

TEST REPORT

Product Name: Dongle

FCC ID: 2BCN5-K872

Trademark:

ARZOPA ARZOPA

Model Number: K87 2.4 GHz, K872 2.4 GHz, K875 2.4 GHz, K87 Pro 2.4 GHz, K98 Pro 2.4 GHz, K9

K68 Pro 2.4 GHz, K61 Pro 2.4 GHz, K65 Pro 2.4 GHz, K104 Pro 2.4 GHz

Prepared For: Shenzhen G-world Technology Incorporated Company

Address: 1602, Xingtong Building, No. 88, Baoxing Road, Haiwang Community, Xin'an Street,

Bao'an District, Shenzhen, Guangdong, China

Manufacturer: Shenzhen G-world Technology Incorporated Company

Address: 1602, Xingtong Building, No. 88, Baoxing Road, Haiwang Community, Xin'an Street,

Bao'an District, Shenzhen, Guangdong, China

Prepared By: Shenzhen CTB Testing Technology Co., Ltd.

1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Address:

Shenzhen, Guangdong, China

Sample Received Date: May. 06, 2024

Sample tested Date: May. 06, 2024 to May. 17, 2024

Issue Date: May. 17, 2024

Report No.: CTB240517041RFX

FCC CFR Title 47 Part 15 Subpart C Section 15.249

Test Standards

ANSI C63.10:2013

Test Results PASS

Remark: This is 2.4GHz radio test report.

Compiled by: Reviewed by: Approved by:

Zhou kuż

Arroin 22'u

CTB OLYNBRA

Zhou Kui Arron Liu Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Τe	est Re	eport Declaration	Page
	1.	eport Declaration VERSION	3
	2.	TEST SUMMARY	
	3.	MEASUREMENT UNCERTAINTY	
	4.	PRODUCT INFORMATION AND TEST SETUP	
	4.1	Product Information	
	4.2	Test Setup Configuration	
	4.3	Support Equipment	6
	4.4	Channel List	7
	4.5	Test Mode	7
	4.6	Test Environment	7
	5.	TEST FACILITY AND TEST INSTRUMENT USED	8
	5.1	Test Facility	8
	5.2	Test Instrument Used	8
	6.	AC POWER LINE CONDUCTED EMISSION	10
	6.1	Block Diagram Of Test Setup	10
	6.2	Limit	10
	6.3	Test procedure	10
	6.4	Test Result	12
	7.	RADIATED SPURIOUS EMISSION	14
	7.1	Block Diagram Of Test Setup	14
	7.2	Limit	14
	7.3	Test procedure	
	7.4	Test Result	
	8.	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	21
	8.1	Block Diagram Of Test Setup	21
	8.2	Limit	
	8.3	Test procedure	
	8.4	Test Result	
	9.	BANDWIDTH TEST	
	9.1	Block Diagram Of Test Setup	
	9.2	Limit	
	9.3	Test procedure	
	9.4	Test Result	
	10.	ANTENNA REQUIREMENT	
	11.	EUT TEST SETUP PHOTOGRAPHS	27

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB240517041RFX	May. 17, 2024	Original	Valid

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 3 of 28

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS	45 4	
15.215	20dB Bandwidth	PASS	C) C)	
15.249	Fundamental &Radiated Spurious Emission Measurement	PASS	A POR	
15.205	Band Edge Emission	PASS	40 4	
15.203	Antenna Requirement	PASS	15	

Remark:

Test according to ANSI C63.10-2013.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density , Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(9KHz-30MHz)	4.8dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63℃
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 5 of 28

PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

K87 2.4 GHz, K872 2.4 GHz, K875 2.4 GHz, K87 Pro 2.4 GHz, K98 Pro 2.4 Model(s):

GHz, K68 Pro 2.4 GHz, K61 Pro 2.4 GHz, K65 Pro 2.4 GHz, K104 Pro 2.4 GHz

Report No.: CTB240517041RFX

All the model are the same circuit and RF module, only different for model Model Description:

name.Test sample model: K87 2.4 GHz

Hardware Version: V1.0

Software Version: V1.0

2408-2468MHz Operation Frequency:

GFSK Type of Modulation:

PCB antenna Antenna installation:

Antenna Gain: 3.18dBi

Ratings: DC 5V by notebook

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Ş	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1 .	Laptop	DELL	Vostro 5490	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 6 of 28 Report

4.4 Channel List

CH	Frequency	CH	Frequency	CH	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2408	2	2437	3	2468

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2408MHz	2437MHz	2468MHz
GFSK	2400IVITI2	2437 IVITIZ	2400101112

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(DC):	5V
Normal Temperature(°C)	23
Low Temperature(°C)	
High Temperature(°C)	40

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 7 of 28

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

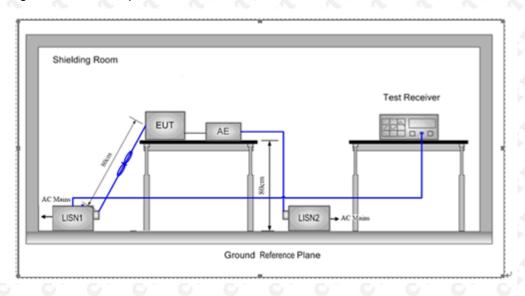
No.	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	A.14.16	2024.07.05
2	Power Sensor	Agilent	U2021XA	MY56120032	0 / 0	2024.07.05
3	Power Sensor	Agilent	U2021XA	MY56120034		2024.07.05
4	Communication test set	R&S	CMW500	108058	V3.5.80	2024.07.05
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2024.07.05
6	Signal Generator	Agilent	N5181A	MY50140365	A.01.60	2024.07.05
7	Vector signal generator	Agilent	N5182A	MY47420195	A.01.87	2024.07.05
8	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2024.07.06
9	2.4 GHz Filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001	0 6	2024.07.05
10	5 GHz Filter	Shenxiang	MSF5150-58 50MS-1155	20181015001		2024.07.06
11	Filter	Xingbo	XBLBQ-DZA 120	190821-1-1		2024.07.06
12	BT&WI-FI Automatic test software	Micowave	MTS8000	Ver. 2.0.0.0	" SP S	
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	\$ 50 S	2024.10.30
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	\$ 10 X	2024.07.05
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	& ° / 6 ° / 6	0 / 0
16	966 chamber	C.R.T.	966			2024.08.11
17	Receiver	R&S	ESPI	100362	RF_ATTEN_7 (104489/003)	2024.07.05
18	Amplifier	HP	8447E	2945A02747		2024.07.05
19	Amplifier	Agilent	8449B	3008A01838		2024.07.05
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869		2024.07.08

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 8 of 28

21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	* A	2024.07.08
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	45 /5 A	
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224		2024.07.08
24	loop antenna	ZHINAN	ZN30900A	GTS534	♦ />	A A
25	40G Horn antenna	A/H/System	SAS-574	588		2024.10.30
26	Amplifier	AEROFLEX	Aeroflex	097	4	2024.07.05

Continuous disturbance								
No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware Version	Calibrated until		
1	LISN	ROHDE&SCHWARZ	ESH3-Z5	100318	4 14 W	2024.07.05		
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	4,7	2024.07.05		
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	V4.42.SP3	2024.07.05		
4	Coaxial cable	ZDECL	Z302S-NJ-SM AJ-12M	18091905	\$ 1 \$	2024.07.05		
5	ISN	Schwarzbeck	NTFM8158	183	P	2024.07.05		
6	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2024.07.05		
7	Communication test set	R&S	CMW500	108058	V3.5.80	2024.07.05		
8	EZ-EMC	Frad	EMC-con3A1.1	1	D D	9 6		

	Radiated emission							
No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware Version	Calibrated until		
4	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911		2024.07.08		
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	0/ b	2024.07.08		
3	Amplifier	Agilent	8449B	3008A01838		2024.07.05		
4	Amplifier	HP 9	8447E	2945A02747	\$ 1.0	2024.07.05		
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	V4.42.SP3	2024.07.05		
6	Coaxial cable	ETS	RFC-SNS-100-N MS-80 NI	1		2024.07.05		
7	Coaxial cable	ETS	RFC-SNS-100-N MS-20 NI	\$ 18	\$ 1\$	2024.07.05		
8	Coaxial cable	ETS	RFC-SNS-100-S MS-20 NI	G / C		2024.07.05		
9	Coaxial cable	ETS	RFC-NNS-100- NMS-300 NI	7		2024.07.05		
10	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2024.07.05		
11	Communication test set	R&S	CMW500	108058	V3.5.80	2024.07.05		


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 9 of 28

12	EZ-EMC	Frad	EMC-con3A1.1	. 1.	4	1	
----	--------	------	--------------	------	---	---	--

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

Table 4 – AC power-line conducted emissions limits							
Frequency (MHz)	Conducted limit (dBµV)	Conducted limit (dBµV)					
	Quasi-peak	Average					
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}					
0.5 - 5	56	46					
5 - 30	60	50					

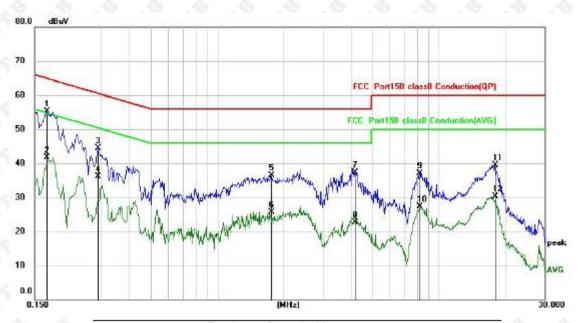
Note 1: The level decreases linearly with the logarithm of the frequency.

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 10 of 28

^{*} Decreasing linearly with the logarithm of the frequency


- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 11 of 28

6.4 Test Result

L: Worst case-GFSK(low channel)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1700	45.32	9.95	55.27	64.96	-9.69	QP
2	0.1700	31.68	9.95	41.63	54.96	-13.33	AVG
3	0.2900	34.54	9.96	44.50	60.52	-16.02	QP
4	0.2900	26.06	9.96	36.02	50.52	-14.50	AVG
5	1.7460	26.41	10.07	36.48	56.00	-19.52	QP
6	1.7460	15.66	10.07	25.73	46.00	-20.27	AVG
7	4.1620	26.95	10.30	37.25	56.00	-18.75	QP
8	4.1620	12.49	10.30	22.79	46.00	-23.21	AVG
9	8.1820	26.49	10.54	37.03	60.00	-22.97	QP
10	8.1820	16.74	10.54	27.28	50.00	-22.72	AVG
11	17.8540	28.76	10.78	39.54	60.00	-20.46	QP
12	17.8540	19.58	10.78	30.36	50.00	-19.64	AVG


Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 12 of 28

N

MHz dBuV dB dBuV dBuV dB Detector 1 * 0.1700 44.77 9.95 54.72 64.96 -10.24 QP 2 0.1700 30.64 9.95 40.59 54.96 -14.37 AVG 3 0.3020 33.28 9.96 43.24 60.19 -16.95 QP 4 0.3020 24.12 9.96 34.08 50.19 -16.11 AVG 5 0.4180 31.66 9.98 41.64 57.49 -15.85 QP 6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 0.1700 30.64 9.95 40.59 54.96 -14.37 AVG 3 0.3020 33.28 9.96 43.24 60.19 -16.95 QP 4 0.3020 24.12 9.96 34.08 50.19 -16.11 AVG 5 0.4180 31.66 9.98 41.64 57.49 -15.85 QP 6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
3 0.3020 33.28 9.96 43.24 60.19 -16.95 QP 4 0.3020 24.12 9.96 34.08 50.19 -16.11 AVG 5 0.4180 31.66 9.98 41.64 57.49 -15.85 QP 6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	1	*	0.1700	44.77	9.95	54.72	64.96	-10.24	QP
4 0.3020 24.12 9.96 34.08 50.19 -16.11 AVG 5 0.4180 31.66 9.98 41.64 57.49 -15.85 QP 6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	2		0.1700	30.64	9.95	40.59	54.96	-14.37	AVG
5 0.4180 31.66 9.98 41.64 57.49 -15.85 QP 6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	3		0.3020	33.28	9.96	43.24	60.19	-16.95	QP
6 0.4180 21.54 9.98 31.52 47.49 -15.97 AVG 7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	4		0.3020	24.12	9.96	34.08	50.19	-16.11	AVG
7 1.8780 26.71 10.08 36.79 56.00 -19.21 QP 8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	5		0.4180	31.66	9.98	41.64	57.49	-15.85	QP
8 1.8780 16.24 10.08 26.32 46.00 -19.68 AVG 9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	6		0.4180	21.54	9.98	31.52	47.49	-15.97	AVG
9 4.1900 26.73 10.30 37.03 56.00 -18.97 QP 10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	7		1.8780	26.71	10.08	36.79	56.00	-19.21	QP
10 4.1900 11.90 10.30 22.20 46.00 -23.80 AVG 11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	8		1.8780	16.24	10.08	26.32	46.00	-19.68	AVG
11 17.1980 30.73 10.77 41.50 60.00 -18.50 QP	9		4.1900	26.73	10.30	37.03	56.00	-18.97	QP
	10		4.1900	11.90	10.30	22.20	46.00	-23.80	AVG
12 17.1980 21.18 10.77 31.95 50.00 -18.05 AVG	11		17.1980	30.73	10.77	41.50	60.00	-18.50	QP
	12		17.1980	21.18	10.77	31.95	50.00	-18.05	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 13 of 28

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

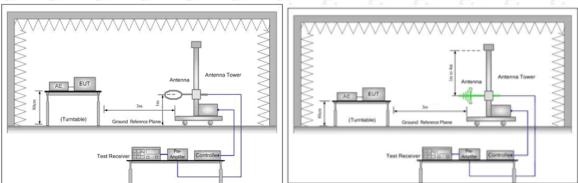
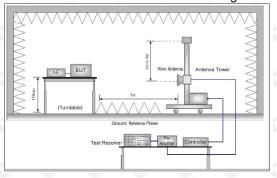



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	9 4	O . O	300
0.490MHz-1.705MHz	24000/F(kHz)	67 c	' 6 ² 6	30
1.705MHz-30MHz	30	6.6	0 :0	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 14 of 28

7.3 Test procedure

Below 1GHz test procedure as below:

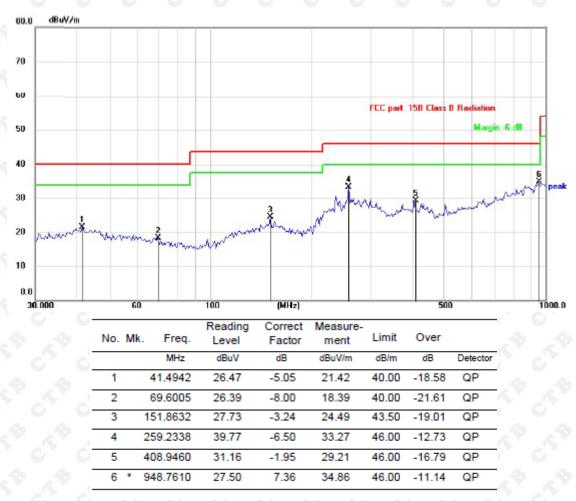
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- j.Repeat above procedures until all frequencies measured was complete.
- j. Full battery is usedduring test

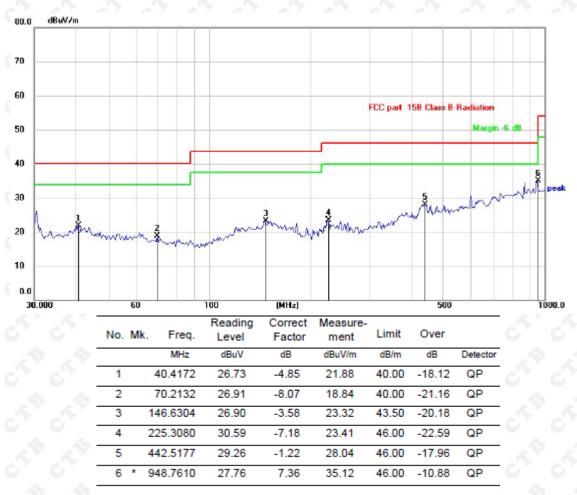
Receiver set:


Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Ab 2012 4 OH =	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 15 of 28

7.4 Test Result

Below 1GHz Test Results: Antenna polarity: H



Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 16 of 28

Antenna polarity: V

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 17 of 28

CH Low (2408MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2408.00	101.12	-5.84	95.28	114	-18.72	peak
2408.00	92.61	-5.84	86.77	94	-7.23	AVG
4816.00	57.38	-3.64	53.74	74	-20.26	peak
4816.00	47.43	-3.64	43.79	54	-10.21	AVG
7224.00	59.36	-0.95	58.41	74	-15.59	peak
7224.00	50.50	-0.95	49.55	54	-4.45	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2408.00	100.67	-5.84	94.83	114	-19.17	peak
2408.00	92.41	-5.84	86.57	94	-7.43	AVG
4816.00	58.95	-3.64	55.31	74	-18.69	peak
4816.00	47.65	-3.64	44.01	54	-9.99	AVG
7224.00	58.14	-0.95	57.19	74	-16.81	peak
7224.00	50.95	-0.95	50.00	54	-4.00	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 18 of 28

CH Middle (2437MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2437.00	98.21	-5.71	92.50	114	-21.50	peak
2437.00	93.12	-5.71	87.41	94	-6.59	AVG
4874.00	55.66	-3.51	52.15	74	-21.85	peak
4874.00	45.40	-3.51	41.89	54	-12.11	AVG
7311.00	57.55	-0.82	56.73	74	-17.27	peak
7311.00	46.13	-0.82	45.31	54	-8.69	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2437.00	101.03	-5.71	95.32	114	-18.68	peak
2437.00	91.33	-5.71	85.62	94	-8.38	AVG
4874.00	55.05	-3.51	51.54	74	-22.46	peak
4874.00	46.82	-3.51	43.31	54	-10.69	AVG
7311.00	57.92	-0.82	57.10	74	-16.90	peak
7311.00	47.86	-0.82	47.04	54	-6.96	AVG

Page 19 of 28 Tel: 4008-707-283 Report Web: http://www.ctb-lab.net

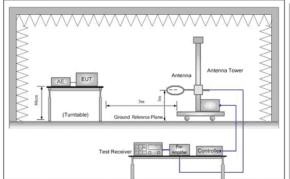
CH High (2475MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2475.00	105.70	-5.65	100.05	114	-13.95	peak
2475.00	91.49	-5.65	85.84	94	-8.16	AVG
4950.00	55.28	-3.43	51.85	74	-22.15	peak
4950.00	46.53	-3.43	43.10	54	-10.90	AVG
7425.00	55.61	-0.75	54.86	74	-19.14	peak
7425.00	47.42	-0.75	46.67	54	-7.33	AVG

Vertical:

Frequency	Meter y Reading	Factor	Emission Le	velLimits	Margin	D Attack
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
2475.00	106.51	-5.65	100.86	114	-13.14	peak
2475.00	92.99	-5.65	87.34	94	-6.66	AVG
4950.00	55.08	-3.43	51.65	74	-22.35	peak
4950.00	46.32	-3.43	42.89	54	-11.11	AVG
7425.00	55.84	-0.75	55.09	74	-18.91	peak
7425.00	47.14	-0.75	46.39	54	-7.61	AVG

Remark:


- (1) Measuring frequencies from 9KHz to the 25 GHz.
- (2). All modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.
- (3). For BT above 1GHz test all modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.
- (4). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- (5). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 20 of 28

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

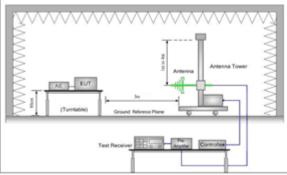
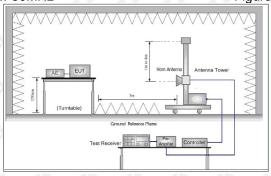



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

8.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	0.0	0. 0	300
0.490MHz-1.705MHz	24000/F(kHz)	P (-9)	B -B	30
1.705MHz-30MHz	30	0'- 0	0.0	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3 C
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 21 of 28

8.3 Test procedure

- a.The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Frequency	Detector	RBW	VBW	Remark
2310MHz-2400MHz	peak	1MHz	3MHz	peak
2483.5MHz-2500MHz	peak	1MHz	3MHz	peak

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 22 of 28

8.4 Test Result

CH Low: Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.2765	28.64	-4.35	24.30	54	-29.70	peak
2	2343.8725	28.39	-4.28	24.12	54	-29.88	peak
3	2378.3882	30.41	-4.50	25.92	54	-28.08	peak
4	2390.0275	27.30	-4.92	22.38	54	-31.62	peak
5	2439.8997	27.85	-3.94	23.91	54	-30.09	peak

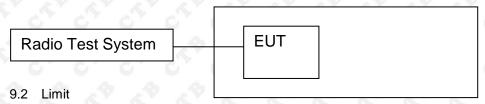
Vertical:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.2545	28.32	-4.26	24.05	54	-29.95	peak
2	2343.8535	31.12	-4.35	26.77	54	-27.23	peak
3	2378.3237	30.15	-4.44	25.71	54	-28.29	peak
4	2389.7279	27.67	-4.95	22.72	54	-31.28	peak
5	2439.917	25.86	-3.98	21.88	54	-32.12	peak

CH High: Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2484.1378	31.63	-4.32	27.30	54	-26.70	peak
2	2488.6697	34.27	-4.28	29.99	54	-24.01	peak
3	2490.0589	30.36	-4.50	25.85	54	-28.15	peak
4	2493.2119	32.67	-4.91	27.76	54	-26.24	peak
5	2495.9359	26.49	-3.97	22.51	54	-31.49	peak

Vertical:


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2484.1455	29.86	-4.27	25.59	54	-28.41	peak
2	2488.7103	30.28	-4.33	25.95	54	-28.05	peak
3	2490.3068	32.77	-4.43	28.34	54	-25.66	peak
4	2493.4105	33.12	-4.90	28.22	54	-25.78	peak
5	2495.9065	28.94	-3.95	24.99	54	-29.01	peak

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 23 of 28

9. BANDWIDTH TEST

9.1 Block Diagram Of Test Setup

FCC Part15 (15.249) , Subpart C Section Test Item Frequency Range (MHz) Result 15.249 Bandwidth 2408-2483.5 PASS

9.3 Test procedure

- 1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Result

Test Mode	Frequency (MHz)	20dB Bandwidth (MHz)	Result
cr cr cr	Low channel	1.24	PASS
GFSK	Mid channel	1.238	PASS
4 4 4	High channel	1.245	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 24 of 28

Test Graph:

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 25 of 28

Report No.: CTB240517041RFX

10. ANTENNA REQUIREMENT

15.203 requirement:

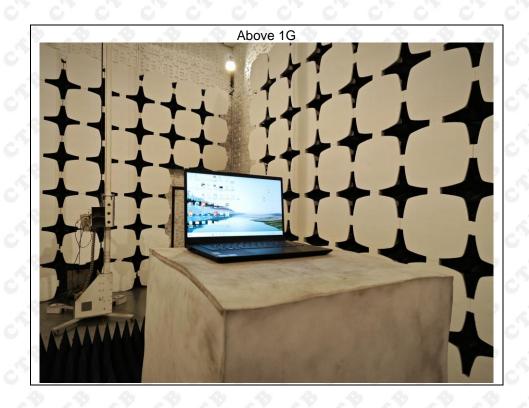
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 3.18dBi.


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 26 of 28

11. EUT TEST SETUP PHOTOGRAPHS

Radiated Emissions

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 27 of 28

Conducted emission

******* END OF REPORT ******

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 28 of 28