

FCC RF Test Report

APPLICANT	: TP-LINK CORPORATION PTE. LTD.,
EQUIPMENT	: AX1500 Wi-Fi 6 Portable Router
BRAND NAME	: tp-link
MODEL NAME	: TL-WR1502X
FCC ID	: 2BCGWWR1502X
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System
TEST DATE(S)	: Nov. 14, 2023 ~ Dec. 01, 2023

We, Sporton International Inc. (ShenZhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (ShenZhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISION	I HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	7
	1.8	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	13
	3.3	Power Spectral Density Measurement	14
	3.4	Conducted Band Edges and Spurious Emission Measurement	16
	3.5	Radiated Band Edges and Spurious Emission Measurement	41
	3.6	AC Conducted Emission Measurement	45
	3.7	Antenna Requirements	47
4	LIST	OF MEASURING EQUIPMENT	48
5	MEAS	SUREMENT UNCERTAINTY	49
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3N0708A	Rev. 01	Initial issue of report	Dec. 19, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth \geq 0.5MHz Pass		-	
3.1	-	99% Bandwidth	-	Report Only	-
3.2	15.247(b)	Power Output Measurement	\leq 30dBm	≤ 30dBm Pass	
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
0.4		Conducted Band Edges		Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 30dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 0.42 dB at 2390.00 MHz
3.6	15.207	AC Conducted Emission	15.207(a)		
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

TP-LINK CORPORATION PTE. LTD.,

7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

1.2 Manufacturer

TP-LINK CORPORATION PTE. LTD.,

7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment AX1500 Wi-Fi 6 Portable Router			
Brand Name	tp-link		
Model Name	TL-WR1502X		
FCC ID	2BCGWWR1502X		
	Conducted: T23C026000001		
SN	Conduction/Radiation: T23C026000002		
HW Version	V1.0		
SW Version 1.0.0 Build 20231018 rel.70140			
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz		
	<mimo ant.1+2=""></mimo>		
	802.11b : 25.56 dBm (0.3597 W)		
Maximum Output Power to antenna	802.11g : 25.26 dBm (0.3357 W)		
	802.11n HT20 : 25.36 dBm (0.3436 W)		
	802.11n HT40 : 20.16 dBm (0.1038 W)		
	802.11b : 14.34MHz		
00% Occupied Bandwidth	802.11g : 19.98MHz		
99% Occupied Bandwidth	802.11n HT20 : 23.23MHz		
	802.11n HT40 : 35.76MHz		
Antenna Type	PIFA Antenna		
Type of Modulation	802.11b : DSSS (DBPSK / DQPSK / CCK)		
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		

Note:

- 1. The device supports WLAN MIMO CDD mode.
- 2. For WLAN SISO & MIMO mode, the whole testing has assessed only MIMO mode by referring to the higher normal output power.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO01-SZ TH01-SZ	CN1256	421272			
	Sporton International Inc. (ShenZhen)					
Test Firm	Sporton International Inc.	. (ShenZhen)				
Test Firm Test Site Location	101, 1st Floor, Block B, E	Building 1, No. 2, Tengfeng et, Baoan District, Shenzhe				
	101, 1st Floor, Block B, E Community, Fuyong Stre Province 518103 People TEL: +86-755-86066985	Building 1, No. 2, Tengfeng et, Baoan District, Shenzhe 's Republic of China				
	101, 1st Floor, Block B, E Community, Fuyong Stre Province 518103 People	Building 1, No. 2, Tengfeng et, Baoan District, Shenzhe	en City, Guangdong			

1.7 Test Software

It	Item Site		Manufacturer	Name	Version
	1.	03CH03-SZ	AUDIX	E3	6.2009-8-24
	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

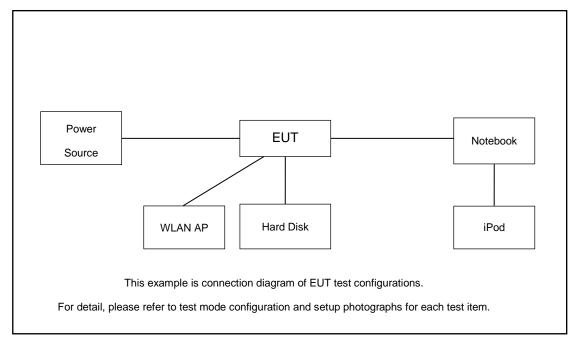
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	1	2412	7	2442
	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

2.1 Carrier Frequency and Channel

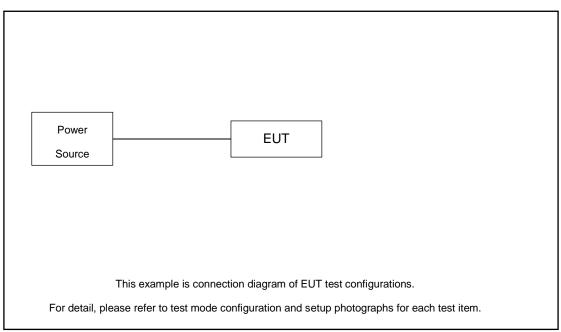
2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

MIMO Antenna


Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

	Test Cases				
AC Conducted Emission	Mode 1 :WIFI(2.4G) Link + WAN Link + LAN Link + USB Link with Hard Disk (Data from Notebook to Hard Disk) via EUT + USB Cable (Powered by Adapter)				
Remark: For	Radiated Test Cases, the tests were performed with Adapter and USB Cable.				



2.3 Connection Diagram of Test System

For Conducted Emission:

For Radiated Emission:

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded, 1.8m
2.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Hard Disk	N/A	N/A	N/A	N/A	N/A
4.	iPod	Apple	MC69029/A	N/A	N/A	N/A
5.	RJ45 Cable	N/A	N/A	N/A	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.50 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

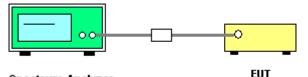
= 1.50 + 10 = 11.50 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

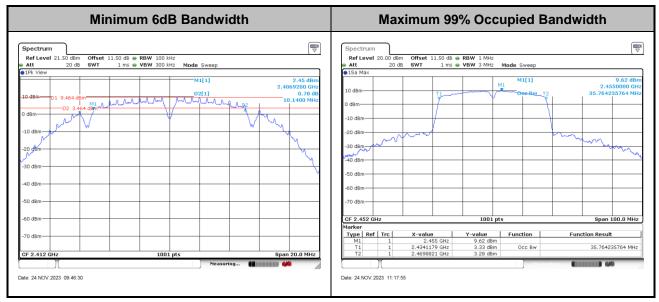

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1%~5% of OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

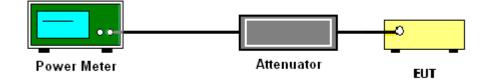
Please refer to Appendix A.

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

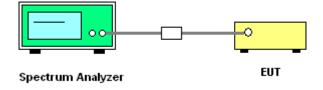
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

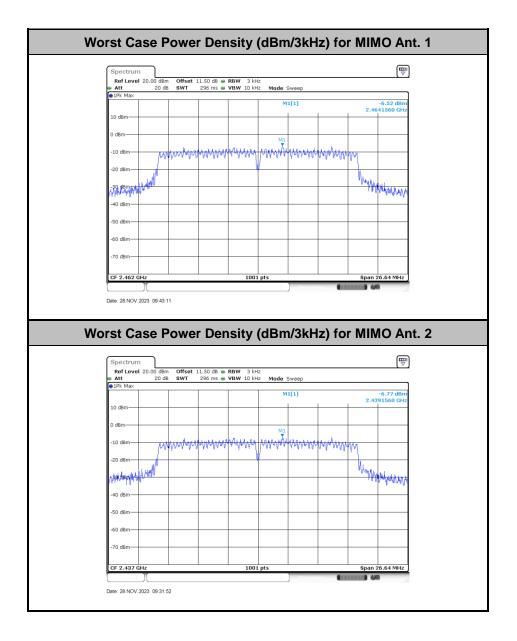
- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01:

Method (a): Measure and sum the spectra across the outputs.


The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum. Method (b): Measure and sum spectral maxima across the outputs.

The measurement on each individual output were performed with the same span and number on each individual output. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. Method (c): Measure and add 10 $\log(N_{ANT})$ dB, where N_{ANT} is the number of outputs.

The measurement on each individual output were performed with the same span and number on each individual output. The quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit.



3.3.4 Test Setup

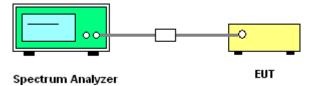
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.

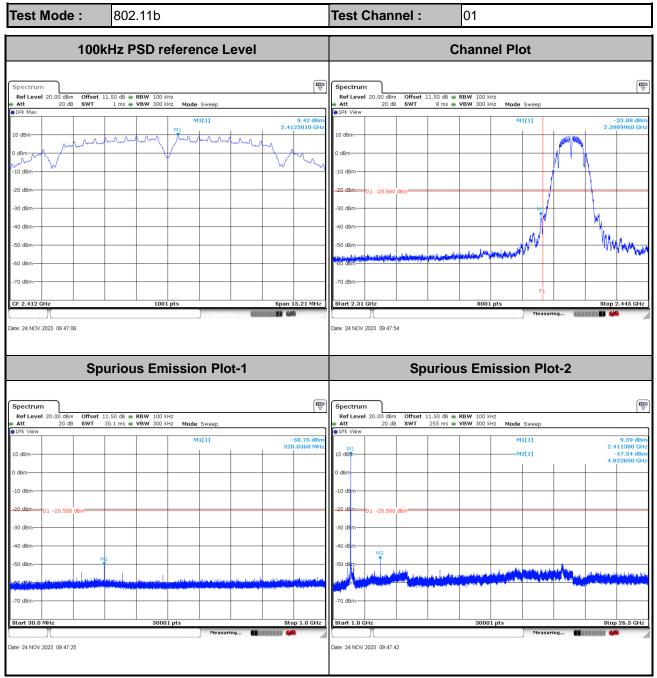

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

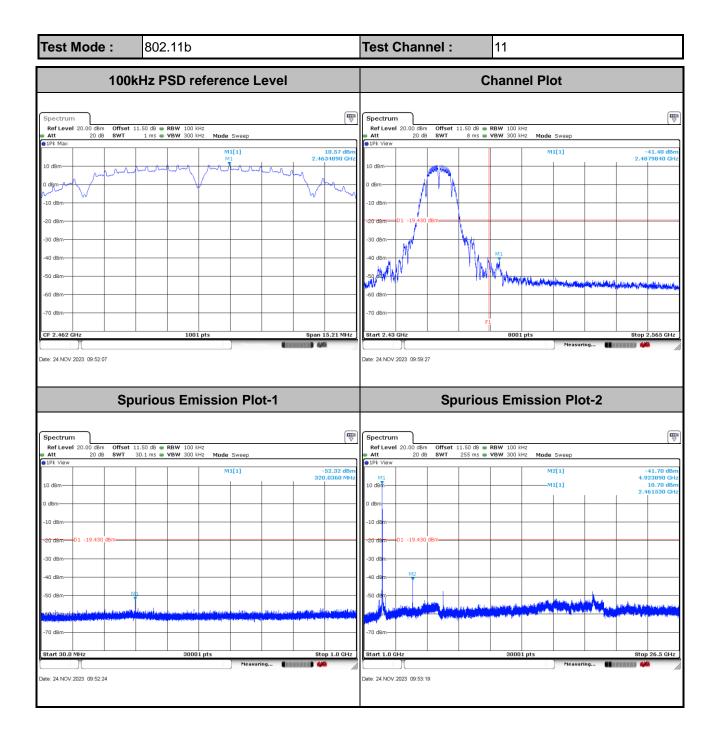
- 1. The testing follows ANSI C63.10-2013 clause 11.11
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

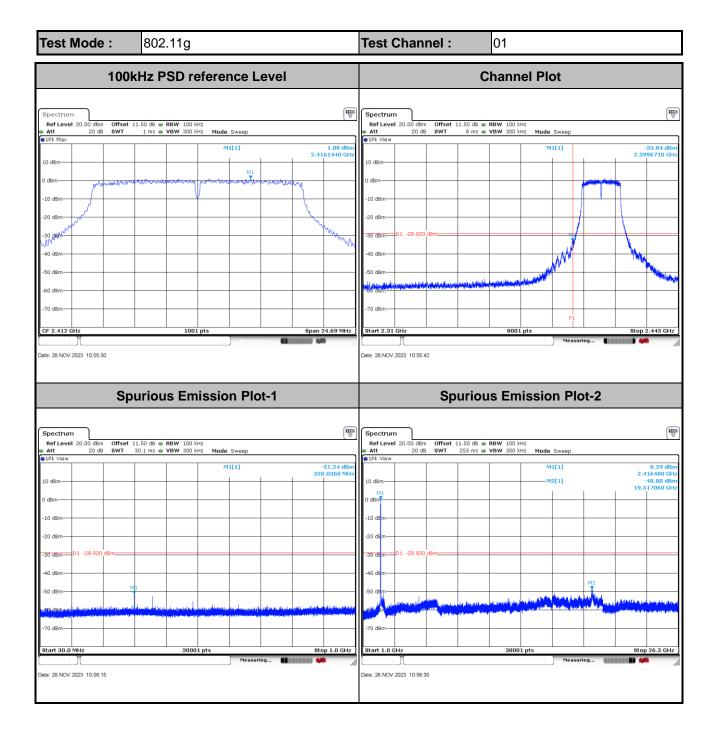
3.4.4 Test Setup



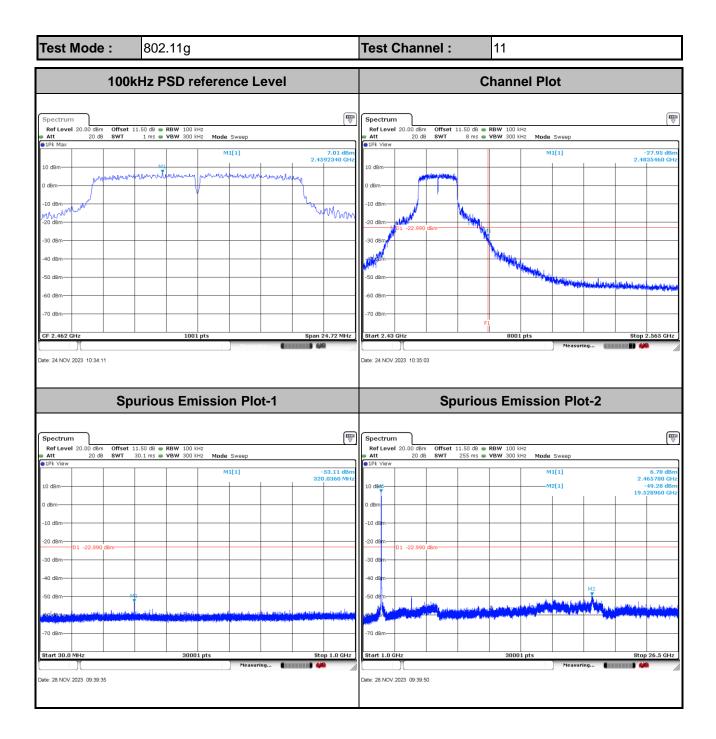
3.4.5 Test Result of Conducted Band Edges and Spurious Emission

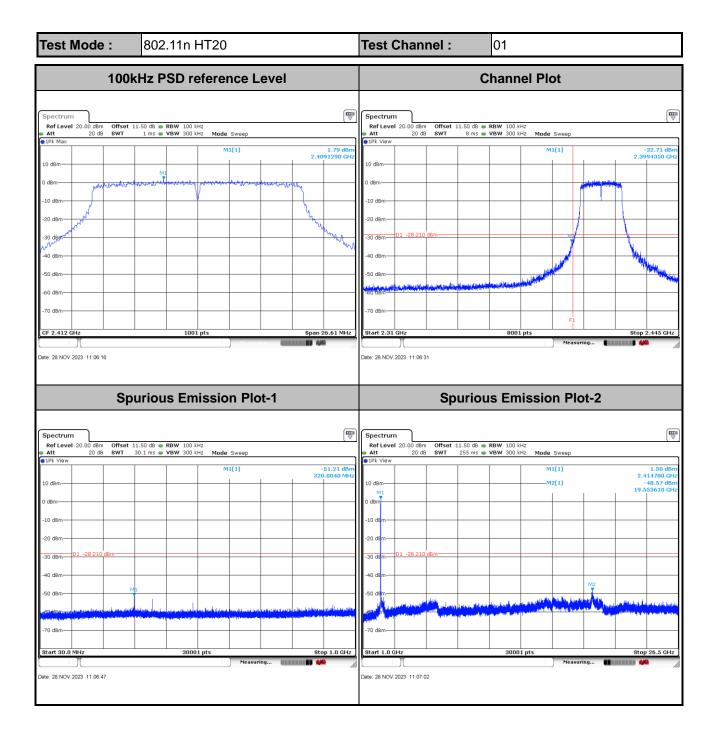
Test Engineer :	Liu Qiu Qiu	Temperature :	21~25°C
		Relative Humidity :	51~54%


Number of TX = 2, Ant. 1 (Measured)

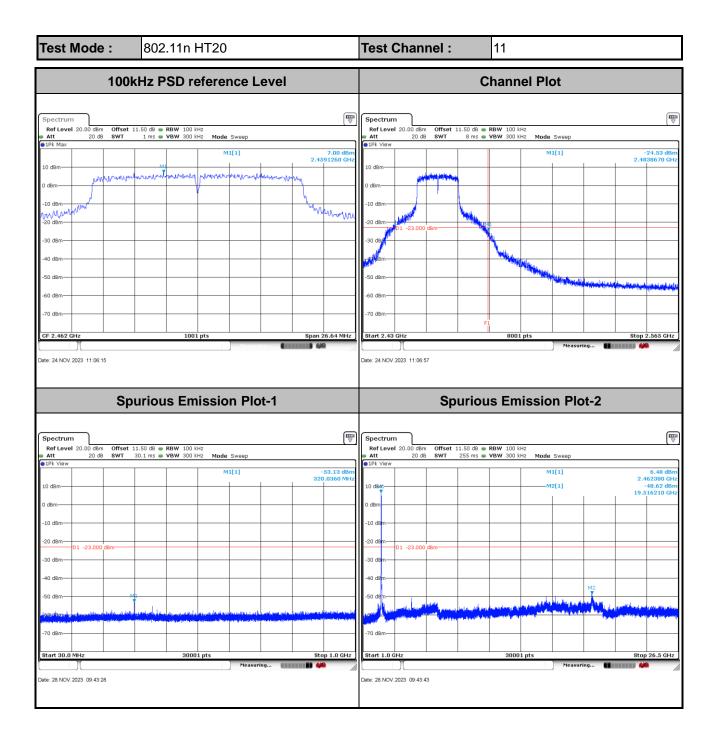

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2BCGWWR1502X

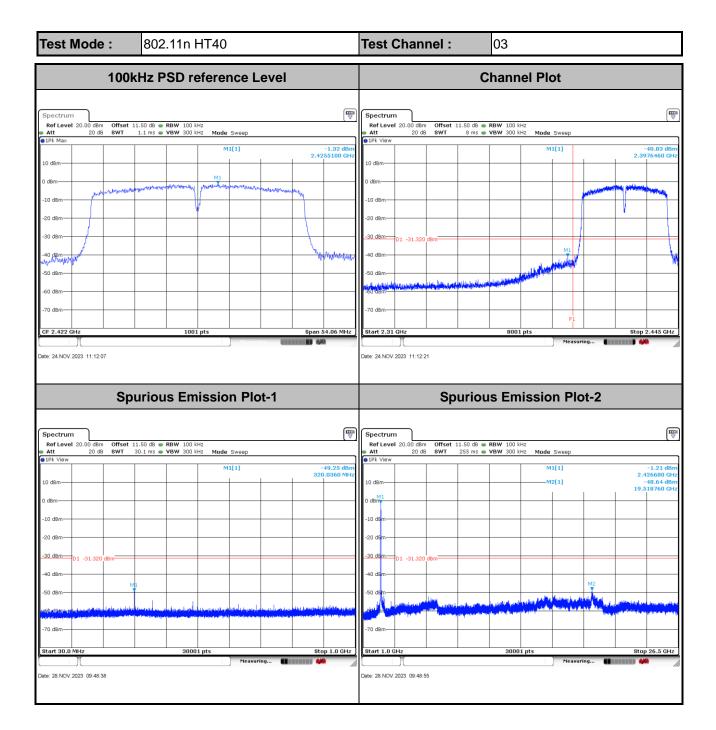
Test Mode :	802.11b	Test Channel :	06
100	kHz PSD reference Level		-
Spectrum Ref Lovel 20.00 dim Offset Att 20 dB SWT SWT ● IPk Max 10 dBm 0 0 dBm 0 dBm 0 dBm -10 dBm	11.50 db @ RBW 100 kHz 1 ms @ VBW 300 kHz Mode Sweep 101.41 dBm 101.41 dBm		-
Sp	ourious Emission Plot-1	Spuriou	us Emission Plot-2
Spectrum Ref Level 20.00 dBm Offset Att 20 dB SWT ID dBm	11.50 db RBW 100 kHz 30.1 ms VBW 300 kHz M1[1] -50.86 dBm 320.0360 MHz 320.0360 MHz	Ref Level 20.00 dBm Offset 11.50 dB =	RBW 100 kHz
Start 30.0 MHz	30001 pts Stop 1.0 GHz	Stort 1.0 GHz	30001 pts Stop 26.5 GHz



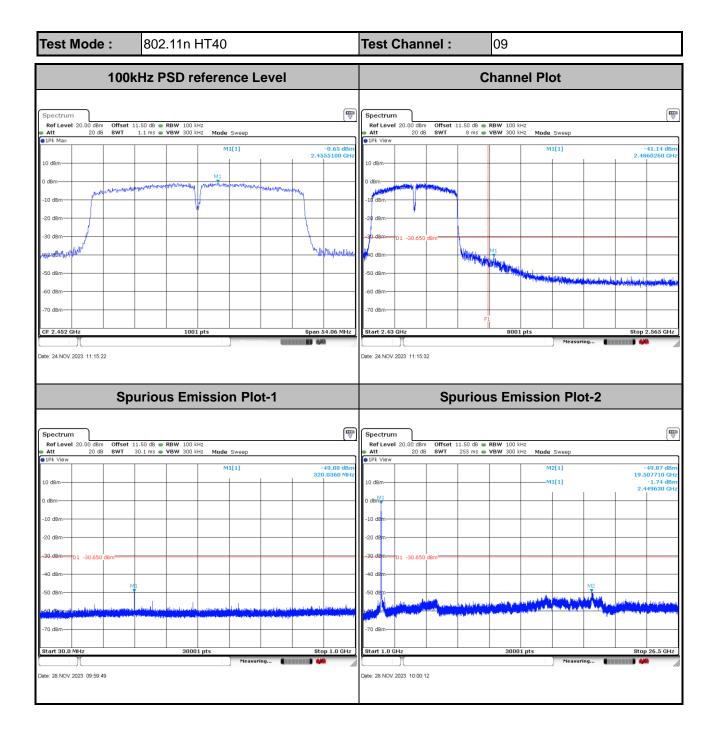


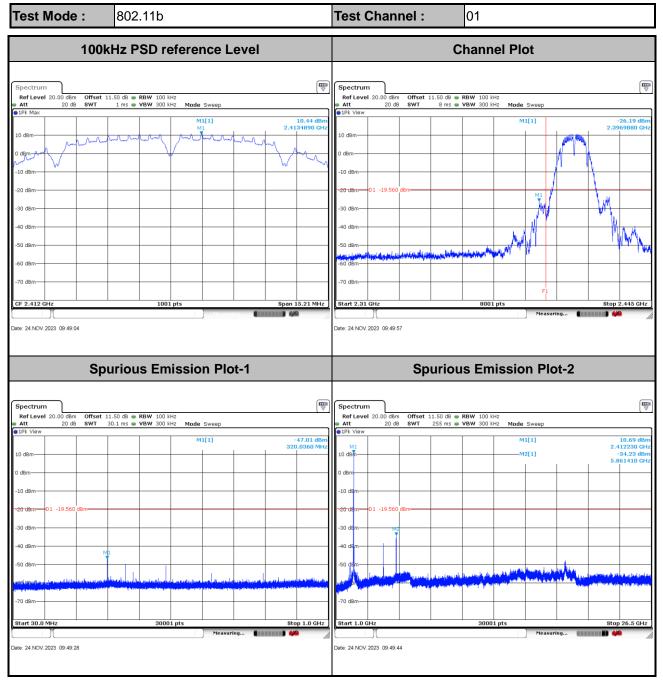
Test Mode :	802.11g	Те	st Channel :	06		
100	kHz PSD reference Leve	el		-		
Att 20 dB SWT IPk Max	11.50 dB • RBW 100 kHz 1 ms • VBW 300 kHz Mode Sweep M1[1] M1[7.26 dbm 2.4342650 GHz WMM WMM WMM MMM MMM MMM MMM MMM MMM MM		-		
Sp	ourious Emission Plot-1		Sp	urious Emissio	n Plot-2	
Spectrum Ref Level 20.00 dBm Offset • IPk View • IPk View • IPk View • ID dBm • 0 dBm • ID dBm • 10 dBm • ID dBm • 20 dBm • ID • 22,740 dBm • -20 dBm • ID • -22,740 dBm • -30 dBm • ID • -22,740 dBm • -50 dBm • ID • -22,740 dBm • -50 dBm • ID • -22,740 dBm • -70 dBm • ID • -22,740 dBm • Start 30.0 MHz • ID • -22,740 dBm	11.50 dB RBW 100 kHz 30.1 ms VBW 300 kHz M1[1]		20 dB SWT view m m D1 -22.740 dBm m m m m m m m m m		Sweep [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	6.40 dBn 2.439560 GHz -48.66 dBn 19.542560 GHz
Date: 28.NOV.2023 09:24:26	Measuring		.NOV.2023 09:24:42		Measuring	

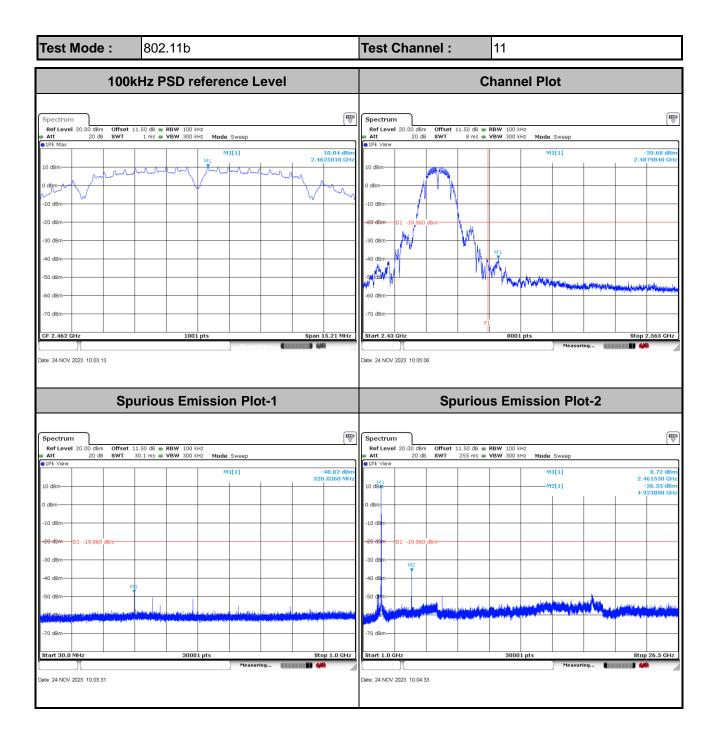




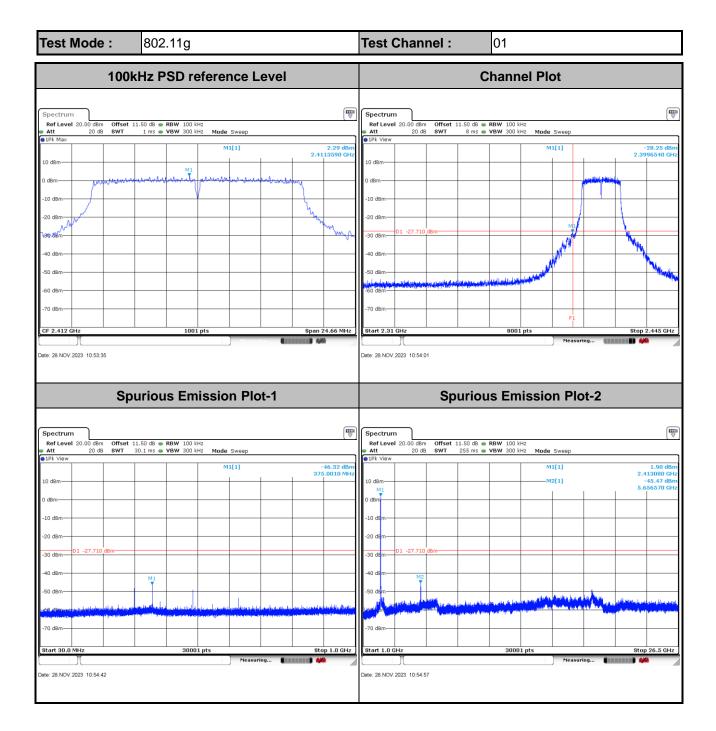
annel : 06
-
-
Spurious Emission Plot-2
Milling Milling 6.56 dBm 20.0 dB SWT 255 ms VBW 300 kHz Mode Sweep Milling 6.56 dBm 2.436030 GHz 4.436030 GHz M12[1] -4.952 dBm 19.526410 GHz
D1 -



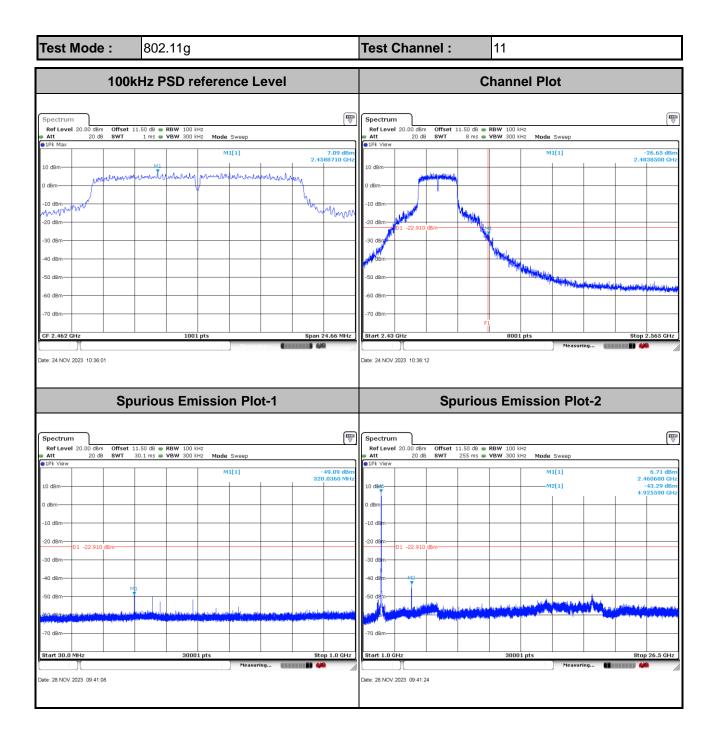

	Test Channel : 06
100kHz PSD reference Level	-
Spectrum Max 0 dB WT 1.1 ms VBW 300 kHz Mode Sweep 10 dBm -0.71 dBm -0 dBm -0.71 dBm -10 dBm -0.71 dBm -20 dB -0.71 dBm -0 dBm -0.71 dBm -10 dBm -0.71 dBm -0 dBm <th></th>	
Spurious Emission Plot-1	Spurious Emission Plot-2
Spectrum Offset 11.50 dB RBW 100 kHz Mode Sweep IPk View M1[1] -49.84 dBr 10 dBm M1[1] 320.0360 MH 0 dBm M1[1] -49.84 dBr -10 dBm -10 dBm -10 dBm -20 dBm 01 -30.710 dBm -10 dBm -30 dBm -10 -30.710 dBm -10 dBm -20 dBm -10 -30.710 dBm -10 dBm -30 dBm -10 -30.710 dBm -10 dBm -20 dBm -10 -30.710 dBm -10 dBm -20 dBm -10 -30.710 dBm -10 dBm -30 dBm -10 -30.710 dBm -10 -30.710 dBm -20 dBm -10 -30.710 dBm -10 -30.710 dBm -40 dBm -10 -30.710 dBm -10 -30.710 dBm	Ref Level 20:00 dbm Offset 11:50 db RBW 100 kHz Mode Sweep • Att 20 db SWT 255 ms • VBW 300 kHz Mode Sweep • IPk View • M1[1] • -1.53 dbm • -1.53 dbm • ID dbm • M1[1] • -1.53 dbm • -1.53 dbm • ID dbm • M1[1] • -1.53 dbm • ID dbm • M1[1] • -1.53 dbm • ID dbm • M2[1] • -48.30 dbm • D dbm • M2[1] • -48.30 dbm • D dbm • M2[1] • -48.30 dbm • D dbm • M2[1] • -48.30 dbm • 20 dbm • M2 • -20 dbm • M2 • -50 dbm

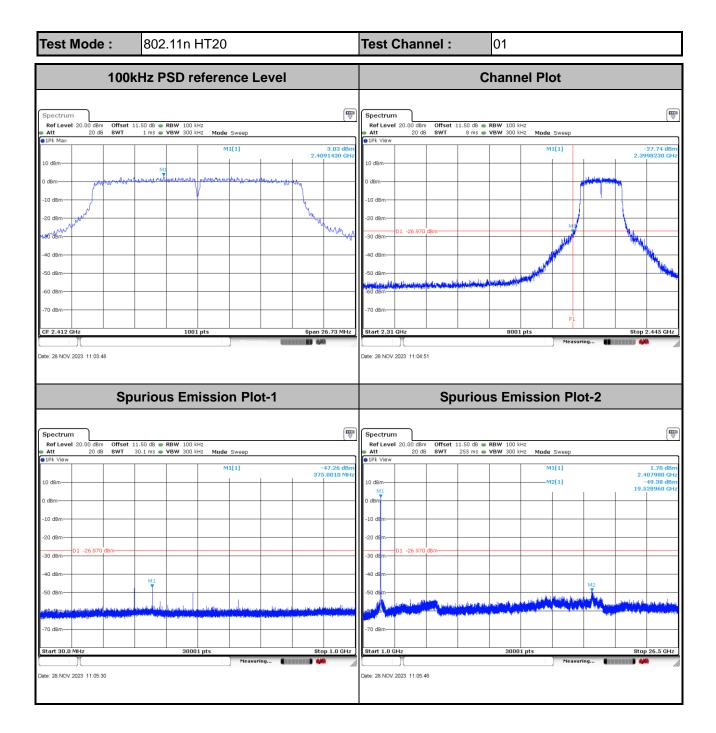


Number of TX = 2, Ant. 2 (Measured)

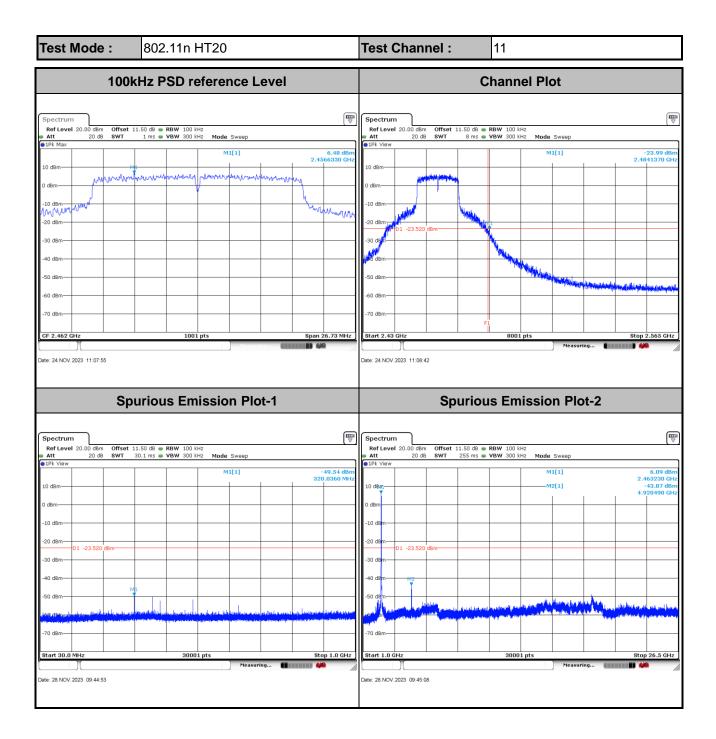


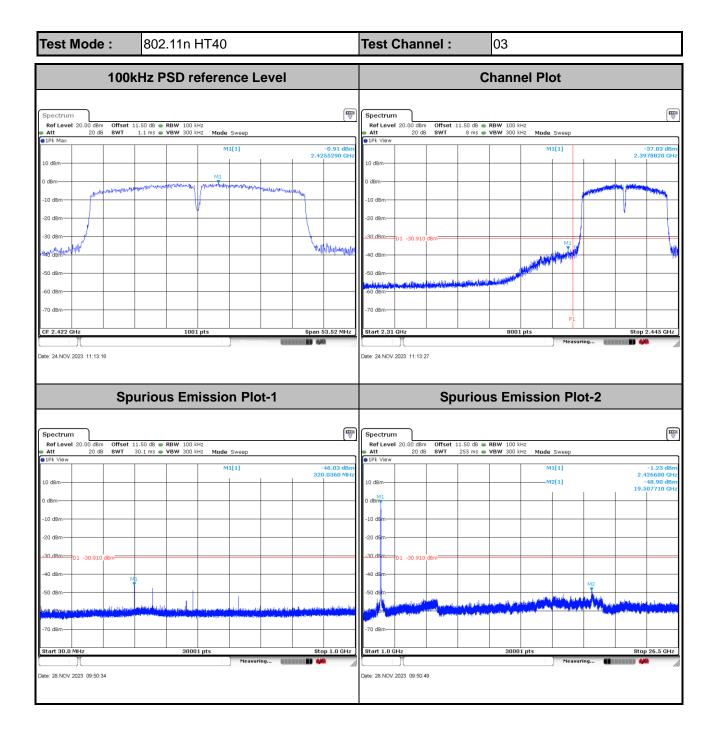
Test Mode :	802.11b	Test Channel :	06
100kHz PSD reference Level			-
Spectrum Ref Level 20.00 dBm Offset 4tt 20.dB SWT 10 dBm	11.50 db @ RBW 100 kH2 1m @ VBW 300 kH2 Mode Sweep 1001 pts M1[1] 10.49 db 2.4374876 Gb 4.4374876 Gb 4.4374876666666666666666666666666666666666		-
Sp	ourious Emission Plot-1	Spuriou	s Emission Plot-2
Spectrum Ref Level 20.00 dBm Offset Att 20 dB SWT I D dBm 0 0 10 dBm - 0 - -10 dBm - 0 - 0 -20 dBm 01 -19.510 dBm - - - -30 dBm - <th>11.50 dB •• RBW 100 kHz 30.1 ms •• VBW 300 kHz M1[1] -48.05 dB 320.0360 Mi 320.0360 Mi</th> <th>Ref Level 20.00 dBm Offset 11.50 dB =</th> <th>RBW 100 kHz Mode Sweep VBW 300 kHz Mode Sweep M1[1] 10.36 dBm 2.437730 CHz -37.86 dBm M2[1] -37.86 dBm 4.873750 CHz - 1 -</th>	11.50 dB •• RBW 100 kHz 30.1 ms •• VBW 300 kHz M1[1] -48.05 dB 320.0360 Mi	Ref Level 20.00 dBm Offset 11.50 dB =	RBW 100 kHz Mode Sweep VBW 300 kHz Mode Sweep M1[1] 10.36 dBm 2.437730 CHz -37.86 dBm M2[1] -37.86 dBm 4.873750 CHz - 1 -
Start 30.0 MHz	30001 pts Stop 1.0 GH:		30001 pts Stop 26.5 GHz



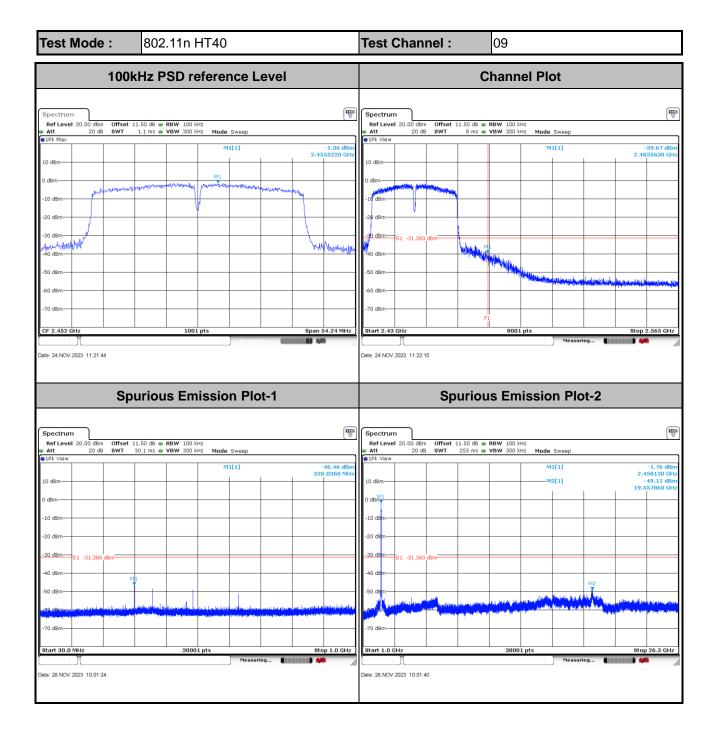


Test Mode :	802.11g	Test C	Channel : 00	6	
100	kHz PSD reference Lev	el		-	
Att 20 dB SWT 10 dPm	11.50 db e RBW 100 kHz 1 ms e VBW 300 kHz Mode Sweep M1[1] M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	7.70 dBm 2.4339710 GHz MMMM MMMM BMMMMMMMMMM BMMMMMMMMMMMMMM		-	
Sp	ourious Emission Plot-1		Spurious	Emission Plot-2	
Spectrum Ref Level 20.00 dBm Offset 10 dBm 20 dB SWT 10 dBm 0 0 -20 dBm 01 -22.300 dBm -30 dBm -30 dBm -10 -22.300 dBm -30 dBm -50 dBm -10 -22.300 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	11.50 dB = PBW 100 kHz 30.1 ms = VBW 300 kHz Mode Sweep M1[1] M1[1] M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-40.73 dBm 320.0360 MHz 320.0360 MHz 0 dBm 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -50 dSm -70 dBm -70 dBm	20.00 dBm Offset 11.50 dB @ RBW 20 dB SWT 255 ms @ VBW 00 dB SWT 255	100 kH2 300 kH2 Mode Sweep M1[1] M2[7.32 dBn 2.436030 GHz -4.13 dBn 4.875450 GHz
Date: 28.NOV.2023 09:28:07	Measuring	Date: 28.NOV.2	023 09:28:22	Measuring	





Test Mode :	802.11n HT20	Test Channel :	06
100k	Hz PSD reference Level		-
Spectrum Ref Level 20.00 dbm Offset 1: 20 db • 1Pk. Max 0 dbm • 1Pk. Max 0 dbm • 10 dbm • 0 dbm • 10 dbm • 0 dbm • 10 dbm • 0 dbm • 0 dbm	1.50 dB RBW 100 kHZ 1ms VBW 300 kHZ M1[1] 7.12 dbm 1 2.4316240 GHZ 1 0.16 dbm 1 1.01 pts 1001 pts Span 26.64 MHZ		-
Spi	urious Emission Plot-1	Spuriou	s Emission Plot-2
Spectrum Offset 1: Ref Level 20.00 dbm Offset 1: Att 20 db PIP. View ID ID dbm ID 0 dbm ID -20 dbm ID -30 dbm ID -30 dbm ID -30 dbm ID -20 dbm ID -20 dbm ID -30 dbm ID -70 dbm ID Start 30.0 MHz ID		Ref Level 20.00 dBm Offset 11.50 dB .	RBW 100 kHz Mode Sweep VBW 300 kHz Mode Sweep M1[1] 6.42 dBm
Dete: 28.NOV.2023 09:32:32	riedsurity	Date: 28.NOV.2023 09:32:48	ressuring



Test Mode : 802.11n HT40	Test Channel : 06
100kHz PSD reference Level	-
Spectrum Image: Constraint of the second secon	
Spurious Emission Plot-1	Spurious Emission Plot-2
Spectrum Image: Constraint of the second secon	Spectrum Image: Constraint of the sector of th

3.5 Radiated Band Edges and Spurious Emission Measurement

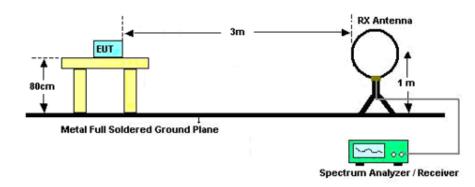
3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

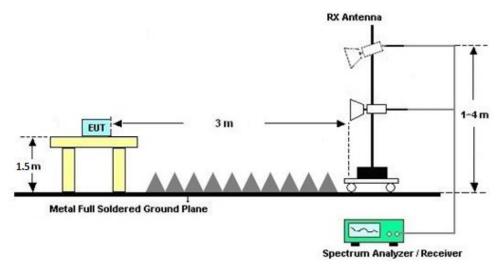

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2BCGWWR1502X

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.6 AC Conducted Emission Measurement

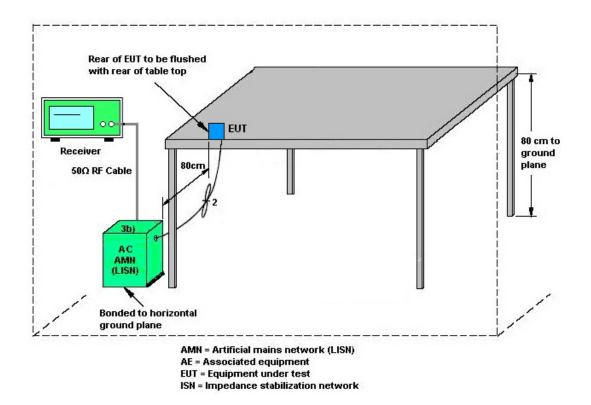
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd mod<="" th=""><th>es></th><th></th><th></th><th></th><th></th><th></th></cdd>	es>					
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4 GHz	2.00	2.00	2.00	5.01	0.00	0.00

Power Limit Reduction = DG(Power) - 6dBi, (min = 0) PSD Limit Reduction = DG(PSD) - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Nov. 24, 2023~ Nov. 28, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Nov. 24, 2023~ Nov. 28, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Nov. 24, 2023~ Nov. 28, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	Apr. 04, 2023	Nov. 26, 2023~ Dec. 01, 2023	Apr. 03, 2024	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz;	Apr. 04, 2023	Nov. 26, 2023~ Dec. 01, 2023	Apr. 03, 2024	Radiation (03CH03-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Nov. 26, 2023~ Dec. 01, 2023	Jul. 27, 2024	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Aug. 20, 2023	Nov. 26, 2023~ Dec. 01, 2023	Aug. 19, 2025	Radiation (03CH03-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-135 5	1GHz~18GHz	Apr. 08, 2023	Nov. 26, 2023~ Dec. 01, 2023	Apr. 07, 2024	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Nov. 26, 2023~ Dec. 01, 2023	Jul. 06, 2024	Radiation (03CH03-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 08, 2023	Nov. 26, 2023~ Dec. 01, 2023	Apr. 07, 2024	Radiation (03CH03-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 18, 2023	Nov. 26, 2023~ Dec. 01, 2023	Oct. 17, 2024	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18, 2023	Nov. 26, 2023~ Dec. 01, 2023	Oct. 17, 2024	Radiation (03CH03-SZ)
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Dec. 26, 2022	Nov. 26, 2023~ Dec. 01, 2023	Dec. 25, 2023	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	616010002 729	1 N/A	Oct. 18, 2023	Nov. 26, 2023~ Dec. 01, 2023	Oct. 17, 2024	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Nov. 26, 2023~ Dec. 01, 2023	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Nov. 26, 2023~ Dec. 01, 2023	NCR	Radiation (03CH03-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Nov. 14, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Nov. 14, 2023	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Nov. 14, 2023	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Nov. 14, 2023	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.1 %
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	2.708

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	4.9dB
of 95% (U = 2Uc(y))	4.300

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.008

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR3N0708A

Test Engineer:	Liu Qiu Qiu	Temperature:	21~25	°C
Test Date:	2023/11/24~11/28	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u>
6dB and 99% Occupied Bandwidth

	2.4GHz Band														
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	99% Occupied BW (MHz)		oub bit				Limit	Pass/Fail			
					Ant 1	Ant 2	Ant 1	Ant 2							
11b	1Mbps	2	1	2412	13.94	14.19	10.14	10.14	0.50	Pass					
11b	1Mbps	2	6	2437	14.04	14.34	10.16	10.16	0.50	Pass					
11b	1Mbps	2	11	2462	14.14	14.29	10.14	10.14	0.50	Pass					
11g	6Mbps	2	1	2412	17.13	18.53	16.46	16.44	0.50	Pass					
11g	6Mbps	2	6	2437	17.83	19.98	16.44	16.44	0.50	Pass					
11g	6Mbps	2	11	2462	17.83	19.13	16.48	16.44	0.50	Pass					
HT20	MCS0	2	1	2412	18.43	22.23	17.74	17.82	0.50	Pass					
HT20	MCS0	2	6	2437	19.13	23.23	17.74	17.76	0.50	Pass					
HT20	MCS0	2	11	2462	19.43	21.93	17.76	17.82	0.50	Pass					
HT40	MCS0	2	3	2422	35.66	35.66	36.04	35.68	0.50	Pass					
HT40	MCS0	2	6	2437	35.66	35.76	36.04	35.68	0.50	Pass					
HT40	MCS0	2	9	2452	35.66	35.76	36.04	36.16	0.50	Pass					

TEST RESULTS DATA Average Output Power

	2.4GHz Band														
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Fa	uty ctor B)	Average Conducted Power (dBm)		Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1 Ant 2	Ant 1 Ant 2	Ant 1 Ant 2	Ant 1 Ant 2		
11b	1Mbps	2	1	2412	0.00	0.00	22.00	22.70	25.37	30.00	2.00	27.37	36.00	Pass	
11b	1Mbps	2	6	2437	0.00	0.00	22.10	22.70	25.42	30.00	2.00	27.42	36.00	Pass	
11b	1Mbps	2	11	2462	0.00	0.00	22.50	22.60	25.56	30.00	2.00	27.56	36.00	Pass	
11g	6Mbps	2	1	2412	0.00	0.00	16.50	17.20	19.87	30.00	2.00	21.87	36.00	Pass	
11g	6Mbps	2	2	2417	0.00	0.00	22.10	22.10	25.11	30.00	2.00	27.11	36.00	Pass	
11g	6Mbps	2	6	2437	0.00	0.00	22.20	22.30	25.26	30.00	2.00	27.26	36.00	Pass	
11g	6Mbps	2	10	2457	0.00	0.00	21.60	21.50	24.56	30.00	2.00	26.56	36.00	Pass	
11g	6Mbps	2	11	2462	0.00	0.00	18.50	18.50	21.51	30.00	2.00	23.51	36.00	Pass	
HT20	MCS0	2	1	2412	0.00	0.00	16.70	17.70	20.24	30.00	2.00	22.24	36.00	Pass	
HT20	MCS0	2	2	2417	0.00	0.00	22.20	22.20	25.21	30.00	2.00	27.21	36.00	Pass	
HT20	MCS0	2	6	2437	0.00	0.00	22.30	22.40	25.36	30.00	2.00	27.36	36.00	Pass	
HT20	MCS0	2	10	2457	0.00	0.00	22.00	21.90	24.96	30.00	2.00	26.96	36.00	Pass	
HT20	MCS0	2	11	2462	0.00	0.00	18.60	18.60	21.61	30.00	2.00	23.61	36.00	Pass	
HT40	MCS0	2	3	2422	0.00	0.00	17.00	17.00	20.01	30.00	2.00	22.01	36.00	Pass	
HT40	MCS0	2	6	2437	0.00	0.00	17.00	17.00	20.01	30.00	2.00	22.01	36.00	Pass	
HT40	MCS0	2	9	2452	0.00	0.00	17.20	17.10	20.16	30.00	2.00	22.16	36.00	Pass	

Setting Ant 0 Ant 1 116/120 116/120 116/120 89/93 116/120 116/120 111/115 104/108 92/96 116/120 116/120 115/119 104/108 92/94 92/94 92/94

Note: Measured power (dBm) has offset with cable loss.

<u>TEST RESULTS DATA</u> Peak Power Spectral Density

	2.4GHz Band														
Mod.	Mod. Data Rate	NTX	Ντx	Ντx	Ντx	CH.	Freq. (MHz)	Peak PSD (dBm/3kHz)			DG (dBi)		Peak PSD Limit (dBm/3kHz)		Pass/Fail
				(101112)	Ant 1	Ant 2	Worse + 3.01	Ant 1	Ant 2	Ant 1	Ant 2				
11b	1Mbps	2	1	2412	-10.67	-9.65	-6.64	5.0	5.01		01 8.00		00	Pass	
11b	1Mbps	2	6	2437	-9.88	-9.63	-6.62	5.01		8.00		Pass			
11b	1Mbps	2	11	2462	-9.52	-10.02	-6.51	5.01		8.00		Pass			
11g	6Mbps	2	1	2412	-13.54	-12.94	-9.93	5.0	01	8.	00	Pass			
11g	6Mbps	2	6	2437	-7.57	-7.83	-4.56	5.0	5.01		00	Pass			
11g	6Mbps	2	11	2462	-7.65	-8.14	-4.64	5.0	5.01		00	Pass			
HT20	MCS0	2	1	2412	-11.54	-11.08	-8.07	5.0	5.01		5.01		00	Pass	
HT20	MCS0	2	6	2437	-6.87	-6.77	-3.76	5.0)1	8.	00	Pass			
HT20	MCS0	2	11	2462	-6.52	-6.83	-3.51	5.0	01	8.	00	Pass			
HT40	MCS0	2	3	2422	-12.85	-12.84	-9.83	5.0	01	8.	00	Pass			
HT40	MCS0	2	6	2437	-13.35	-14.53	-10.34	5.0	01	8.	00	Pass			
HT40	MCS0	2	9	2452	-12.93	-13.68	-9.92	5.0	01	8.	00	Pass			

Measured power density (dBm) has offset with cable loss.

Appendix B. AC Conducted Emission Test Results

Toot Engineer	FongMin	aliona				Tem	peratu	re :	22~24°C	
rest Engineer.	FangMing Liang						ative Hu	umidity :	44~50%	
Test Voltage :	120Vac	120Vac / 60Hz							Line	
Remark :	All emiss	sions no	t reporte	ed here a	are mor	e than 10) dB be	low the pro	escribed limit.	
100	Level (dBuV)						-11-14			
100										
90										
80										
70	_									
60								FCC 150	C_QP	
-	T. Brown							FCC 15C	AVG	
50		TA L	Mar W	MA.				100130		
40		L M WB.	" "YANY	- WAL HAR	AL AND	114				
	3	" 15"		11	He danaged	, MAR WANK WARK		فملي وسيعاد وسلطان بالمالة والمالي	human	
30				·						
20										
20										
10										
	0.15	0.5	1		2 2	5	10	20	30	
0			1		2 ency (MHz	-	10	20	30	
0 Site	0.15 : CO01-S on: FCC 15	5Z		Frequ	ency (MHz	-	10	20	30	
0 Site	: CO01-5	5Z		Frequ	ency (MHz	-	10	20	30	
Site	: CO01-5	5Z	LISN 10	Frequ	ency (MHz INE)		20	30	
Site	: CO01-5 on: FCC 15	52 50_QP AC	LISN 10	Frequ 0063_L L: Limit	ency (MHz INE Read)	Cable	20 Remark	30	
Site	: COOl-S on: FCC 15 Freq	52_ 5C_QP_AC Level	LISN 10 Over Limit	Frequ 0063_L L: Limit Line	INE Read Level	LISN Factor	Cable Loss		30	
Site	: CO01-5 on: FCC 15	52 50_QP AC	LISN 10 Over	Frequ 0063_L L: Limit	ency (MHz INE Read	LISN Factor	Cable] 	
Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.19	SZ SC_QP AC Level dBuV 38.93	LISN 10 Over Limit dB -15.22	Frequ 0063_L L: Limit Line dBuV 54.15	Read Level dBuV 18.39	LISN Factor dB 10.39	Cable Loss dB 10.15	Remark Average		
Site Condition 1 2	: C001-5 on: FCC 15 Freq MHz 0.19 0.19	52 50_QP AC Level dBuV 38.93 50.23	LISN 10 Over Limit dB -15.22 -13.92	Frequ 0063_L L: Limit Line dBuV 54.15 64.15	Read Level dBuV 18.39 29.69	LISN Factor dB 10.39 10.39	Cable Loss dB 10.15 10.15	Remark Average QP		
Site Condition 1 2 3	: C001-S on: FCC 15 Freq MHz 0.19 0.22	52 55_QP AC 	LISN 10 Over Limit dB -15.22 -13.92 -16.78	Frequ 0063_L L: Limit Line dBuV 54.15 64.15 52.88	Read Level dBuV 18.39 29.69 15.61	LISN Factor dB 10.39 10.39 10.34	Cable Loss dB 10.15 10.15 10.15	Remark Average QP Average	30	
Site Condition 1 2 3 4	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22	52 55_QP AC 	LISN 10 Over Limit 	Frequ 0063_L L: Limit Line dBuV 54.15 64.15 52.88 62.88	Read Level dBuV 18.39 29.69 15.61 29.01	LISN Factor dB 10.39 10.39 10.34 10.34	Cable Loss dB 10.15 10.15 10.15 10.15	Remark Average QP Average QP	30	
Site Condition 1 2 3	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22 0.43	52 5C_QP AC dBuV 38.93 50.23 36.10 49.50 35.34	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86	Frequ 0063_L L: Limit Line dBuV 54.15 64.15 52.88 62.88 47.20	Read Level dBuV 18.39 29.69 15.61 29.01	LISN Factor dB 10.39 10.39 10.34 10.34 10.34	Cable Loss dB 10.15 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average	30	
Site Condition 1 2 3 4 5	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22 0.43 0.43 0.52	52 5C_QP AC dBuV 38.93 50.23 36.10 49.50 35.34 46.64 28.20	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86 -10.56 -17.80	Frequ 0063_L L: Limit Line dBuV 54.15 52.88 62.88 47.20 57.20 46.00	Read Level dBuV 18.39 29.69 15.61 29.01 14.80 26.10 7.80	LISN Factor dB 10.39 10.39 10.34 10.34 10.34 10.38 10.38 10.24	Cable Loss dB 10.15 10.15 10.15 10.15 10.16 10.16	Remark Average QP Average QP Average	30	
0 Site Conditio 1 2 3 4 5 6 *	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22 0.22 0.43 0.43 0.52 0.52	52 5C_QP AC dBuV 38.93 50.23 36.10 49.50 35.34 46.64 28.20 41.00	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86 -10.56 -17.80 -15.00	Frequ 0063_L L: Limit Line dBuV 54.15 52.88 62.88 47.20 57.20 46.00 56.00	Read Level dBuV 18.39 29.69 15.61 29.01 14.80 26.10 7.80 20.60	LISN Factor dB 10.39 10.39 10.34 10.34 10.34 10.38 10.38 10.24 10.24	Cable Loss dB 10.15 10.15 10.15 10.15 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average	30	
0 Site Condition 1 2 3 4 5 6 * 7 8 9	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22 0.43 0.43 0.52 0.52 0.52 0.67	52 5C_QP AC dBuV 38.93 50.23 36.10 49.50 35.34 46.64 28.20 41.00 30.99	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86 -10.56 -17.80 -15.00 -15.01	Frequ 0063_L L: Limit Line dBuV 54.15 52.88 62.88 47.20 57.20 46.00 56.00 46.00	Read Level dBuV 18.39 29.69 15.61 29.01 14.80 26.10 7.80 20.60 10.90	LISN Factor dB 10.39 10.39 10.34 10.34 10.38 10.38 10.38 10.24 10.24 9.93	Cable Loss dB 10.15 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16	Average QP Average QP Average QP Average QP Average QP	30	
0 Site Condition 1 2 3 4 5 6 * 7 8 9 10	: C001-S on: FCC 15 Freq MHz 0.19 0.22 0.22 0.22 0.43 0.43 0.52 0.52 0.52 0.67 0.67	Level dBuV 38.93 50.23 36.10 49.50 35.34 46.64 28.20 41.00 30.99 43.19	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86 -10.56 -17.80 -15.00 -15.01 -12.81	Frequ 0063_L L: Limit Line dBuV 54.15 52.88 62.88 47.20 57.20 46.00 56.00 46.00 56.00	Read Level dBuV 18.39 29.69 15.61 29.61 14.80 26.10 7.80 20.60 10.90 23.10	LISN Factor dB 10.39 10.39 10.34 10.34 10.38 10.38 10.24 10.24 9.93 9.93	Cable Loss dB 10.15 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16	Average QP Average QP Average QP Average QP Average QP Average QP	30	
0 Site Condition 1 2 3 4 5 6 * 7 8 9	: C001-5 on: FCC 15 Freq MHz 0.19 0.22 0.22 0.43 0.43 0.52 0.52 0.52 0.67 0.67 1.09	5Z 5C_QP AC Level dBuV 38.93 50.23 36.10 49.50 35.34 46.64 28.20 41.00 30.99 43.19 30.67	LISN 10 Over Limit dB -15.22 -13.92 -16.78 -13.38 -11.86 -10.56 -17.80 -15.00 -15.01 -12.81 -15.33	Frequ 0063_L L: Limit Line dBuV 54.15 52.88 62.88 47.20 57.20 46.00 56.00 46.00	Read Level dBuV 18.39 29.69 15.61 29.01 14.80 26.10 7.80 20.60 10.90 23.10 10.30	LISN Factor dB 10.39 10.39 10.34 10.34 10.34 10.38 10.24 10.24 9.93 9.93 10.20	Cable Loss dB 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average	30	

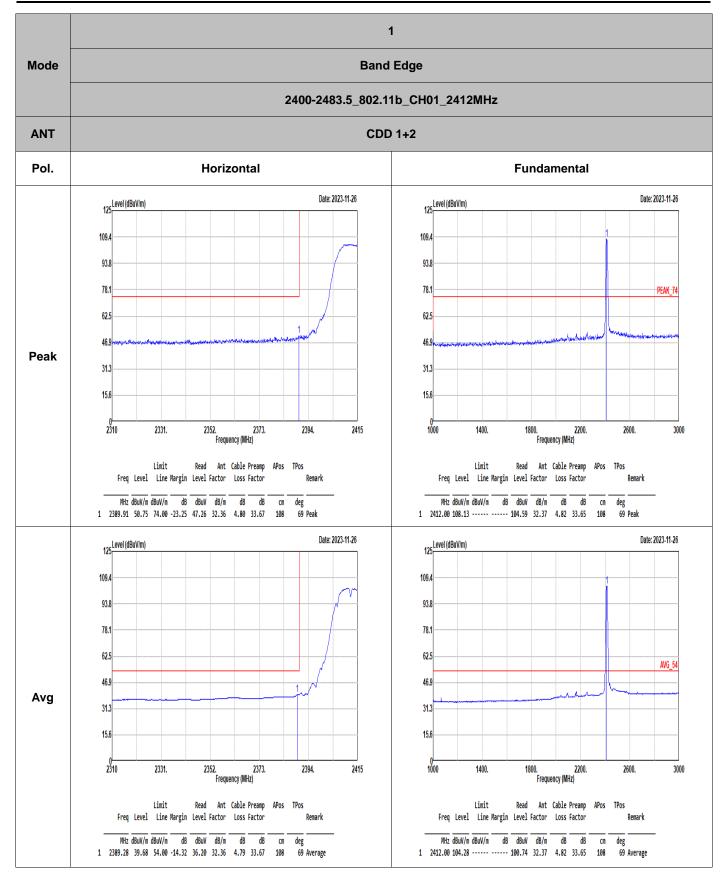
Note:

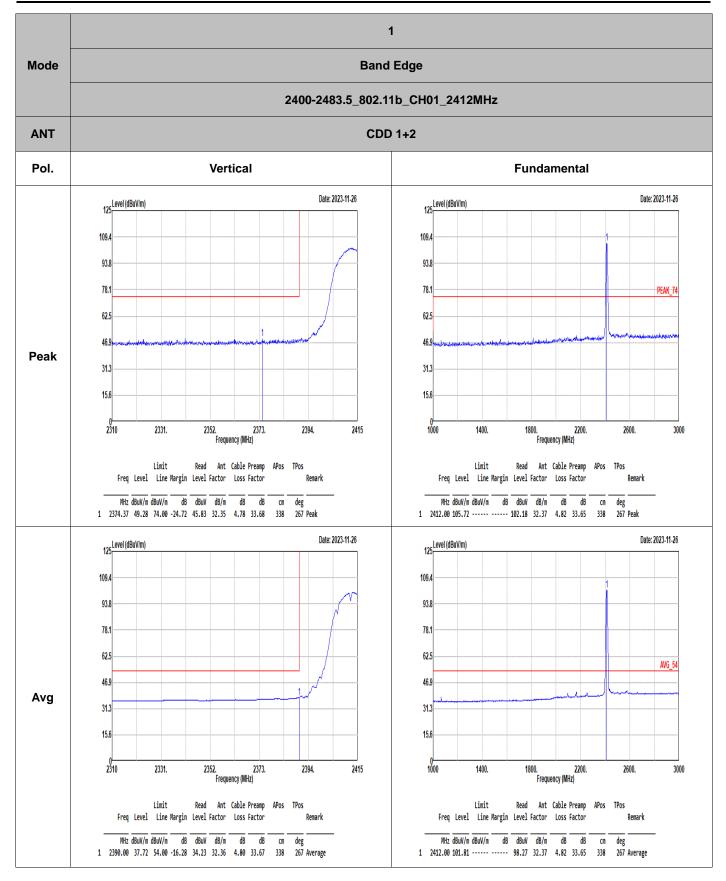
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission

Tost Engineer		Relative Humidity :	45~50%
Test Engineer :	Huang weiwei	Temperature :	20-24 ℃

Radiated Spurious Emission Test Modes


Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	CDD 1+2	802.11b	01	2412	1Mbps	-	-
Mode 2	2400-2483.5	CDD 1+2	802.11b	06	2437	1Mbps	-	-
Mode 3	2400-2483.5	CDD 1+2	802.11b	11	2462	1Mbps	-	-
Mode 4	2400-2483.5	CDD 1+2	802.11g	01	2412	6Mbps	-	-
Mode 5	2400-2483.5	CDD 1+2	802.11g	06	2437	6Mbps	-	-
Mode 6	2400-2483.5	CDD 1+2	802.11g	11	2462	6Mbps	-	-
Mode 7	2400-2483.5	CDD 1+2	802.11n HT20	01	2412	MCS0	-	-
Mode 8	2400-2483.5	CDD 1+2	802.11n HT20	06	2437	MCS0	-	-
Mode 9	2400-2483.5	CDD 1+2	802.11n HT20	11	2462	MCS0	-	-
Mode 10	2400-2483.5	CDD 1+2	802.11n HT40	03	2422	MCS0	-	-
Mode 11	2400-2483.5	CDD 1+2	802.11n HT40	06	2437	MCS0	-	-
Mode 12	2400-2483.5	CDD 1+2	802.11n HT40	09	2452	MCS0	-	-
Mode 13	2400-2483.5	CDD 1+2	802.11g	02	2417	6M		
Mode 14	2400-2483.5	CDD 1+2	802.11g	10	2457	MCS0		
Mode 15	2400-2483.5	CDD 1+2	802.11n HT20	02	2417	MCS0		
Mode 16	2400-2483.5	CDD 1+2	802.11n HT20	10	2457	MCS0		


Summary of each worse mode

Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	802.11b	01	2389.28	39.68	54.00	-14.32	Н	Average	Pass	Band Edge
1	802.11b	01	4824.00	49.62	54.00	-4.38	Н	Average	Pass	Harmonic
2	802.11b	06	-	-	-	-	-	-	-	Band Edge
2	802.11b	06	4874.00	50.88	54.00	-3.12	Н	Average	Pass	Harmonic
3	802.11b	11	2483.52	45.86	54.00	-8.14	Н	Average	Pass	Band Edge
3	802.11b	11	4924.00	53.57	54.00	-0.43	Н	Average	Pass	Harmonic
4	802.11g	01	2390	53.58	54	-0.42	-	Average	Pass	Band Edge
4	802.11g	01	4824.00	47.59	74.00	-26.41	V	Peak	Pass	Harmonic
5	802.11g	06	-	-	-	-	-	-	-	Band Edge
5	802.11g	06	4874.00	43.58	54.00	-10.42	V	Average	Pass	Harmonic
6	802.11g	11	2483.52	53.36	54.00	-0.64	Н	Average	Pass	Band Edge
6	802.11g	11	4924.00	45.22	54.00	-8.78	V	Average	Pass	Harmonic
7	802.11n HT20	01	2390	52.66	54.00	-1.34	Н	Average	Pass	Band Edge
7	802.11n HT20	01	4824.00	43.19	74.00	-30.81	Н	Peak	Pass	Harmonic
8	802.11n HT20	06	-	-	-	-	-	-	-	Band Edge
8	802.11n HT20	06	4874.00	45.79	74.00	-28.21	V	Peak	Pass	Harmonic
9	802.11n HT20	11	2483.52	53.33	54.00	-0.67	Н	Average	Pass	Band Edge
9	802.11n HT20	11	4924.00	47.18	54.00	-6.82	V	Average	Pass	Harmonic
10	802.11n HT40	03	2389.94	43.17	54.00	-10.83	Н	Average	Pass	Band Edge
10	802.11n HT40	03	7266.00	43.76	74.00	-30.24	V	Peak	Pass	Harmonic
11	802.11n HT40	06	-	-	-	-	-	-	-	Band Edge
11	802.11n HT40	06	7311.00	44.31	74.00	-29.69	Н	Peak	Pass	Harmonic
12	802.11n HT40	09	2483.50	47.12	54.00	-6.88	Н	Average	Pass	Band Edge
12	802.11n HT40	09	7356.00	44.00	74.00	-30.00	V	Peak	Pass	Harmonic
-	802.11g	01	70.74	30.99	40	-9.06	V	Average	Pass	LF
13	802.11g	02	2389.8	51.87	54.00	-2.13	Н	Average	Pass	Band Edge
14	802.11g	10	2486.04	51.46	54.00	-2.54	Н	Average	Pass	Band Edge
15	802.11n HT20	02	2390	52.45	54.00	-1.55	Н	Average	Pass	Band Edge
16	802.11n HT20	10	2483.52	53.06	54.00	-0.94	Н	Average	Pass	Band Edge

