CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TES

Report No.: CTA23071101602 Page 19 of 23

Susp	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Det	Polarity				
1	31.0912	34.47	15.90	-18.57	40.00	24.10	100	Peak	Vertical				
2	71.5888	36.10	15.15	-20.95	40.00	24.85	100	Peak	Vertical				
3	107.8425	73.17	54.43	-18.74	68.00	13.57	100	Peak	Vertical				
/	107.8425	54.98	36.24	-18.74	48.00	11.76	100	AVG	Vertical				
4	172.59	31.07	10.16	-20.91	43.50	33.34	100	Peak	Vertical				
5	533.3088	27.15	13.34	-13.81	46.00	32.66	100	Peak	Vertical				
6	750.225	28.26	17.59	-10.67	46.00	28.41	100	Peak	Vertical				

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CON CTATE

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA23071101602 Page 20 of 23

99% AND 20DB BANDWIDTH 4.3

Limit

According to §15.239 (a) Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108MHz.

Test Procedure

- 1:The transmitter shall be operated at its maximum carrier power measured under normal test conditions
- 2:The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3:The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) CTA TESTING and video bandwidth (VBW) shall be approximately 3x RBW.
- 4:Detector function = peak.
- 5:Trace = max hold.

Test Configuration

Test Results

Test Results		CTATES		TESTING	
Туре	Channel	20dB Bandwidth (KHz)	99% Bandwidth (KHz)	Limit (KHz)	Result
	Low	128.20	115.18		(JAN)
FM	Mid	128.20	115.20	200.00	Pass
51"	High	128.20	115.18		
Test plot as follow	S:		TATESTING		

Page 22 of 23 Report No.: CTA23071101602

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that CTATEST the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

Report No.: CTA23071101602 Page 23 of 23

Test Setup Photos of the EUT

CTATESTING Photos of the EUT

Reference to the test report No. CTA23071101601