FCC TEST REPORT FCC ID: 2BCQA-G65

Product	:	Phone				
Model Name	:	G65				
Brand	:	CITAQ				
Report No.	:	NCT24002161E-FC05				
	Prepared for					
		Clover Industrial Co.,Ltd				
Building 4,	Her	ngchangrong High-tech Industrial Park, Shangnan East Road,				
Hongtian,H	luan	gpu Community, Xinqiao Street, Baoan District, Shenzhen				
		Prepared by				
	ç	Shenzhen NCT Testing Technology Co., Ltd.				
A101&2F B2, I	A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China					
		TEL: 400-8868-419				
		FAX: 86-755-27790922				

1 Test Result Certification

Applicant's name	:	Clover Industrial Co.,Ltd
Address	:	Building 4, Hengchangrong High-tech Industrial Park, Shangnan East Road, Hongtian, Huangpu Community, Xinqiao Street, Baoan District, Shenzhen
Manufacture's name	:	Shenzhen Along Electronics Co.,Ltd
Address	:	Shenzhen Baoan District Xixiang street Gushu community new Industrial Park 35
Product name	:	Phone
Model name	:	G65
Standards	:	47 CFR FCC Part 22 Subpart H, 47 CFR FCC Part 24 Subpart E ,ANSI C63.26-2015, KDB 971168 D01 Power Meas License Digital Systems v03r01
Test Date	:	Nov. 23, 2023 to Dec. 30, 2023
Date of Issue	:	Dec. 30, 2023
Test Result	:	Pass

This device described above has been tested by NCT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NCT, this document may be altered or revised by NCT, personal only, and shall be noted in the revision of the document.

Test Engineer:

leven wer

Keven Wu / Engineer

Hennfurang

Henry Wang / Manager

Technical Manager:

TABLE OF CONTENTS

1	Test Result Certification	. 2
1.	General Description Of Eut	. 4
2.	Facilities And Accreditations	. 6
	2.1. TEST FACILITY	6
	2.2. DESCRIPTION OF TEST CHANNELS AND TEST MODES	7
	2.3. EQUIPMENT MODIFICATIONS	8
3.	Summary Of Test Requirements And Results	. 9
4.	Measurement Instruments	10
5.	Effective (Isotropic) Radiated Power and Conducted Output Power	12
	5.1. CONDUCTED OUTPUT POWER	12
	5.2. EFFECTIVE (ISOTROPIC) RADIATED POWER	12
6.	Spurious Emission (Conducted and Radiated)	15
	6.1. MEASUREMENT RESULT (PRE-MEASUREMENT)	15
7.	Occupied Bandwidth and Emission Bandwidth	51
8.	Band Edge	60
9.	Peak-to-Average Ratio(PAR)	66
10.	Frequency Stability	73
	10.1. Measurement Result (Worst)	74
15	APPENDIX I TEST SETUP PHOTOGRAPH	76
16	APPENDIX II EUT PHOTOGRAPH	77

1. General Description Of Eut

Equipment Type:	POS SYSTEM
Hardware version:	N/A
Software version:	N/A
Frequency Bands:	GSM/GPRS/EDGE: ⊠GSM 850 ⊠PCS1900
Antenna Type:	FPC Antenna
Antenna gain:	GSM850: -4.76dBi PCS1900: 0.87dBi
Type of Modulation:	GSM/GPRS: GMSK
Adapter Information:	Battery Model: 456797 3.8V by Rechargeable Li-ion Battery, 4000mAh
Max power:	See Table 2.1
Extreme Vol. Limits:	DC 3.4V to 4.2V (Normal: DC 3.8V)
Test sample No.	NCT24002161E-1/2,NCT24002161E-2/2.

OPERATION BAND(S)	Power Class	Mod.	Max Peak Power (dBm)
GSM850	Class 4	GMSK	25.61
DCS1900	Class 1	GMSK	29.86

Table 2.1 The Basic Technical Specification for Working BAND(S).

2. Facilities And Accreditations

2.1. Test Facility

Site Description

EMC Lab.	:	Accredited by CNAS, 2022-09-27
		The certificate is valid until 2028.01.07
		The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2017)
		The Certificate Registration Number is L8251
		Designation Number: CN1347
		Test Firm Registration Number: 894804
		Accredited by A2LA, June 14, 2023
		The Certificate Registration Number is 6837.01
		Accredited by Industry Canada, November 09, 2018
		The Conformity Assessment Body Identifier is CN0150
		Company Number: 30806
Name of Firm	:	Shenzhen NCT Testing Technology Co., Ltd.
Site Location	:	A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China

2.2. Description Of Test Channels And Test Modes

Test channels:

GSM 850						
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)			
Low Range	0.2	128	824.2			
Mid Range	0.2	190	836.6			
High Range	0.2	251	848.8			

PCS1900						
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)			
Low Range	0.2	512	1850.2			
Mid Range	0.2	661	1880.0			
High Range	0.2	810	1909.8			

Note 1: The worst condition was recorded in the test report if no other modes test data.

2.3. Equipment Modifications

Not available for this EUT intended for grant.

3. Summary Of Test Requirements And Results

GSM850:

Test Item	FCC Rule No.	Requirements	Judgement
Effective (Isotropic) Radiated Power	§2.1046, §2.913(a)	$EIRP \le 7W(38.5dBm)$	Pass
Occupied Bandwidth	§2.1049	OBW: No limit.	Pass
Emission Bandwidth	22.917(b)	EBW: No limit.	Pass
Band Edges Compliance	§2.1051 §22.917(a)	≤-13 dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤-13 dBm/100 kHz, from 9 kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: <i>≤</i> -13 dBm/100 kHz.	Pass
Frequency Stability	§2.1055, §22.355	the fundamental emissions stay within the authorized bands of operation. (2.5ppm)	Pass
Peak-Average Ratio	§22.913	FCC: Limit≪13dB	Pass

PCS 1900:

5 1900.			
Test Item	FCC Rule No.	Requirements	Judgement
Effective (Isotropic) Radiated Power	§2.1046, §24.232(c)	EIRP ≤ 2W(33dBm)	Pass
Bandwidth	§2.1049 §24.238(a)	OBW: No limit. EBW: No limit.	Pass
Band Edges	§2.1051, §24.238(a)	≤-13 dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §24.238(a)	FCC: ≤-13 dBm/100 kHz, from 9 kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §24.238(a)	-13dBm/1MHz	Pass
Frequency Stability	§2.1055, §24.235	the fundamental emission stays within the authorized frequency block. $\leq \pm 2.5$ ppm.	Pass
Peak to average ratio	§24.232(d)	≪13dB	Pass

4. Measurement Instruments

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Last Calibration	Calibration Interval
MXG Signal Analyzer	Agilent	N9020A	SER MY5111038	10Hz-30GHz	Aug.17, 2023	1 Year
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Aug.17, 2023	1 Year
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Aug.17, 2023	1 Year
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Aug.17, 2023	1 Year
Signal Analyzer 40GHZ	Rohde&Schwar z	FSV40	101456	10Hz-40GHz	Aug.17, 2023	1 Year
Wireless Communication Tester	Rohde&Schwar	CMW500	134930	/	Aug.17, 2023	1 year

RF Conducted Test

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristi cs	Last Calibration	Calibration Interval
EMI Test Receiver	Rohde&Schwarz	ESCI7	101671	9KHz-7GHz	Aug. 17,2023	1 Year
Loop Antenna	Schwarzbeck	FMZB 1519B	192	9 KHz -30MHz	Aug. 17,2023	1 Year
Bilog Antenna	SCHWARZBEC K	VULB9160	9160-3355	25MHz-2GHz	Aug. 17,2023	1 Year
Preamplifier (low frequency)	SCHWARZBEC K	BBV 9475	9745-0013	1MHz-1GHz	Mar. 23,2023	1 Year
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Aug. 17,2023	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV40	6625-01-588- 5515	9KHz-40GHz	Aug.17, 2023	1 Year
Horn Antenna	SCHWARZBEC K	9120D	9120D-1246	1GHz-18GHz	Aug. 17, 2023	1 Year
Power Amplifier	ZHINAN	ZN3380C	15002	1GHz- 26.5GHz	Aug. 17, 2023	1 Year
Horn Antenna	SCHWARZBEC K	BBHA 9170	9170-1066	15GHz- 40GHz	Jul. 19, 2023	1 Year

Amplifier	SCHWARZBEC K	BBV 9721	9721-205	18GHz- 40GHz	Jul. 19, 2023	1 Year
Cable	H+S	CBL-26	N/A	1GHz- 26.5GHz	Aug. 17,2023	1 Year
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 17,2023	1 Year
MXG Vector Signal Generator	Agilent	N5182A	MY49060455	-	Aug. 17,2023	1 Year
ESG Series Analog signal generator	Agilent	E4421B	GB40051240	-	Aug. 17,2023	1 Year

5. Effective (Isotropic) Radiated Power and Conducted Output Power

5.1. Conducted Output Power

Measurement Procedure: FCC KDB 971168 D01 V03r01

The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters.

5.2. Effective (Isotropic) Radiated Power

Measurement Procedure: FCC KDB 971168 D01 V03r01 ; C63.26 (2015). Calculate power in dBm by the following formula: ERP (dBm) = Conducted Power (dBm) + antenna gain (dBd) EIRP(dBm) = Conducted Power (dBm) + antenna gain (dBi) EIRP=ERP+2.15dB

Test result: GSM850 and PCS 1900 :

Band	Channel	Conducted Power(dBm)	ERP/EIRP(dBm)	Limit(dBm)	Verdict
GSM850	128	32.41	25.50	38.5	PASS
GSM850	190	32.52	25.61	38.5	PASS
GSM850	251	32.33	25.42	38.5	PASS
PCS1900	512	28.99	29.86	33	PASS
PCS1900	661	28.77	29.64	33	PASS
PCS1900	810	28.77	29.64	33	PASS

GPRS 850 and GPRS 1900:

Band	Channel	Slot	Conducted Power(dBm)	ERP/EIRP(dBm)	Limit(dBm)	Verdict
GPRS850	128	1	32.36	25.45	38.5	PASS
GPRS850	128	2	31.55	24.64	38.5	PASS
GPRS850	128	3	29.80	22.89	38.5	PASS
GPRS850	128	4	28.78	21.87	38.5	PASS
GPRS850	190	1	32.49	25.58	38.5	PASS
GPRS850	190	2	31.72	24.81	38.5	PASS
GPRS850	190	3	30.01	23.10	38.5	PASS
GPRS850	190	4	29.02	22.11	38.5	PASS
GPRS850	251	1	32.29	25.38	38.5	PASS
GPRS850	251	2	31.53	24.62	38.5	PASS
GPRS850	251	3	29.85	22.94	38.5	PASS
GPRS850	251	4	28.86	21.95	38.5	PASS
GPRS1900	512	1	28.96	29.83	33	PASS
GPRS1900	512	2	28.19	29.06	33	PASS
GPRS1900	512	3	26.46	27.33	33	PASS
GPRS1900	512	4	25.42	26.29	33	PASS
GPRS1900	661	1	28.73	29.60	33	PASS
GPRS1900	661	2	27.92	28.79	33	PASS
GPRS1900	661	3	26.15	27.02	33	PASS
GPRS1900	661	4	25.08	25.95	33	PASS
GPRS1900	810	1	28.72	29.59	33	PASS
GPRS1900	810	2	27.89	28.76	33	PASS
GPRS1900	810	3	26.12	26.99	33	PASS
GPRS1900	810	4	25.04	25.91	33	PASS

Band	Chann el	Slot	Power(dBm)	ERP/EIRP(dBm)	Limit(dBm)	Verdict
EGPRS850	128	1	26.70	21.94	38.5	PASS
EGPRS850	128	2	25.52	20.76	38.5	PASS
EGPRS850	128	3	23.47	18.71	38.5	PASS
EGPRS850	128	4	22.28	17.52	38.5	PASS
EGPRS850	190	1	26.91	22.15	38.5	PASS
EGPRS850	190	2	25.90	21.14	38.5	PASS
EGPRS850	190	3	23.79	19.03	38.5	PASS
EGPRS850	190	4	22.67	17.91	38.5	PASS
EGPRS850	251	1	26.80	22.04	38.5	PASS
EGPRS850	251	2	25.75	20.99	38.5	PASS
EGPRS850	251	3	23.70	18.94	38.5	PASS
EGPRS850	251	4	22.52	17.76	38.5	PASS
EGPRS1900	512	1	26.17	27.04	33	PASS
EGPRS1900	512	2	25.13	26.00	33	PASS
EGPRS1900	512	3	22.88	23.75	33	PASS
EGPRS1900	512	4	21.57	22.44	33	PASS
EGPRS1900	661	1	25.61	26.48	33	PASS
EGPRS1900	661	2	24.59	25.46	33	PASS
EGPRS1900	661	3	22.42	23.29	33	PASS
EGPRS1900	661	4	21.12	21.99	33	PASS
EGPRS1900	810	1	25.53	26.40	33	PASS
EGPRS1900	810	2	24.50	25.37	33	PASS
EGPRS1900	810	3	22.34	23.21	33	PASS
EGPRS1900	810	4	21.01	21.88	33	PASS

EGPRS 850 and EGPRS 1900:

Note:

For getting the EIRP (Efficient Isotropic Radiated Power), the following formula The following formula is used for calculation:

1.ERP [dBm] = Conducted Power [dBm] + Gain [dBd] 2.EIRP [dBm] = Conducted Power [dBm] + Gain [dBi]

6. Spurious Emission (Conducted and Radiated)

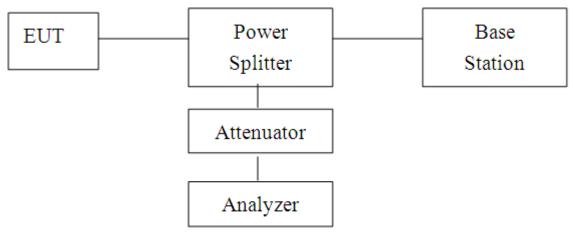
6.1. Measurement Result (Pre-measurement)

	GSM850:				
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
	Low Range	0.2	128	824.2	Pass
	Middle Range	0.2	190	836.6	Pass
	High Range	0.2	251	848.8	Pass
PC	S1800:				
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
	Low Range	0.2	512	1850.2	Pass
	Middle Range	0.2	661	1880	Pass
	High Range	0.2	810	1909.8	Pass

Page 15 of 77

Test Plot(s) Conducted method

Test limit:

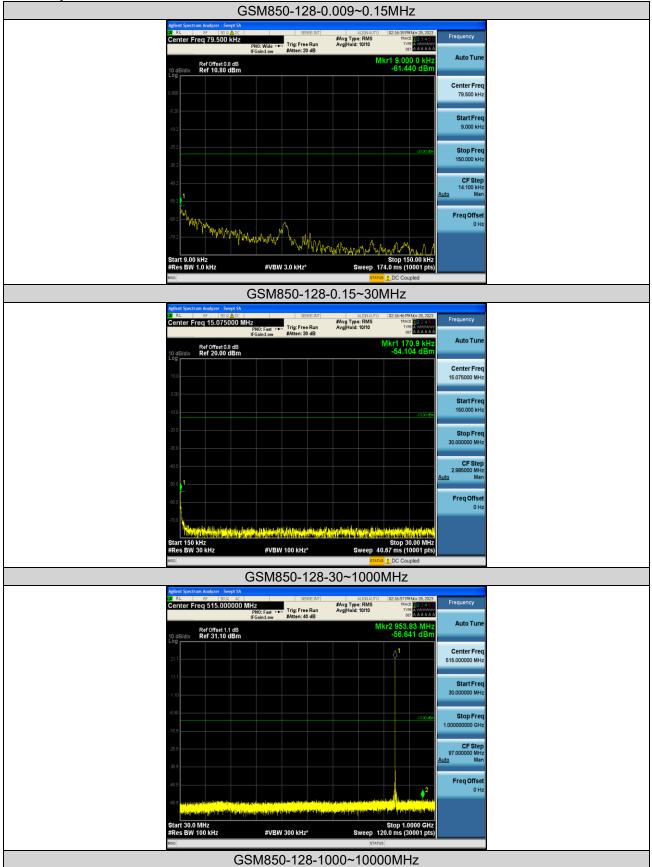

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.

Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least $X + 10\log(P)$ dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation $X + 10\log(P)$ being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10\log(P) - \{X + 10\log(P)\}$], resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

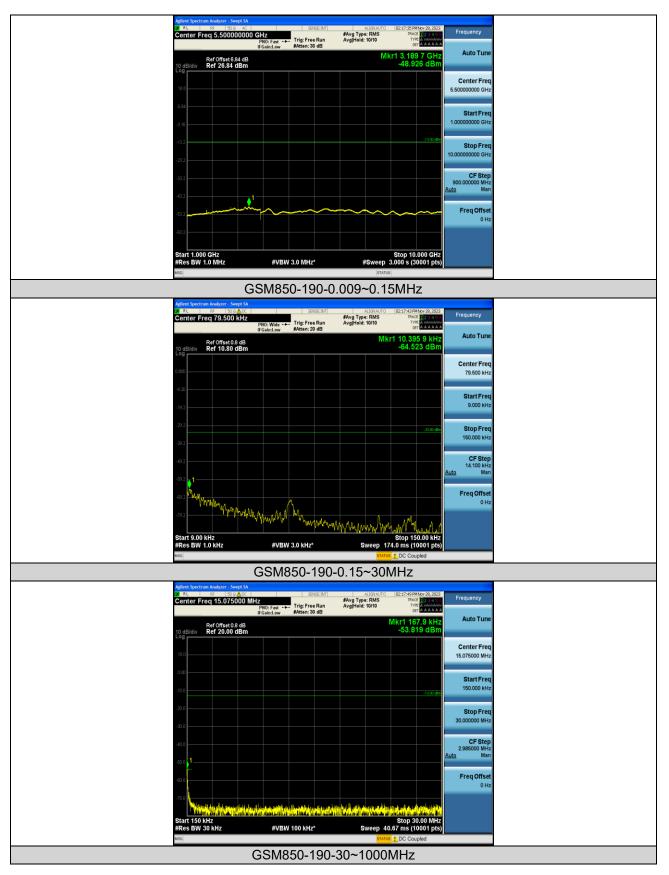
Test procedure:

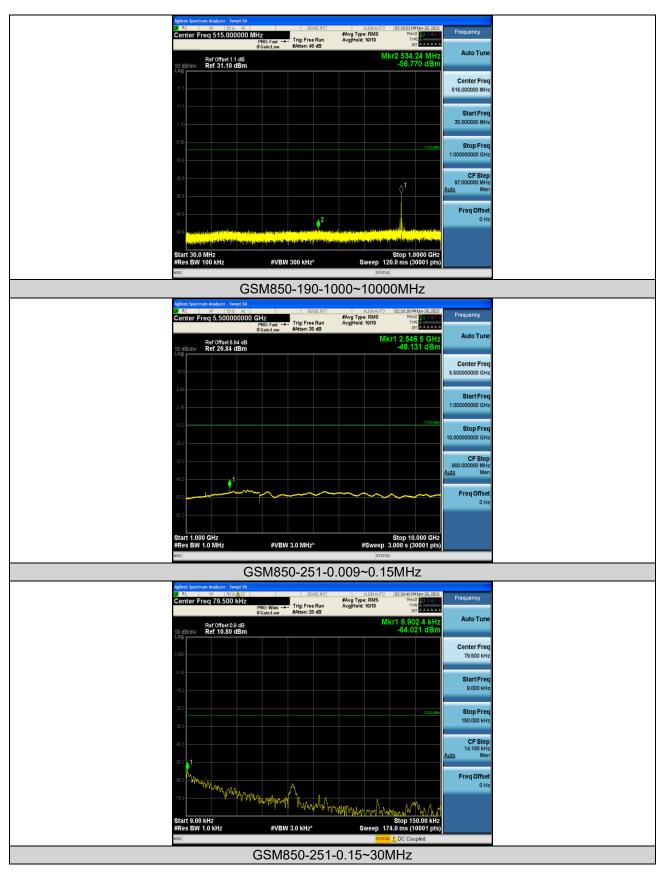
The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

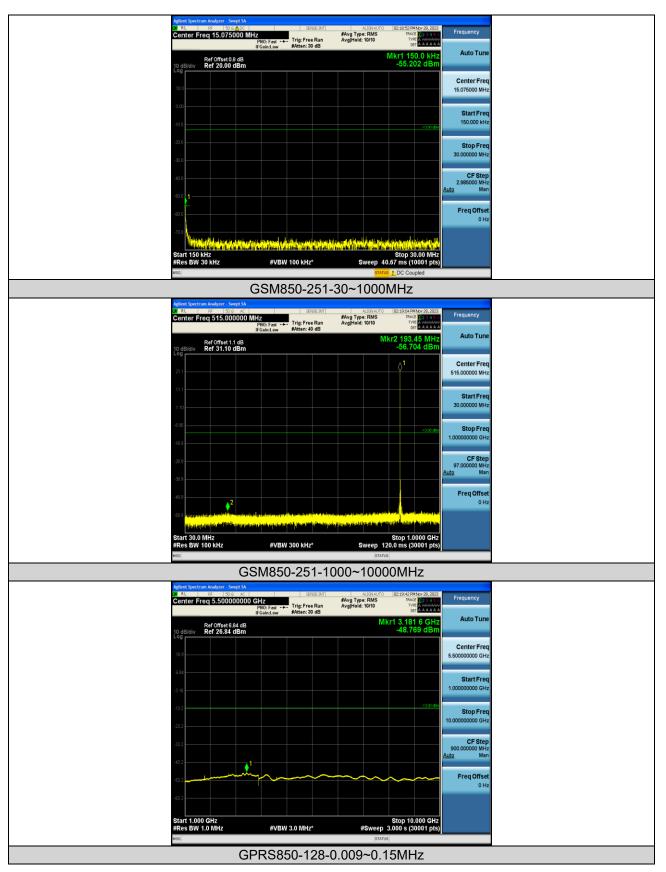
Conducted Emission Test-Up:

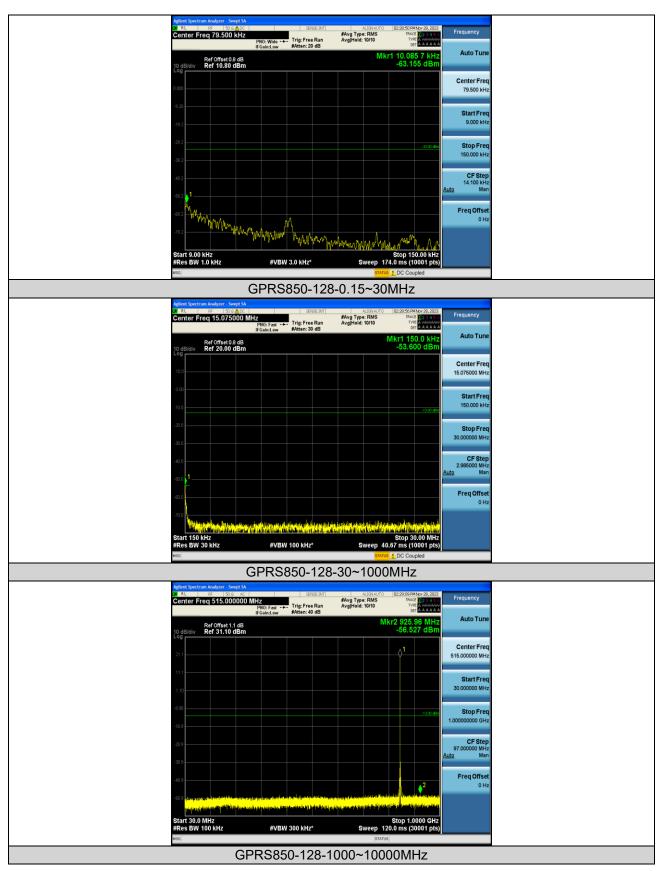


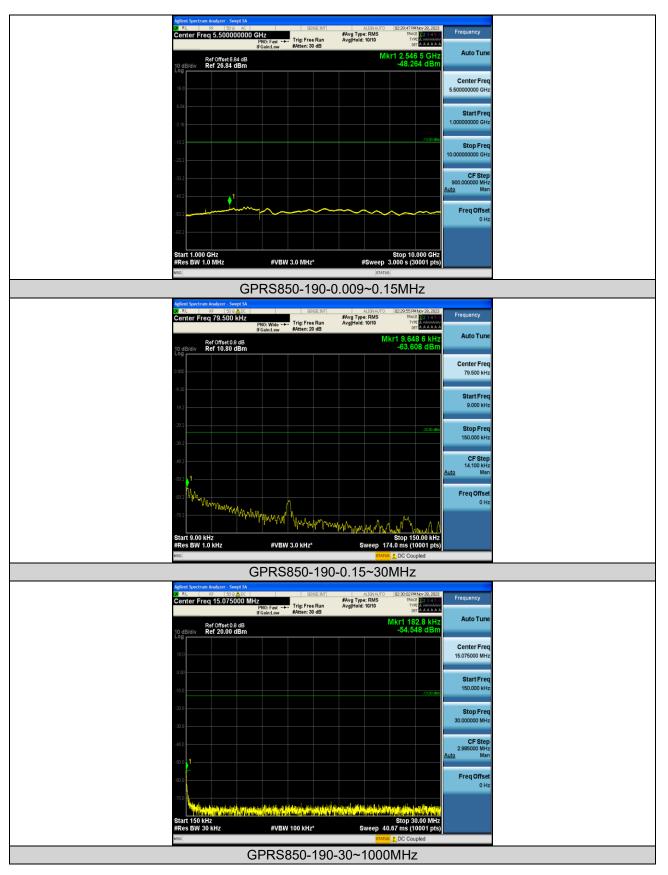
Test Result:

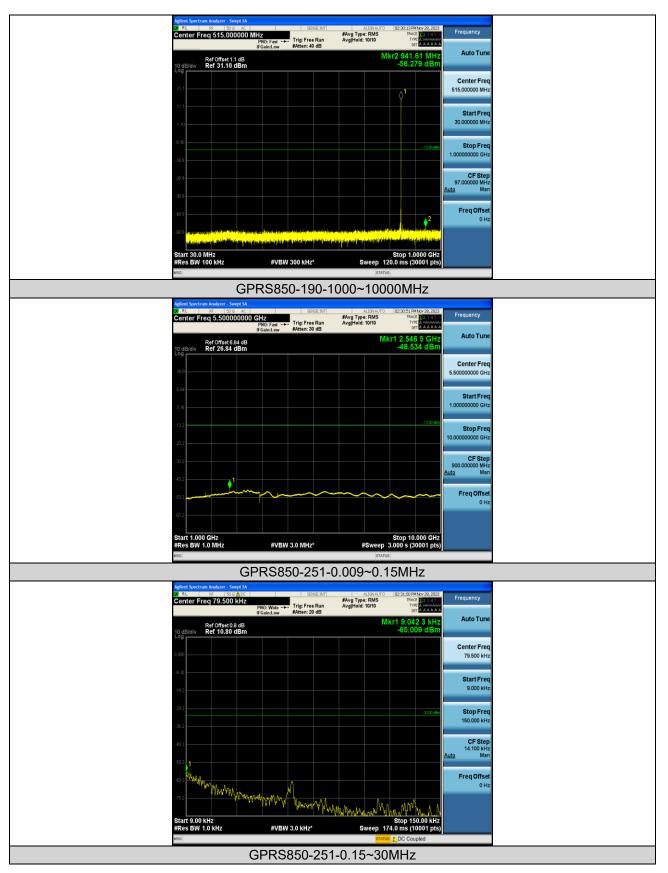

est Result:						
Band	Channel	Frequency Range(MHz)	Max.Freq. (MHz)	Result (dBm)	Limit (dBm)	Verdict
GSM850	128	0.009~0.15MHz	0.01	-61.44	-33	PASS
GSM850	128	0.15~30MHz	0.17	-54.1	-13	PASS
GSM850	128	30~1000MHz	953.83	-56.64	-13	PASS
GSM850	128	1000~10000MHz	3189.7	-48.93	-13	PASS
GSM850	190	0.009~0.15MHz	0.01	-64.52	-33	PASS
GSM850	190	0.15~30MHz	0.17	-53.82	-13	PASS
GSM850	190	30~1000MHz	534.24	-56.77	-13	PASS
GSM850	190	1000~10000MHz	2546.5	-48.13	-13	PASS
GSM850	251	0.009~0.15MHz	0.01	-64.02	-33	PASS
GSM850	251	0.15~30MHz	0.15	-55.2	-13	PASS
GSM850	251	30~1000MHz	193.45	-56.7	-13	PASS
GSM850	251	1000~10000MHz	3181.6	-48.77	-13	PASS
GPRS850	128	0.009~0.15MHz	0.01	-63.16	-33	PASS
GPRS850	128	0.15~30MHz	0.15	-53.6	-13	PASS
GPRS850	128	30~1000MHz	925.96	-56.53	-13	PASS
GPRS850	128	1000~10000MHz	2546.5	-48.26	-13	PASS
GPRS850	190	0.009~0.15MHz	0.01	-63.61	-33	PASS
GPRS850	190	0.15~30MHz	0.18	-54.55	-13	PASS
GPRS850	190	30~1000MHz	941.61	-56.28	-13	PASS
GPRS850	190	1000~10000MHz	2546.5	-48.53	-13	PASS
GPRS850	251	0.009~0.15MHz	0.01	-65.01	-33	PASS
GPRS850	251	0.15~30MHz	0.15	-54.18	-13	PASS
GPRS850	251	30~1000MHz	970.22	-56.55	-13	PASS
GPRS850	251	1000~10000MHz	2546.5	-46.78	-13	PASS
EGPRS850	128	0.009~0.15MHz	0.01	-66.51	-33	PASS
EGPRS850	128	0.15~30MHz	0.15	-53.2	-13	PASS
EGPRS850	128	30~1000MHz	924.83	-56.66	-13	PASS
EGPRS850	128	1000~10000MHz	3173.2	-48.85	-13	PASS
EGPRS850	190	0.009~0.15MHz	0.01	-66.42	-33	PASS
EGPRS850	190	0.15~30MHz	0.15	-55.71	-13	PASS
EGPRS850	190	30~1000MHz	981.02	-56.21	-13	PASS
EGPRS850	190	1000~10000MHz	3193.6	-48.82	-13	PASS
EGPRS850	251	0.009~0.15MHz	0.01	-66.65	-33	PASS
EGPRS850	251	0.15~30MHz	0.15	-51.33	-13	PASS
EGPRS850	251	30~1000MHz	190.44	-56.12	-13	PASS
EGPRS850	251	1000~10000MHz	3174.4	-48.89	-13	PASS
GSM1900	512	0.009~0.15MHz	0.01	-49.63	-43	PASS
GSM1900	512	0.15~30MHz	0.15	-53.1	-23	PASS
GSM1900	512	30~1000MHz	861.26	-56.31	-13	PASS
GSM1900	512	1000~3000MHz	2672	-52.47	-13	PASS
GSM1900	512	3000~20000MHz	17013.67	-40.83	-13	PASS
GSM1900	661	0.009~0.15MHz	0.01	-47.96	-43	PASS
GSM1900	661	0.15~30MHz	0.18	-54.97	-23	PASS
GSM1900	661	30~1000MHz	913.41	-56.2	-13	PASS
GSM1900	661	1000~3000MHz	2682.87	-52.42	-13	PASS
GSM1900	661	3000~20000MHz	17033.5	-40.93	-13	PASS
GSM1900	810	0.009~0.15MHz	0.01	-49.45	-43	PASS
GSM1900	810	0.15~30MHz	0.15	-51.67	-23	PASS
GSM1900	810	30~1000MHz	982.06	-56.97	-13	PASS
GSM1900	810	1000~3000MHz	2681.2	-52.35	-13	PASS
GSM1900	810	3000~20000MHz	17019.9	-40.98	-13	PASS
GPRS1900	512	0.009~0.15MHz	0.01	-48.47	-43	PASS
GPRS1900	512	0.15~30MHz	0.15	-50.54	-23	PASS

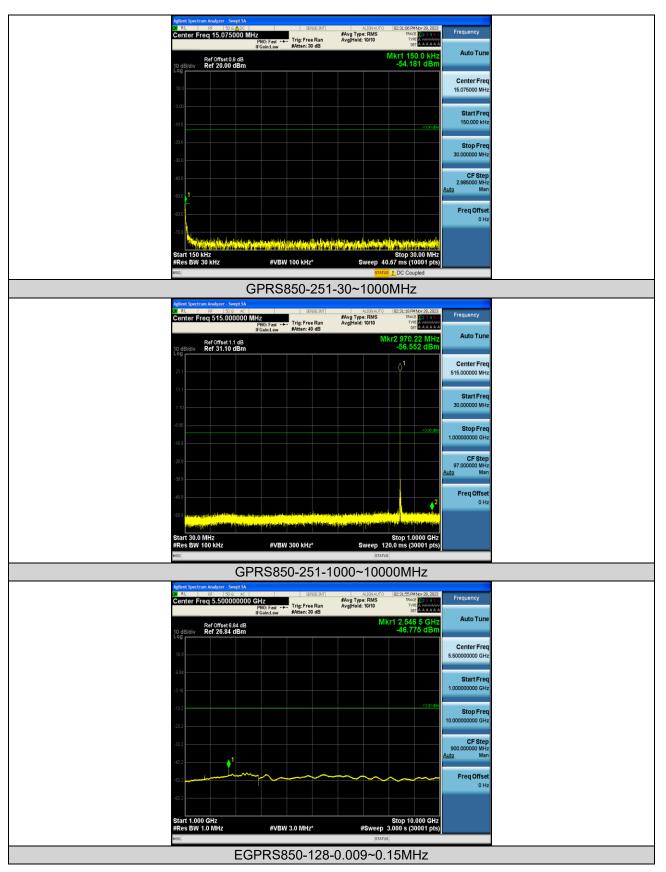

GPRS1900	512	30~1000MHz	816.96	-56.02	-13	PASS
GPRS1900	512	1000~3000MHz	2676.2	-52.42	-13	PASS
GPRS1900	512	3000~20000MHz	17043.13	-40.92	-13	PASS
GPRS1900	661	0.009~0.15MHz	0.01	-49.5	-43	PASS
GPRS1900	661	0.15~30MHz	0.15	-53.62	-23	PASS
GPRS1900	661	30~1000MHz	457.29	-56.11	-13	PASS
GPRS1900	661	1000~3000MHz	2676.87	-52.38	-13	PASS
GPRS1900	661	3000~20000MHz	17012.53	-40.82	-13	PASS
GPRS1900	810	0.009~0.15MHz	0.01	-50.29	-43	PASS
GPRS1900	810	0.15~30MHz	0.16	-52.56	-23	PASS
GPRS1900	810	30~1000MHz	810.17	-56.13	-13	PASS
GPRS1900	810	1000~3000MHz	2678.33	-52.35	-13	PASS
GPRS1900	810	3000~20000MHz	17014.8	-40.96	-13	PASS
EGPRS1900	512	0.009~0.15MHz	0.01	-49.08	-43	PASS
EGPRS1900	512	0.15~30MHz	0.15	-49.77	-23	PASS
EGPRS1900	512	30~1000MHz	774.9	-56.68	-13	PASS
EGPRS1900	512	1000~3000MHz	2675.47	-52.3	-13	PASS
EGPRS1900	512	3000~20000MHz	17010.27	-40.87	-13	PASS
EGPRS1900	661	0.009~0.15MHz	0.01	-50.47	-43	PASS
EGPRS1900	661	0.15~30MHz	0.15	-50.94	-23	PASS
EGPRS1900	661	30~1000MHz	959.45	-56.54	-13	PASS
EGPRS1900	661	1000~3000MHz	2680.27	-52.41	-13	PASS
EGPRS1900	661	3000~20000MHz	17011.4	-40.93	-13	PASS
EGPRS1900	810	0.009~0.15MHz	0.01	-46.54	-43	PASS
EGPRS1900	810	0.15~30MHz	0.15	-52.68	-23	PASS
EGPRS1900	810	30~1000MHz	878.2	-55.44	-13	PASS
EGPRS1900	810	1000~3000MHz	2672.6	-52.35	-13	PASS
EGPRS1900	810	3000~20000MHz	17016.5	-40.82	-13	PASS

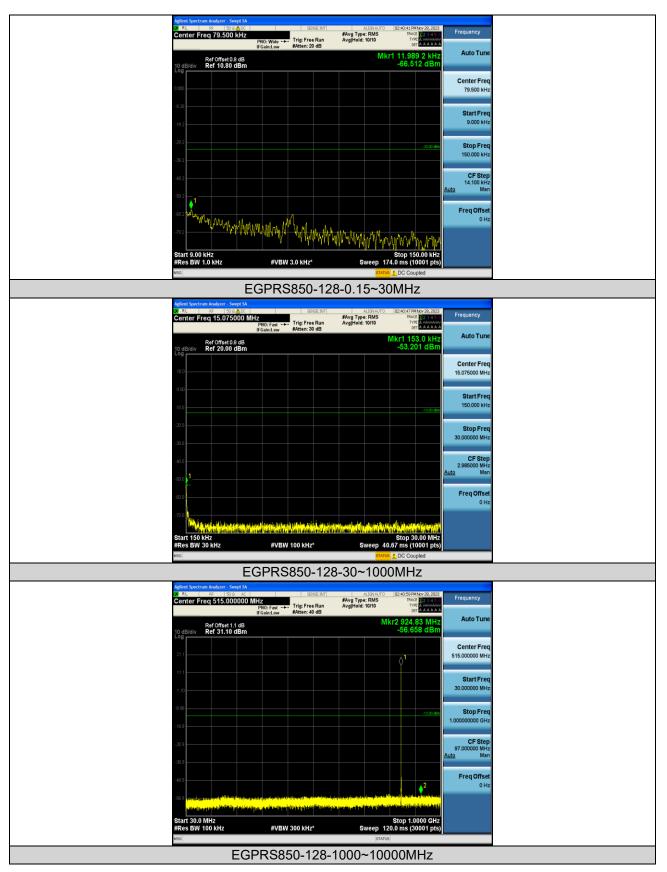

Test Graphs:

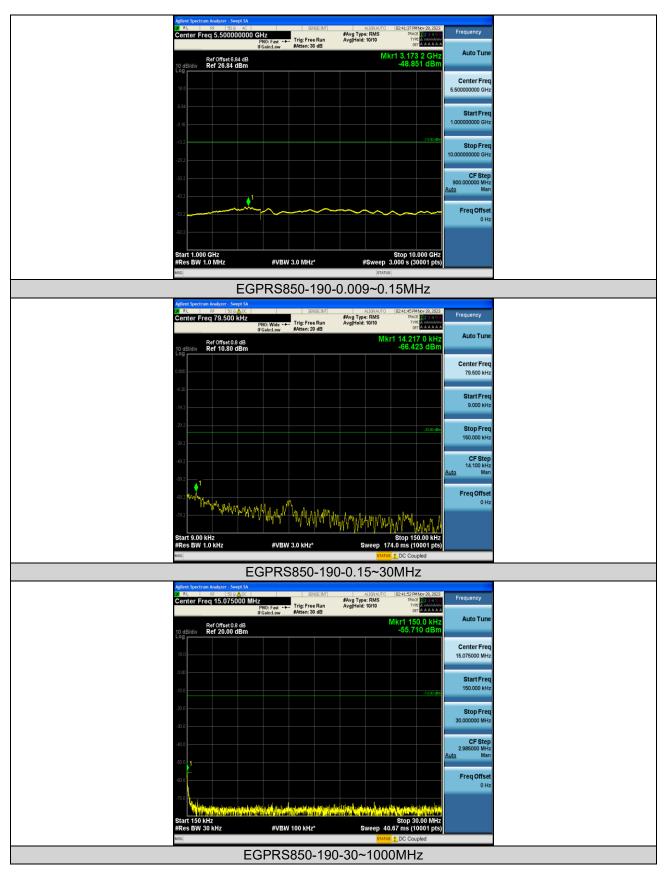


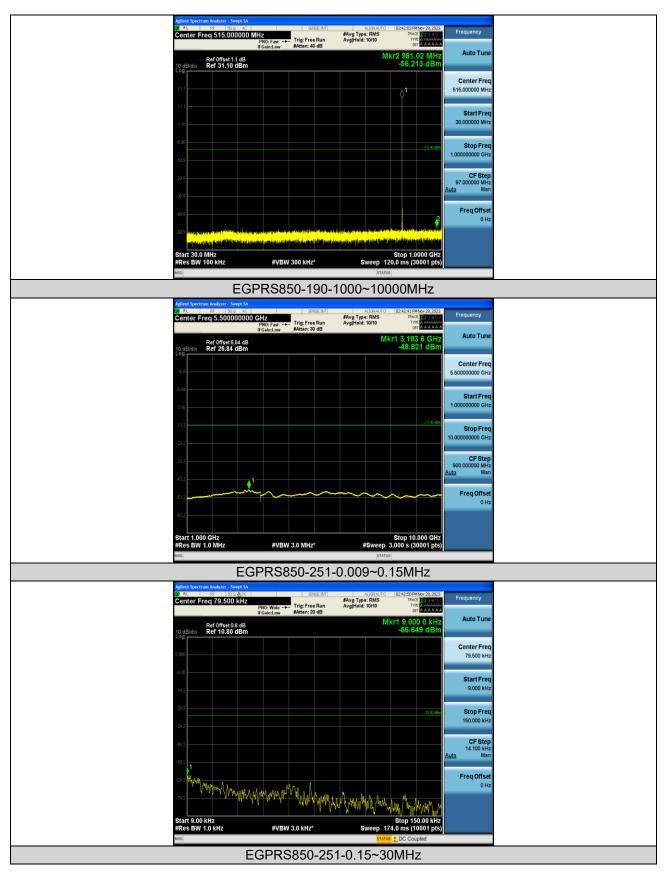

Page 19 of 77



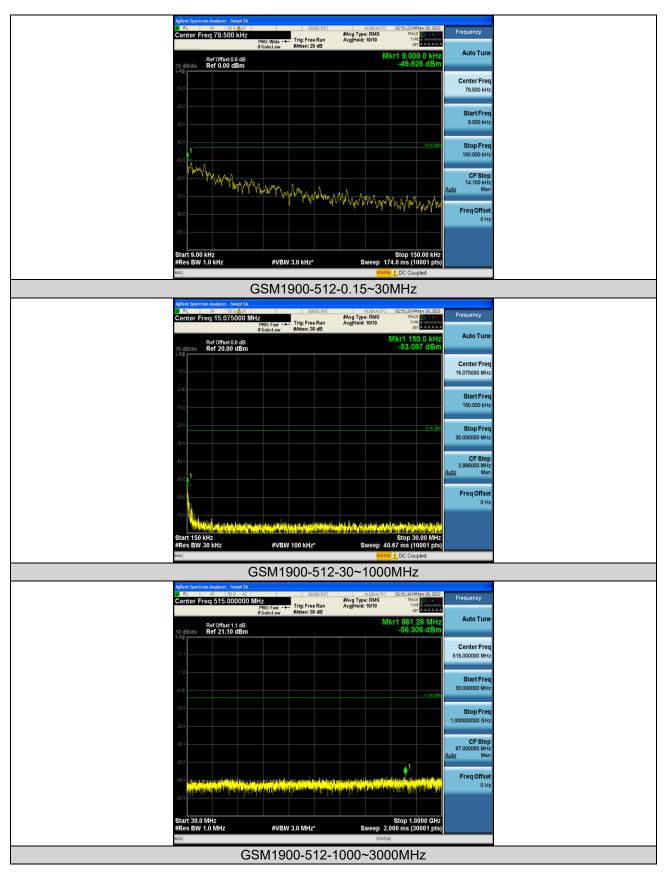


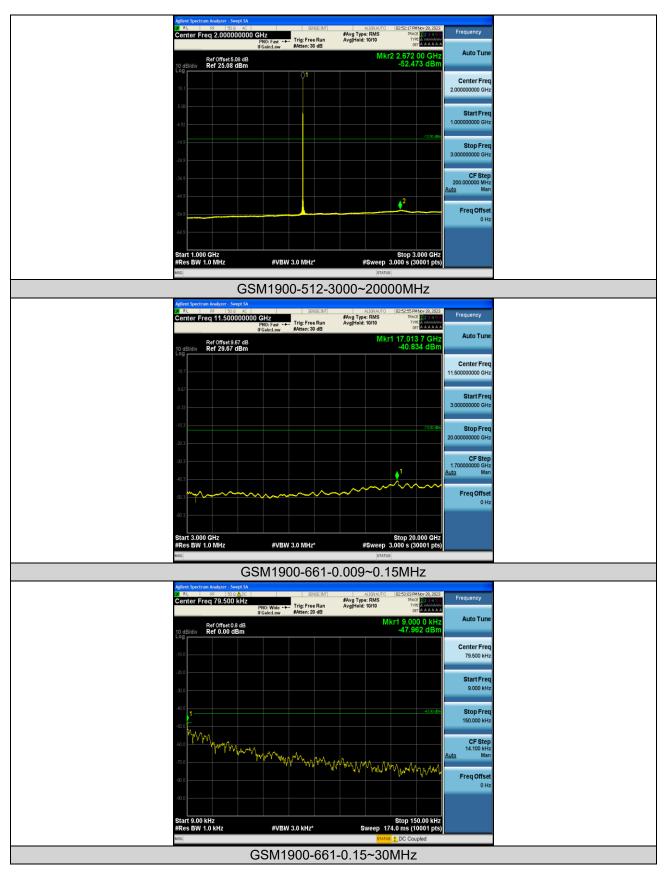


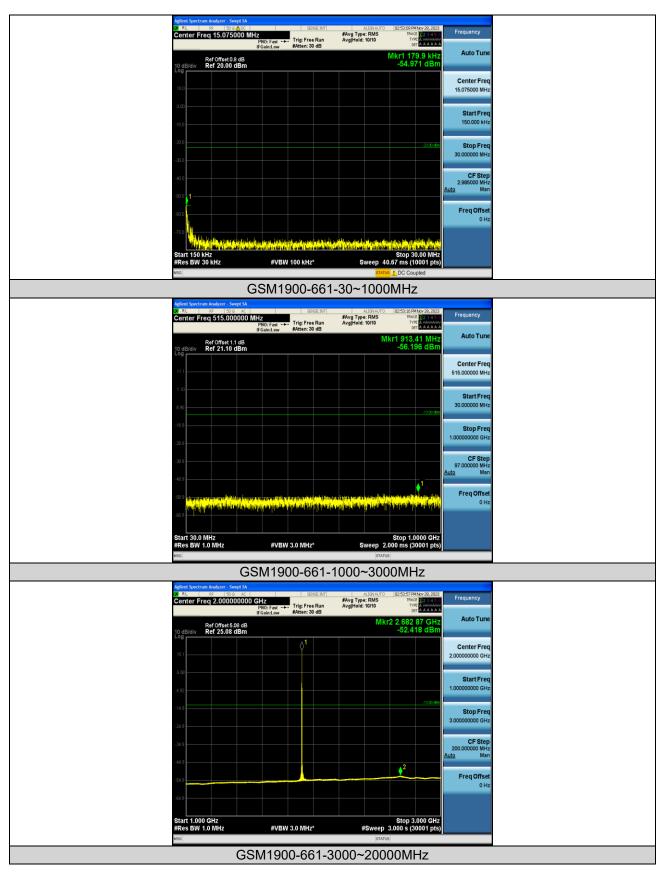


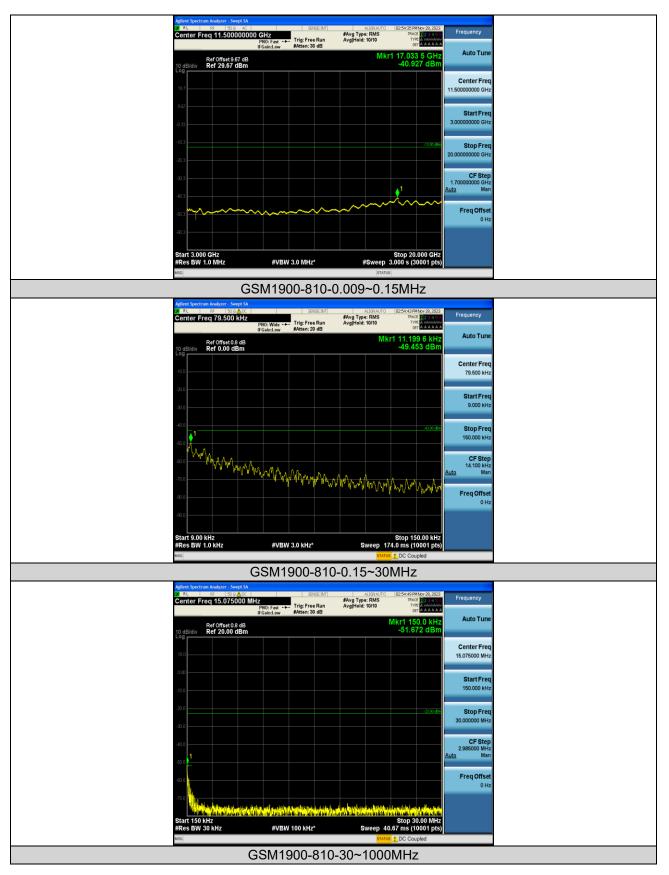


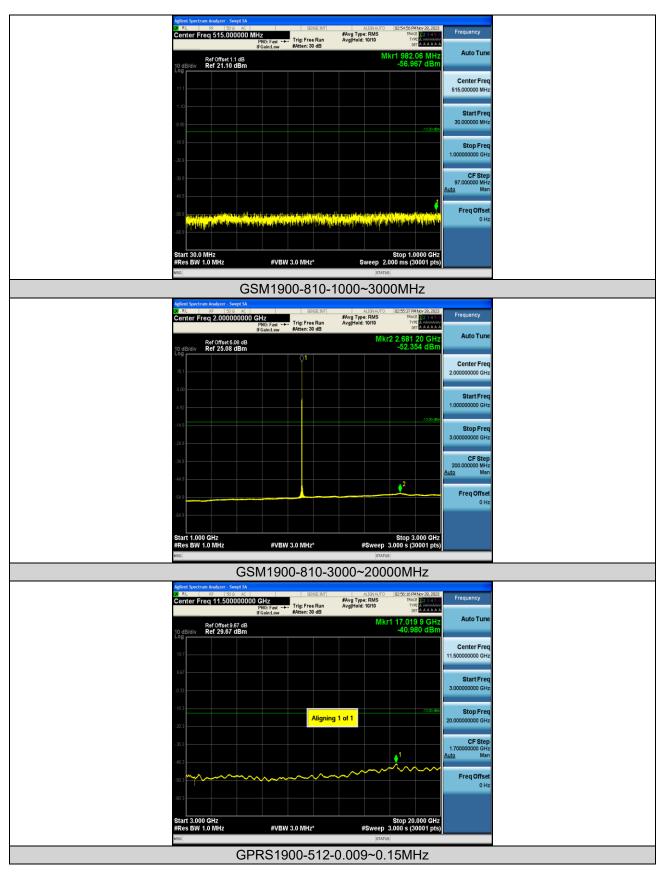


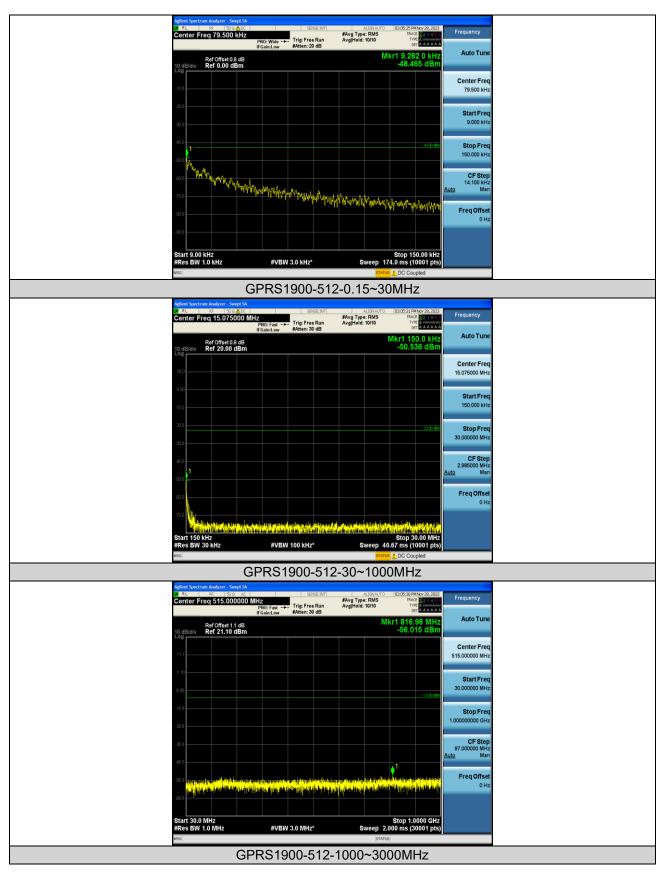


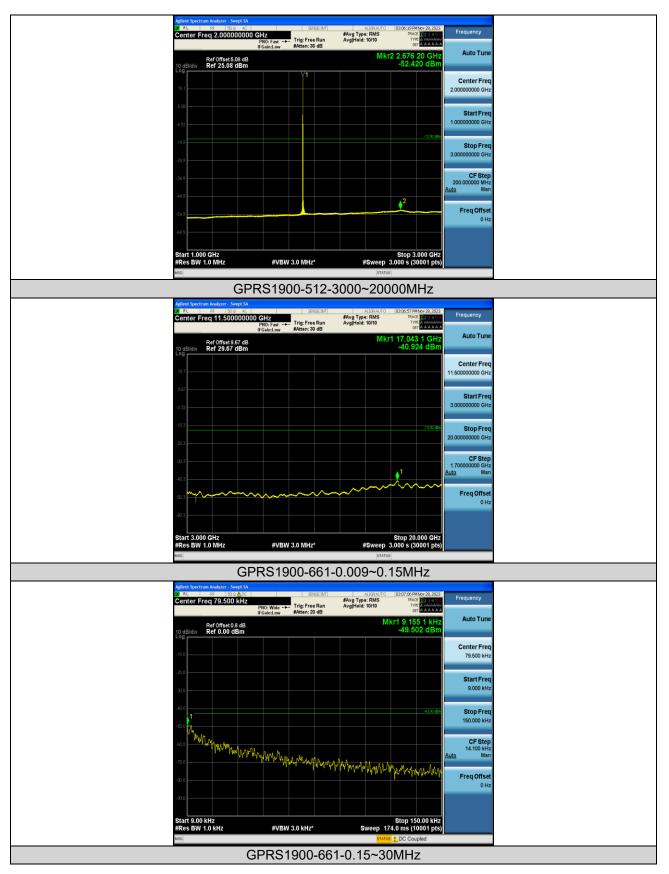


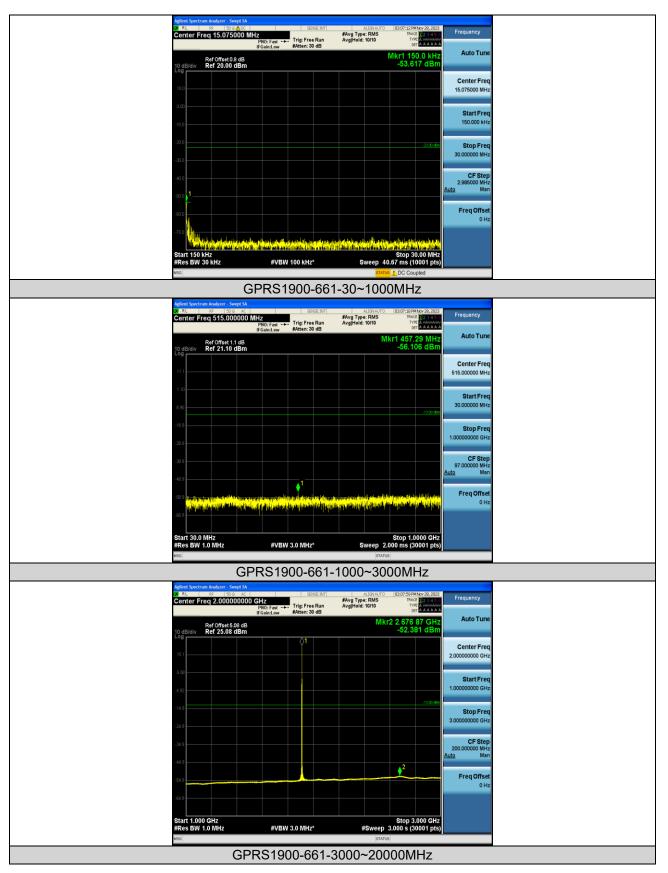


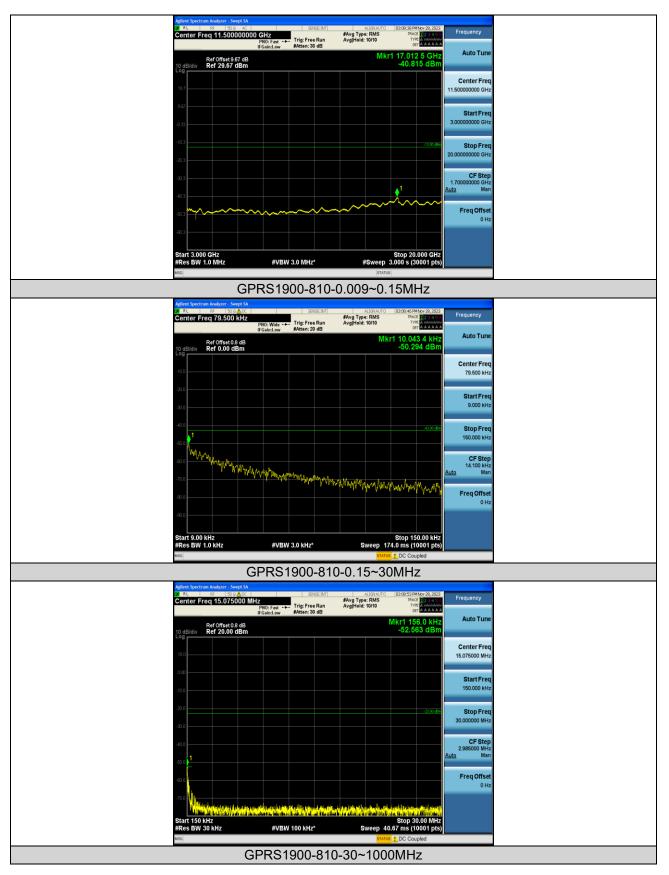


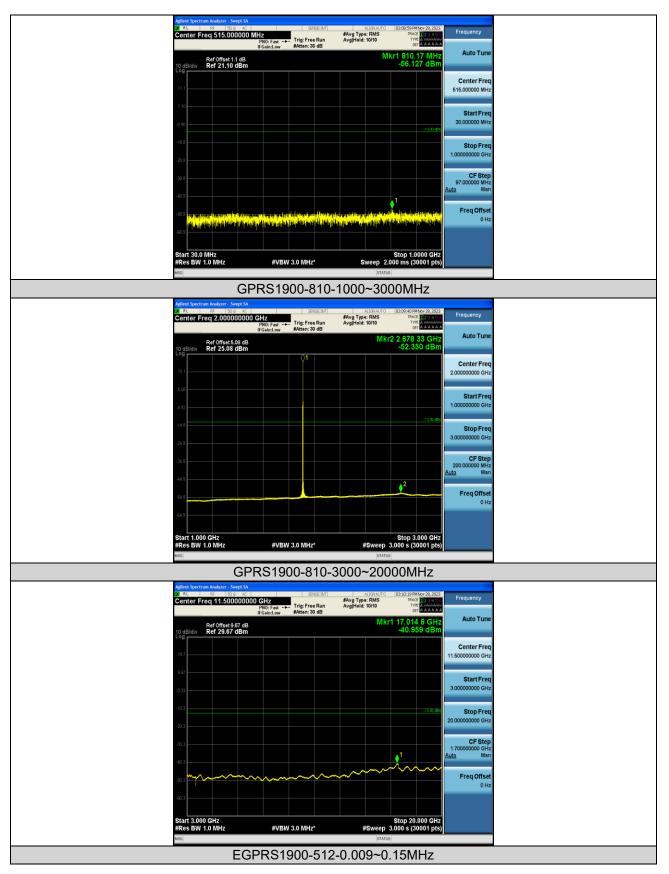


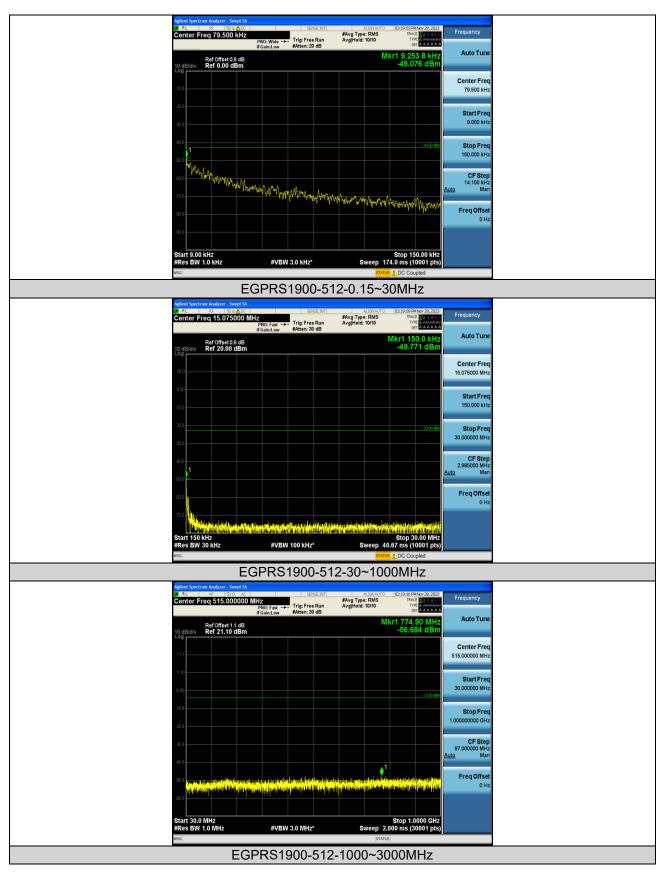


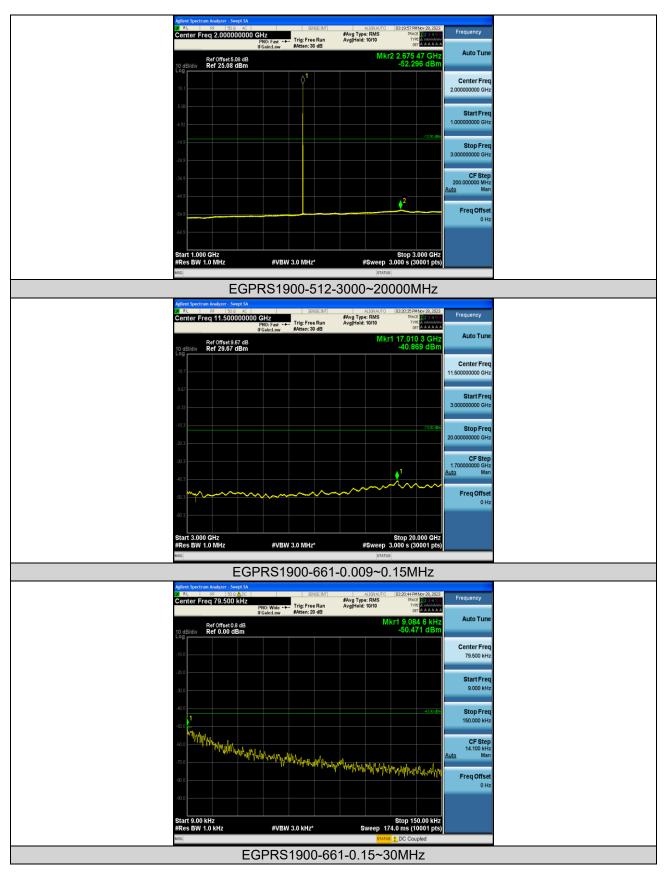


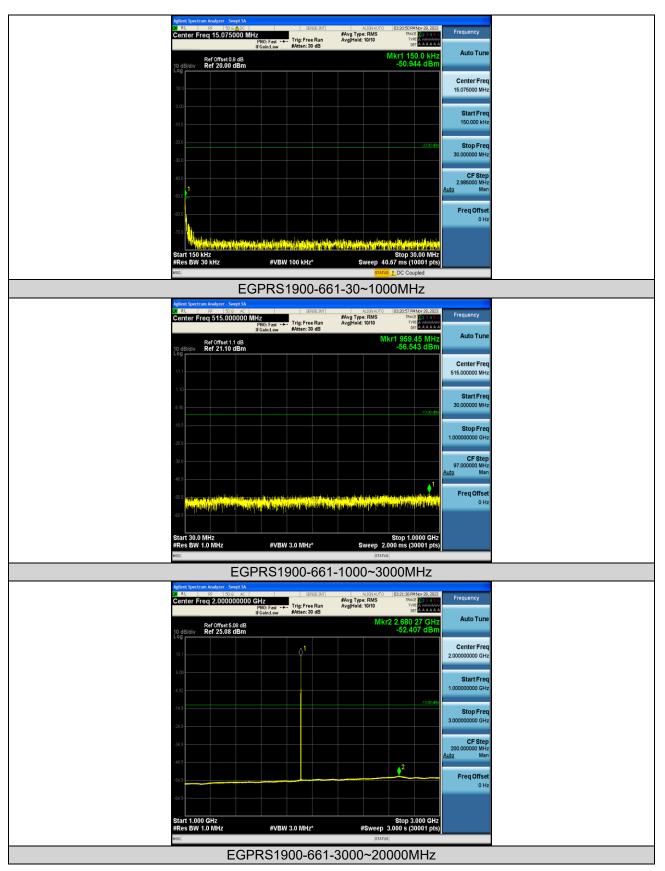


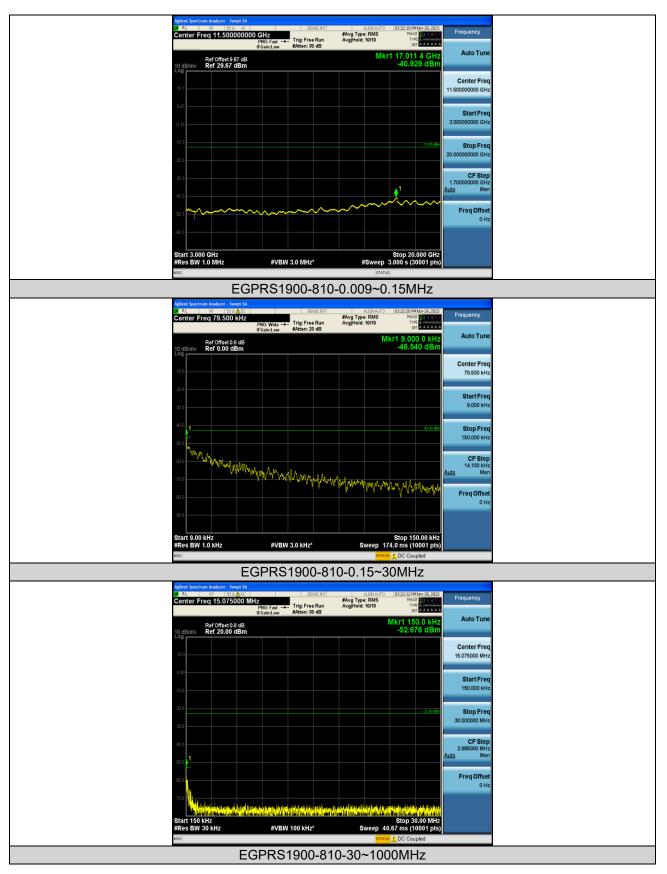


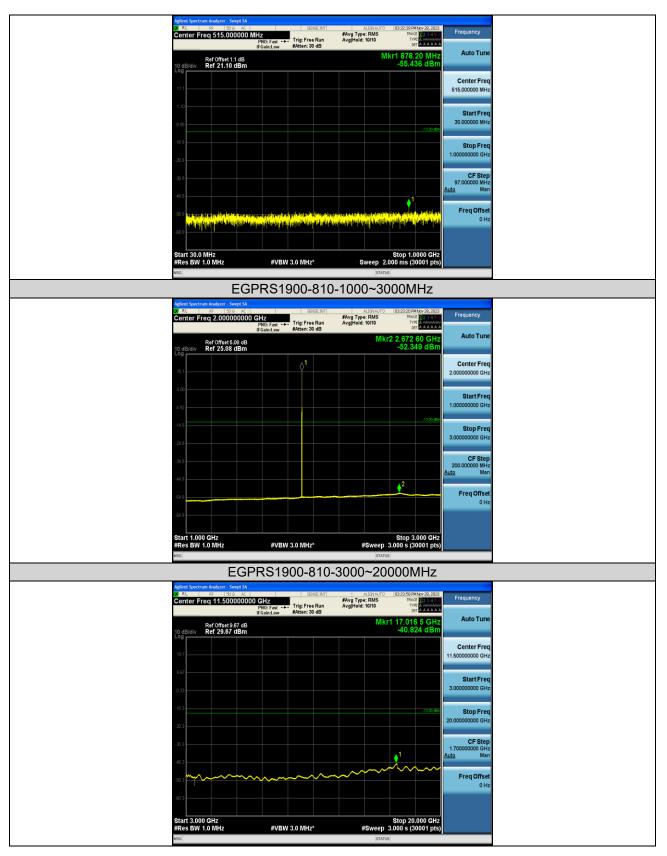








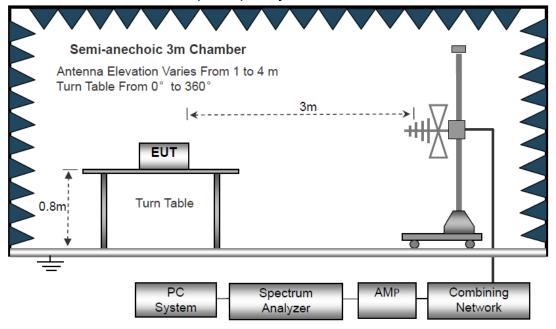




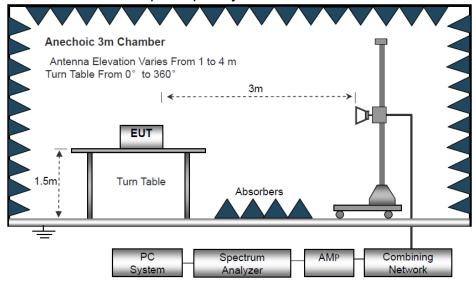
Radiated method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.


Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least X + 10log(P) dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation X + 10log(P) being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10log(P) - {X + 10log(P)}]$, resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

Test procedure:


The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Test setup:

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz

Note:

1, Below 30MHz no Spurious found.

2, UE is poistioned at 3 axis at the pre-scan stage, and only the measurement of the worst case is reported in this part.

List of final test modes: GSM850:

Mode	UL Channel	Frequency	Judgement	
1	1 128		Pass	
2	190	836.6	Pass	
3	251	848.8	Pass	

WCDMA BANDS

PCS 1900:

Mode	UL Channel	Frequency	Judgement	
1 512		1850.2	Pass Pass	
2	2 661			
3	810	1909.8	Pass	

Test record: GSM850:

		Lov	west Channel			
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
1648.40	-48.82	-11.00	-59.82	-13.00	46.82	Horizontal
2472.60	-40.42	-6.08	-46.50	-13.00	33.50	Horizontal
3296.80	-46.92	-4.81	-51.73	-13.00	38.73	Horizontal
1648.40	-48.91	-11.00	-59.91	-13.00	46.91	Vertical
2472.60	-30.75	-6.08	-36.83	-13.00	23.83	Vertical
3296.80	-46.08	-4.81	-50.89	-13.00	37.89	Vertical
		Mic	ddle Channel			
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
1673.20	-49.45	-11.02	-60.47	-13.00	47.47	Horizontal
2509.80	-40.67	-6.13	-46.80	-13.00	33.80	Horizontal
3346.40	-46.37	-4.93	-51.30	-13.00	38.30	Horizontal
1673.20	-49.66	-11.02	-60.68	-13.00	47.68	Vertical
2509.80	-31.68	-6.13	-37.81	-13.00	24.81	Vertical
3346.40	-45.74	-4.93	-50.67	-13.00	37.67	Vertical
Highest Channel						
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
1697.60	-49.05	-11.08	-60.13	-13.00	47.13	Horizontal
2546.40	-39.76	-6.35	-46.11	-13.00	33.11	Horizontal
3395.20	-46.66	-5.17	-51.83	-13.00	38.83	Horizontal
1697.60	-48.56	-11.08	-59.64	-13.00	46.64	Vertical
2546.40	-30.02	-6.35	-36.37	-13.00	23.37	Vertical
3395.20	-46.24	-5.17	-51.41	-13.00	38.41	Vertical

Note:1. Level= Reading level+ Factor. Margin=Limit-Level.

PCS 1900:

PC3 1900:						
		Lov	west Channel			
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
3700.40	-48.91	-1.60	-50.51	-13.00	37.51	Horizontal
5550.60	-39.76	5.38	-34.38	-13.00	21.38	Horizontal
3700.40	-49.27	-2.08	-51.35	-13.00	38.35	Vertical
5550.60	-31.36	3.81	-27.55	-13.00	14.55	Vertical
Middle Channel						
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
3760.00	-49.03	-1.31	-50.34	-13.00	37.34	Horizontal
5640.00	-39.81	6.94	-32.87	-13.00	19.87	Horizontal
3760.00	-48.75	-1.82	-50.57	-13.00	37.57	Vertical
5640.00	-30.86	4.26	-26.60	-13.00	13.60	Vertical
Highest Channel						
Frequency(MHz)	Reading level(dBm)	Factor(dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Polarity
3819.60	-48.65	-1.01	-49.66	-13.00	36.66	Horizontal
5729.40	-40.30	8.23	-32.07	-13.00	19.07	Horizontal
3819.60	-48.72	-1.49	-50.21	-13.00	37.21	Vertical
5729.40	-30.84	5.74	-25.10	-13.00	12.10	Vertical

Note:1. Level= Reading level+ Factor. Margin=Limit-Level.

7. Occupied Bandwidth and Emission Bandwidth

Test limit:

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission, shall be measured when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user. [i]2.1049(h)]

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

The relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The test report shall specify which OBW is reported.

A spectrum/signal analyzer or other instrument providing a spectral display is recommended for these measurements and the video bandwidth shall be set to a value at least three times greater than the IF/resolution bandwidth to avoid any amplitude smoothing. Video filtering shall not be used during occupied bandwidth tests.

The OBW shall be measured for all operating conditions that will affect the bandwidth results (e.g. variable modulations, coding, or channel bandwidth settings). See section 4.

Test procedure:

Occupied bandwidth – relative measurement procedure

The reference value is the highest level of the spectral envelope of the modulated signal. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.

b) The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to prevent the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.

e) The dynamic range of the spectrum analyzer at the selected RBW shall be at least 10 dB below the target "-X dB down" requirement (i.e., if the requirement calls for measuring the –26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference value).

f) Set the detection mode to peak, and the trace mode to max hold.

g) Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-X dB down amplitude" as equal to (Reference Value – X). Alternatively,

this calculation can be performed by the analyzer by using the marker-delta function. i) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step g). If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

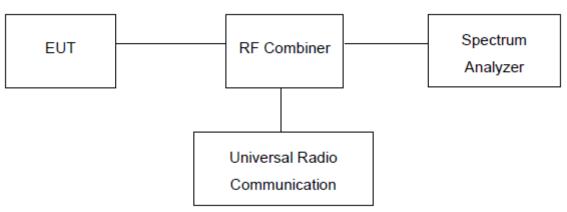
j) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Occupied bandwidth – power bandwidth (99%) measurement procedure

The following procedure shall be used for measuring (99 %) power bandwidth a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.


d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.

e) Set the detection mode to peak, and the trace mode to max hold..

f) Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.

g) If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % power bandwidth is the difference between these two frequencies. h) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test setup:

