

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://w

http://www.caict.ac.cn

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60389 Page 2 of 6

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ±1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

no following parameters and salesians to	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	38.9 ±6 %	1.38 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃		

SAR result with Head TSL

K Tesait With Flead 102		
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.7 W/kg ± 18.8 % (k=2)
SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ±18.7 % (k=2)

Certificate No: Z22-60389 Page 3 of 6

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.7Ω- 2.35jΩ
Return Loss	- 27.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.118 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z22-60389 Page 4 of 6

Date: 2022-09-21

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d104

Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz; $\sigma = 1.377$ S/m; $\epsilon_r = 38.91$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

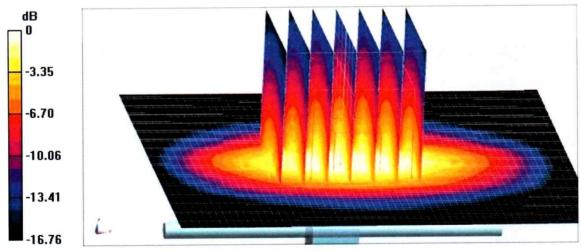
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.2, 8.2, 8.2) @ 1800 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 97.51 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 17.2 W/kg

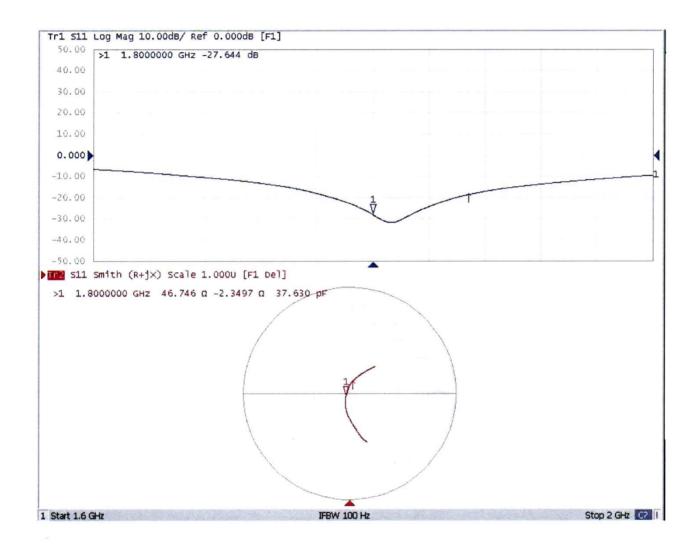
SAR(1 g) = 9.64 W/kg; SAR(10 g) = 5.18 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 56.6%

Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg


Certificate No: Z22-60389 Page 5 of 6

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

CTB

Certificate No:

Z22-60390

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d145

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

October 8, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)^oC and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Discour Ctandarda	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power Meter NRP2	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
Reference Probe EX3DV4 DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Certificate No: Z22-60390

Qi Dianyuan

SAR Project Leader

Issued: October 11, 2022

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 6 Certificate No: Z22-60390

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ±1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	41.1 ±6 %	1.42 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃		

SAR result with Head TSL

SAR averaged over 1 $ cm^3 $ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ±18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ±18.7 % (k=2)

Certificate No: Z22-60390 Page 3 of 6

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0Ω+ 5.72jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.108 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z22-60390 Page 4 of 6

Date: 2022-10-08

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d145

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ S/m; $\varepsilon_r = 41.08$; $\rho = 1000$ kg/m³

Phantom section: Right Section

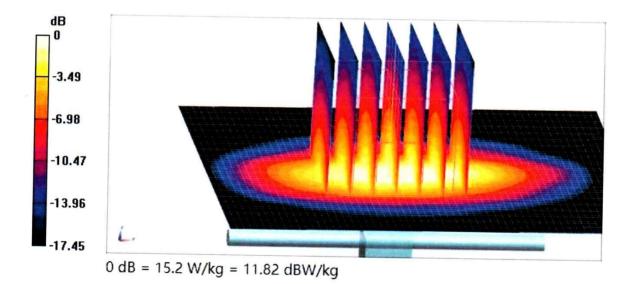
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.99 V/m; Power Drift = -0.01 dB

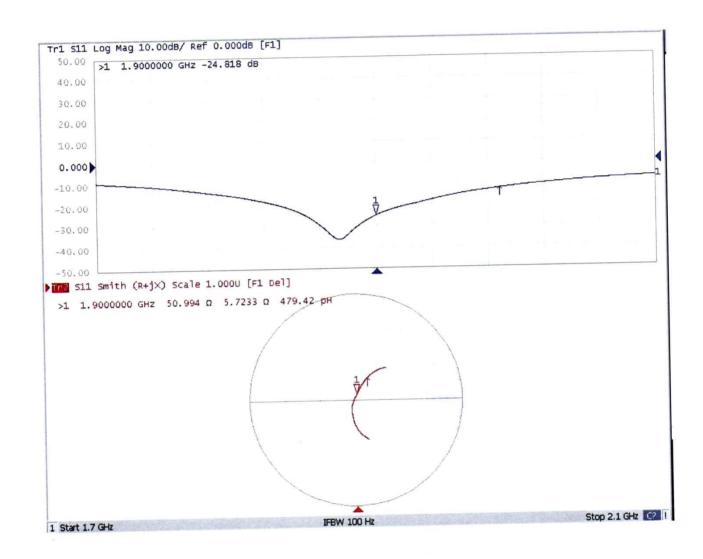

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.18 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 55.1%

Maximum value of SAR (measured) = 15.2 W/kg


Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

Certificate No: Z22-60390

http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Client

CTB

Certificate No:

Z22-60393

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 801

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 19, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22	
1 01101 1110101	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22	
1 01101 0011001		26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23	
Reference Probe EX3DV4 SN 7464 DAE4 SN 1556		12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23	
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No. J22X00409)	Jan-23	
Network Analyzer E5071C MY46110673		14-Jan-22 (CTTL, No.J22X00406)	Jan-23	

Name

Function

Signatur

Calibrated by:

Zhao Jing

SAR Test Engineer

the the

Reviewed by:

Lin Hao

SAR Test Engineer

ite

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: September 27, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60393

Page 1 of 6

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ±1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 ℃	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ±0.2) ℃	39.6 ±6 %	1.81 mho/m ±6 %	
Head TSL temperature change during test	<1.0 ℃			

SAR result with Head TSI

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ±18.7 % (k=2)

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2Ω+ 2.21jΩ
Return Loss	- 28.5dB

General Antenna Parameters and Design

	4.000
Electrical Delay (one direction)	1.062 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Date: 2022-09-19

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 801

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.808$ S/m; $\varepsilon_r = 39.63$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

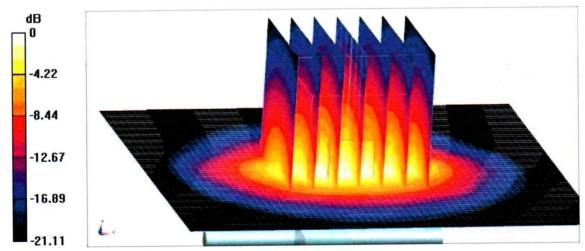
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.77, 7.77, 7.77) @ 2450 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 26.3 W/kg

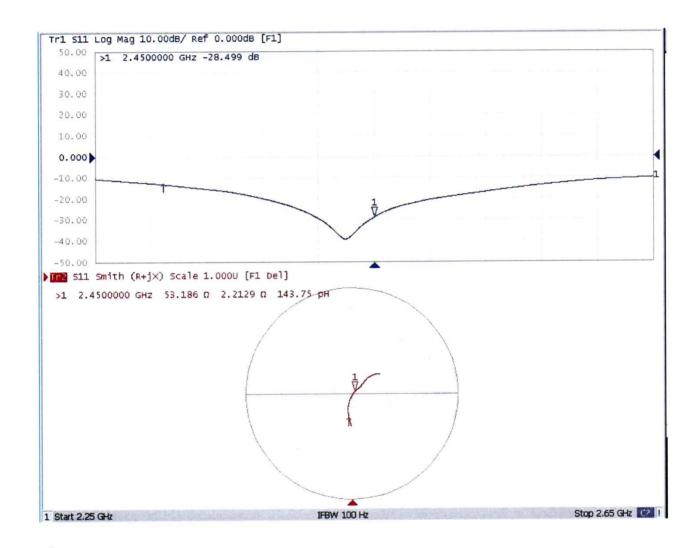
SAR(1 g) = 13 W/kg; SAR(10 g) = 6.1 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.1%

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg



Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTB

Certificate No

EX-7769_Sep10

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7769

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date

September 10, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP SN: 104778		04-Apr-23 (No. 217-03525/03524)	Apr-24
Power sensor NRP-Z91	SN: 103244	04-Apr-23 (No. 217-03524)	Apr-24
OCP DAK-3.5 (weighted) SN: 1249 20		20-Oct-22 (OCP-DAK3.5-1249_Oct21)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct21)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-23 (No. 217-03527)	Apr-24
DAE4	SN: 660	13-Oct-22 (No. DAE4-660_Oct21)	Oct-23
Reference Probe ES3DV2	SN: 3013	27-Dec-22 (No. ES3-3013_Dec21)	Dec-23

Secondary Standards	1D	Check Date (in house)	Scheduled Check		
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24		
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24		
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24		
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24		
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24		

Name

Function

Jeffrey Katzman

Laboratory Technician

Approved by

Calibrated by

Sven Kühn

Technical Manager

Issued: September 12, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7769_Sep10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ votation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP
 does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\text{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\text{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50\,\text{MHz}$ to $\pm 100\,\text{MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7769_Sep10 Page 2 of 9

EX3DV4 - SN:7769 September 10, 2023

Parameters of Probe: EX3DV4 - SN:7769

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.51	0.54	0.53	±10.1%
DCP (mV) B	100.5	104.8	103.6	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$^{ m B}_{ m dB}\sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	Χ	0.00	0.00	1.00	0.00	147.8	±2.7%	±4.7%
		Υ	0.00	0.00	1.00		154.6		
1		Z	0.00	0.00	1.00		156.3		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:7769 September 10, 2023

Parameters of Probe: EX3DV4 - SN:7769

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	129.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job.

Certificate No: EX-7769_Sep10 Page 4 of 9