FCC 47 CFR MPE REPORT

CERWIN-VEGA, INC

Mixing Console

Model Number: CVM8

Additional Model: CVM10, CVM12, CVM16

FCC ID: 2BCMC-CVM

Applicant:	CERWIN-VEGA, INC				
Address:	3761 S, HILL STREET, LOS ANGELES, California, United States				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2308015		
Date of Test:	Jun. 15, ~ Aug. 01, 2023		
Date of Report:	Aug. 02, 2023		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)
	2402	-0.73	0.845
GFSK	2441	-1.56	0.698
	2480	-2.33	0.585
π/4-DQPSK	2402	1.72	1.486
	2441	0.86	1.219
	2480	-0.09	0.979
	2402	2.33	1.710
8-DPSK	2441	1.49	1.409
	2480	0.48	1.117
BLE 1M	2402	-1	0.794
	2440	-1.74	0.670
	2480	-2.61	0.548

For 2.4G SRD

Field strength = 79.66dBuV/m@3m

 $P=\{ [10(79.66/20)/106*3]2/(30*1) \}*1000mW = 0.0277mW$

3. Calculated Result and Limit

		Toward		Antenna	a gain		Limited	
Mode	Peak output power (dBm)	Target power (dBm	MAX Target power (dBm)	(dBi)	(Linear	Power Density (S) (mW /cm2)	of Power Density (S) (mW /cm2)	Test Result
			2.4G	Band				
GFSK	-0.73	-0±1	1	1.7	1.479	0.00037	1	Complies
π/4-DQPSK	1.72	1 ±1	2	1.7	1.479	0.00047	1	Complies
8-DPSK	2.33	2±1	3	1.7	1.479	0.00059	1	Complies
BLE 1M	-1.00	-1 ±1	0	1.7	1.479	0.00029	1	Complies

For 2.4G SRD:

	Antenna gain			Limited			
MAX Target power			Power Density	of			
		(Linear)	(S)	Power Density	Test		
(mW)	(dBi)		(mW	(S)	Result		
			/cm2)	(mW			
				/cm2)			
2.4G Band							
0.0277	2	1.585	0.0000087	1	Complies		

End of Test Report