TEST REPORT

For FCC Part15B

Report No:	CHTEW23080070	Report verification:	
Project No:	SHT2306098005EW		
FCC ID:	2BCJC-5908-IQ2100		ReportNo: CHIEW23080070
Applicant's name::	Jiangsu Konsung Medical Te	chnology Co., Ltd.	
Address:	No. 8, Shengchang West Road 212300 Danyang Jiangsu Provi CHINA		
Product Name:	Colloidal Gold Immunoassay	Analyzer	
Trade Mark	Smilecare		
Model No:	iQ2100-3		
Listed Model(s)	iQ2000-1,iQ2000-2,iQ2000-3,iQ 2,iQ2100-4,iQ2200-1,iQ2200-2, 5,iQ2200-6,iQ2300-1,iQ2300-2,	iQ2200-3,iQ2200-4,i	
Standard::	FCC CFR Title 47 Part 15 Sub	part B	
Date of receipt of test sample	Aug.11, 2023		
Date of testing:	Aug.11, 2023- Aug.30, 2023		
Date of issue:	Aug.31, 2023		
Result:	Pass		
Compiled by		43/cz	Kon
(Position+Printed name+Signature):	File administrator Kiki Kong	V - V	J
Supervised by		Color	kon
(Position+Printed name+Signature):	Project Engineer Kiki Kong	γ -	đ
Approved by		1	Y
(Position+Printed name+Signature):	RF Manager Xu Yang	du.	long
Testing Laboratory Name:	Shenzhen Huatongwei Interna	ational Inspection C	o., Ltd.

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Gongming, Shenzhen, China

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,

The test report merely corresponds to the test sample.

Address....:

Report No.: CHTEW23080070 Page: 2 of 15 Date of issue: 2023-08-31

Contents

<u> </u>	1EST STANDARDS AND REPORT VERSION	<u> ა</u>
1.1. 1.2.	Test Standards Report version information	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
4.1.	Descriptions of test mode	6
4.2.	Support unit used in test configuration	6
4.3.	Environmental conditions	6
4.4.	Statement of the measurement uncertainty	6
4.5.	Equipments Used during the Test	7
<u>5.</u>	TEST CONDITIONS AND RESULTS	8
5.1.	Conducted Emissions	8
5.2.	Radiated Emissions	10
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	14
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	15

Report No.: CHTEW23080070 Page: 3 of 15 Date of issue: 2023-08-31

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2023-08-31	Original

Report No.: CHTEW23080070 Page: 4 of 15 Date of issue: 2023-08-31

2. TEST DESCRIPTION

Section	Test Item	Section in CFR 47	Result #1	Test Engineer
5.1	Conducted Emissions	15.107(a)	PASS	Junman wang
5.2	Radiated Emissions	15.109(a)	PASS	Haoxing Luo

Note:

#1: The test result does not include measurement uncertainty value

Report No.: CHTEW23080070 Page: 5 of 15 Date of issue: 2023-08-31

3. **SUMMARY**

3.1. Client Information

Applicant:	Jiangsu Konsung Medical Technology Co., Ltd.	
Address:	No. 8, Shengchang West Road, Danyang Development Zone, 212300 Danyang Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA	
Manufacturer:	Jiangsu Konsung Medical Technology Co., Ltd.	
Address:	No. 8, Shengchang West Road, Danyang Development Zone, 212300 Danyang Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA	

3.2. Product Description

Main unit information:			
Product Name:	Colloidal Gold Immunoassay Analyzer		
Trade Mark:	Smilecare		
Model No.:	iQ2100-3		
Listed Model(s):	iQ2000-1,iQ2000-2,iQ2000-3,iQ2000-4,iQ2100-1,iQ2100-2,iQ2100-4,iQ2200-1,iQ2200-2,iQ2200-3,iQ2200-4,iQ2200-5,iQ2200-6,iQ2300-1,iQ2300-2,iQ2300-3,iQ2300-4		
Power supply:	DC 2*1.5V from AA Battery		
Hardware version:	RF_BM_BG22A1A2		
Software version:	V0.3.2_2021.11.16		
Accessory unit information:			
	Model:SK01G-0500100U		
Adapter information:	Input:100-240Va.c., 50/60Hz 0.2Amax		
	Output:5Vd.c.,1A		

3.3. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
	Tel: 86-755-26715499		
Contact information:	http://www.szhtw.com.cn		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

Report No.: CHTEW23080070 Page: 6 of 15 Date of issue: 2023-08-31

4. TEST CONFIGURATION

4.1. Descriptions of test mode

Test mode O1	Working
--------------	---------

Test Item	Test mode	
Conducted Emissions	01	
Radiated Emissions	O1	

4.2. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether su	Whether support unit is used?		
✓	No		
Item	Equipment	Trade Name	Model No.
1			
2			

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21dB
2	Radiated Emission	4.54dB for 30MHz-1GHz
2 Radiated Emission	radiated Emission	5.10dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW23080070 Page: 7 of 15 Date of issue: 2023-08-31

4.5. Equipments Used during the Test

•	Conducted E	mission					
Used	Test Equipment Manufacturer		Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2022/08/30	2023/08/29
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2023/8/22	2024/8/21
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2022/08/29	2023/08/28
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2023/8/18	2024/8/17
•	Protection Network	SCHWARZBECK	HTWE0567	VTSD9561FN	00899	2022/8/29	2023/8/28
•	Protection Network	SCHWARZBECK	HTWE0567	VTSD9561FN	00899	2023/8/18	2024/8/17
•	ISN	FCC	HTWE0148	FCC-TLISN-T2- 02	20371	2022/8/29	2023/8/28
•	ISN	FCC	HTWE0148	FCC-TLISN-T2- 02	20371	2023/8/18	2024/8/17
•	ISN	FCC	HTWE0150	FCC-TLISN-T8- 02	20375	2022/8/29	2023/8/28
•	ISN	FCC	HTWE0150	FCC-TLISN-T8- 02	20375	2023/8/18	2024/8/17
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

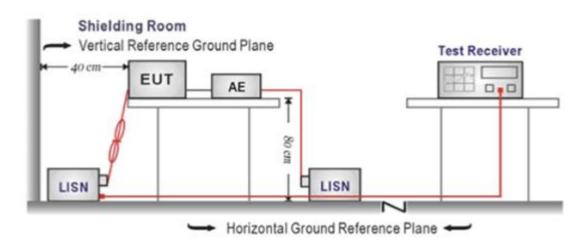
•	Radiated Em	ission - 30MHz	z~1GHz				
Used	Test Equipment	Manufacturer	Equipment No.	ment No. Model No. Serial No. Last Cal. Date (YY-MM-DD)		Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2023/4/6	2026/4/5
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2022/08/30	2023/08/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2023/8/22	2024/8/21
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2023/2/22	2026/2/21
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	/	2023/5/25	2024/5/24
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

•	Radiated emission-Above 1GHz										
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2023/4/17	2026/4/16				
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24				
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2023/8/22	2024/8/21				
•	Horn Antenna	SCHWARZBE CK	HTWE0126	BBHA 9120D	1011	2023/2/14	2026/2/13				
•	Horn Antenna	SCHWARZBE CK	HTWE0103	BBHA9170	BBHA9170472	2023/2/20	2026/2/19				
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2023/5/25	2024/5/24				
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A				

Report No.: CHTEW23080070 Page: 8 of 15 Date of issue: 2023-08-31

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions


LIMIT

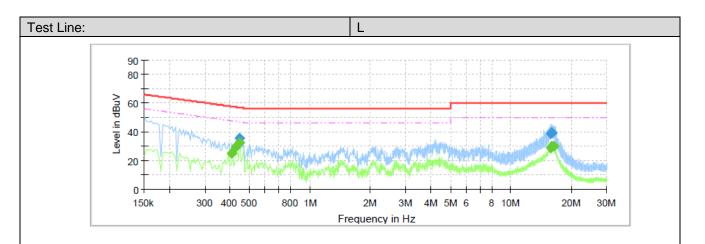
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Frequency range (MHz)	Limit (dBuV)					
r requericy range (wiriz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

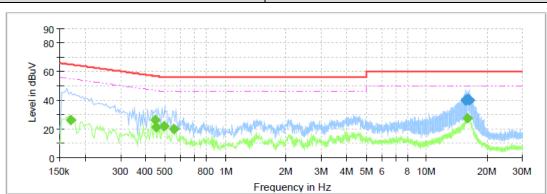
TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


 Report No.: CHTEW23080070 Page: 9 of 15 Date of issue: 2023-08-31

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Corr.
Frequency	-			_	Lille	
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)		(dB)
0.4075		25.29	47.70	22.41	L1	10.0
0.4275	-	29.20	47.30	18.10	L1	10.0
0.4475		32.40	46.92	14.52	L1	10.0
0.4475	35.88		56.92	21.04	L1	10.0
15.7195	-	28.65	50.00	21.35	L1	10.4
15.7795	38.74		60.00	21.26	L1	10.4
15.8995	39.15		60.00	20.85	L1	10.4
15.9675	39.57		60.00	20.43	L1	10.4
16.0155		30.10	50.00	19.90	L1	10.4
16.0315	39.45		60.00	20.55	L1	10.4
16.0555	39.11		60.00	20.89	L1	10.4
16.2555		29.75	50.00	20.25	L1	10.4

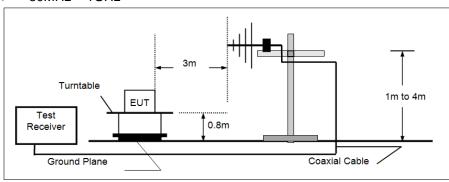
Test Line: N

Final Result

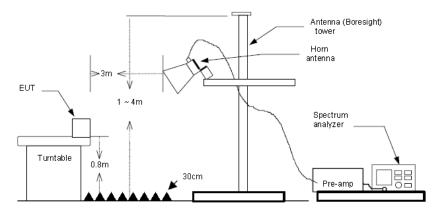
1 11141_1XCS	••••					
Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)		(dB)
0.1700		26.06	54.96	28.90	N	10.0
0.4475		26.18	46.92	20.74	N	10.0
0.4515		21.26	46.85	25.59	N	10.0
0.4955		21.60	46.08	24.47	N	10.0
0.5515		20.13	46.00	25.87	N	10.0
15.6835	39.74		60.00	20.26	N	10.4
15.7765	39.93		60.00	20.07	N	10.4
15.9275	40.45		60.00	19.55	N	10.4
15.9755		27.39	50.00	22.61	N	10.4
16.0315	40.58		60.00	19.42	N	10.4
16.1115	40.60		60.00	19.40	N	10.4
16.3035	39.96		60.00	20.04	N	10.4

Report No.: CHTEW23080070 Page: 10 of 15 Date of issue: 2023-08-31

5.2. Radiated Emissions


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value						
30MHz-88MHz	40.00	Quasi-peak						
88MHz-216MHz	43.50	Quasi-peak						
216MHz-960MHz	46.00	Quasi-peak						
960MHz-1GHz	54.00	Quasi-peak						
Above 1GHz	54.00	Average						
ABOVE TOTIZ	74.00	Peak						

TEST CONFIGURATION

30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

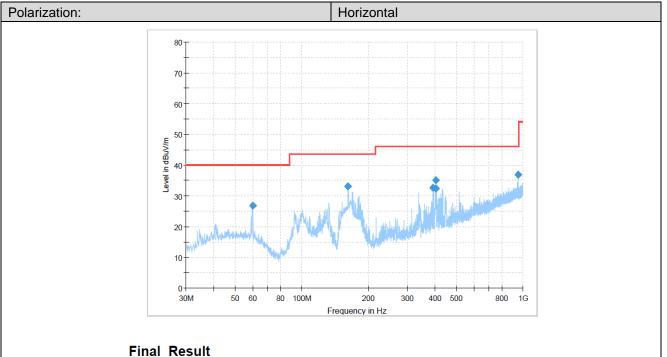
- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,

RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.

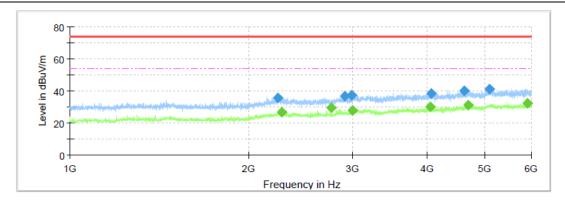
Report No.: CHTEW23080070 Page: 11 of 15 Date of issue: 2023-08-31

(3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

TEST MODE:

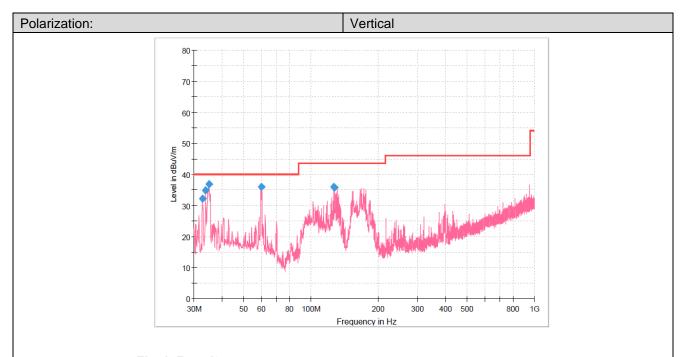

Please refer to the clause 3.3

TEST RESULTS


⊠ Passed	■ Not Applicable

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

Report No.: CHTEW23080070 Page: 12 of 15 Date of issue: 2023-08-31


Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
60.0700	26.82	40.00	13.18	300.0	H	208.0	-10.0
161.9200	33.17	43.50	10.33	300.0	Н	290.0	-13.8
392.0525	32.64	46.00	13.36	100.0	Н	36.0	-4.8
402.1163	35.01	46.00	11.00	100.0	H	24.0	-4.4
404.4200	32.44	46.00	13.56	100.0	Н	24.0	-4.2
948.4688	36.87	46.00	9.13	100.0	Н	12.0	7.1

Final Result

MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
35.80		74.00	38.20	150.0	Н	46.0	-5.6
	26.50	54.00	27.50	150.0	Н	101.0	-5.8
	29.28	54.00	24.72	150.0	Н	254.0	-5.4
36.62		74.00	37.38	150.0	Н	60.0	-4.4
37.25		74.00	36.75	150.0	Η	198.0	-4.1
	27.53	54.00	26.47	150.0	Н	129.0	-4.1
	30.04	54.00	23.96	150.0	Н	115.0	-1.5
38.51		74.00	35.49	150.0	Н	46.0	-1.4
39.87		74.00	34.13	150.0	Н	0.0	0.6
	31.27	54.00	22.73	150.0	Н	0.0	1.0
40.97		74.00	33.03	150.0	Н	32.0	2.7
	32.38	54.00	21.62	150.0	Н	74.0	4.1
	35.80 36.62 37.25 38.51 39.87 40.97	dBuV/m (dBuV/m) 35.80 26.50 29.28 36.62 27.53 30.04 38.51 39.87 31.27 40.97	dBuV/m (dBuV/m) (dBuV/m) 35.80 74.00 26.50 54.00 29.28 54.00 36.62 74.00 37.25 74.00 27.53 54.00 30.04 54.00 38.51 74.00 39.87 74.00 40.97 31.27 54.00 40.97 74.00	dBuV/m (dBuV/m) (dBuV/m) (dB) 35.80	dBuV/m (dBuV/m (dBuV/m (dB (cm 35.80	dBuV/m (dBuV/m) (dBuV/m) (dB) (cm) 35.80	dBuV/m (dBuV/m) (dBuV/m) (dB) (cm) (deg) 35.80

Report No.: CHTEW23080070 Page: 13 of 15 Date of issue: 2023-08-31

Final_Result

MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
32.11	40.00	7.89	100.0	٧	293.0	-12.7
34.86	40.00	5.14	100.0	V	0.0	-12.3
36.98	40.00	3.02	100.0	V	73.0	-11.7
36.03	40.00	3.97	100.0	V	316.0	-10.0
35.98	43.50	7.52	100.0	V	324.0	-13.7
35.81	43.50	7.69	100.0	V	162.0	-13.7
	(dBuV/m) 32.11 34.86 36.98 36.03 35.98	(dBuV/m) (dBuV/m) 32.11 40.00 34.86 40.00 36.98 40.00 36.03 40.00 35.98 43.50	(dBuV/m) (dBuV/m) (dB) 32.11 40.00 7.89 34.86 40.00 5.14 36.98 40.00 3.02 36.03 40.00 3.97 35.98 43.50 7.52	(dBuV/m) (dBuV/m) (dB) (cm) 32.11 40.00 7.89 100.0 34.86 40.00 5.14 100.0 36.98 40.00 3.02 100.0 36.03 40.00 3.97 100.0 35.98 43.50 7.52 100.0	(dBuV/m) (dBuV/m) (dB) (cm)	(dBuV/m) (dBuV/m) (dB) (cm) (deg) 32.11 40.00 7.89 100.0 V 293.0 34.86 40.00 5.14 100.0 V 0.0 36.98 40.00 3.02 100.0 V 73.0 36.03 40.00 3.97 100.0 V 316.0 35.98 43.50 7.52 100.0 V 324.0

Final Result

<u> </u>	
Frequency	Corr.
(MHz)	(dB/m)
2062.5000	-7.5
2348.1250	-5.9
2471.8750	-6.1
2856.2500	-4.6
2856.2500	-4.6
2997.5000	-4.1
3000.0000	-4.1
4168.1250	-1.2
4611.8750	0.6
4882.5000	1.4
5108.7500	2.7
5477.5000	3.1
4168.1250 4611.8750 4882.5000 5108.7500	

Report No.: CHTEW23080070 Page: 14 of 15 Date of issue: 2023-08-31

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions (30MHz-1GHz)

Report No.: CHTEW23080070 Page: 15 of 15 Date of issue: 2023-08-31

Radiated Emissions (Above 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refer to the test report No.: CHTEW23080069

-----End of Report-----