

FCC Radio Test Report

FCC ID: 2BCGWTX10UBNANO

Report No. Equipment Model Name Brand Name Applicant Address	BTL-FCCP-1-2403G134 AX900 Nano Wi-Fi6 Bluetooth USB Adapter Archer TX10UB Nano tp-link TP-LINK CORPORATION PTE. LTD. 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987	
Radio Function	Bluetooth	
FCC Rule Part(s) Measurement Procedure(s)	FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2024/5/23 2024/5/29 ~ 2024/6/21 2024/7/11	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Poken blumf

Prepared by

Poken Huang, Engineer

0659

Approved by

Peter Chen, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

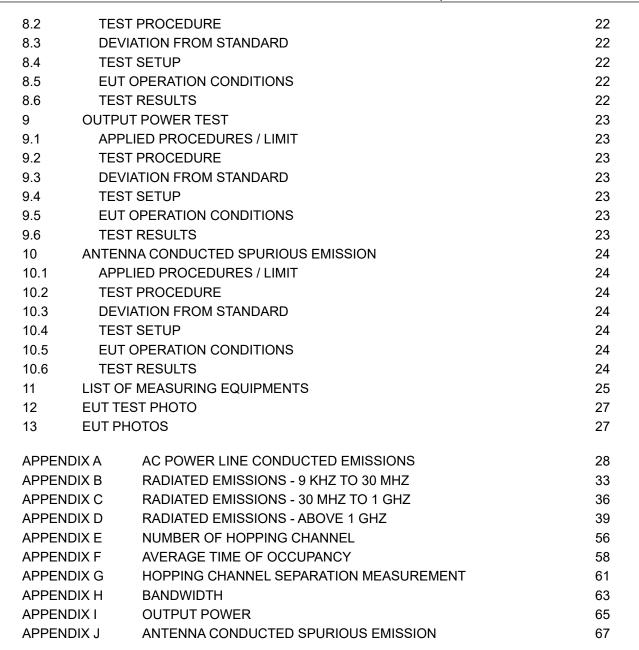
This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation


For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	ION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	12
3	AC POWER LINE CONDUCTED EMISSIONS TEST	13
3.1	LIMIT	13
3.2	TEST PROCEDURE	13
3.3	DEVIATION FROM TEST STANDARD	13
3.4	TEST SETUP	14
3.5	TEST RESULT	14
4	RADIATED EMISSIONS TEST	15
4.1	LIMIT	15
4.2	TEST PROCEDURE	16
4.3	DEVIATION FROM TEST STANDARD	16
4.4	TEST SETUP	16
4.5	EUT OPERATING CONDITIONS	17
4.6	TEST RESULT – BELOW 30 MHZ	18
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	18
4.8	TEST RESULT – ABOVE 1 GHZ	18
5	NUMBER OF HOPPING CHANNEL	19
5.1	APPLIED PROCEDURES	19
5.2	TEST PROCEDURE	19
5.3	DEVIATION FROM STANDARD	19
5.4	TEST SETUP	19
5.5	EUT OPERATION CONDITIONS	19
5.6		19
6		20
6.1	APPLIED PROCEDURES / LIMIT	20
6.2		20
6.3	DEVIATION FROM STANDARD	20
6.4		20
6.5 6.6	EUT OPERATION CONDITIONS TEST RESULTS	20 20
0.0 7	HOPPING CHANNEL SEPARATION MEASUREMENT	20 21
7.1	APPLIED PROCEDURES / LIMIT	21
7.1	TEST PROCEDURE	21 21
7.3	DEVIATION FROM STANDARD	21
7.3	TEST SETUP	21
7.4	TEST RESULTS	21
8	BANDWIDTH TEST	22
8.1	APPLIED PROCEDURES	22

BIL

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2403G134	R00	Original Report.	2024/7/11	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	ection Description Test Resul		Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX G	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX H	Pass	
15.247 (b)(1)	Output Power	APPENDIX I	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX J	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

⊠ C06 ⊠ CB21

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30 MHz	2.4498

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.20
CB21	6 GHz ~ 18 GHz	5.50
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

Test Item	U (dB)
Occupied Bandwidth	0.53
Output power	0.37
Conducted Spurious emissions	0.53
Conducted Band edges	0.53
Dwell time	0.66
Channel separation	0.66
Channel numbers	0.66

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25 °C, 45 %	DC 5V	Ken Lu
Radiated emissions below 1 GHz	Refer to data	DC 5V	Barry Tsui
Radiated emissions above 1 GHz	Refer to data	DC 5V	Ken Lu Barry Tsui
Number of Hopping Frequency	24 °C, 60 %	DC 5V	Cai Hu
Average Time of Occupancy	24 °C, 60 %	DC 5V	Cai Hu
Hopping Channel Separation	24 °C, 60 %	DC 5V	Cai Hu
Bandwidth	24 °C, 60 %	DC 5V	Cai Hu
Output Power	24 °C, 60 %	DC 5V	Cai Hu
Antenna conducted Spurious Emission	24 °C, 60 %	DC 5V	Cai Hu

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	AX900 Nano Wi-Fi6 Bluetooth USB Adapter		
Model Name	Archer TX10UB Nano		
Brand Name	tp-link		
Model Difference	N/A		
Hardware Version	1.0		
Software Version	1.0		
Power Source	Supplied from Notebook.		
Power Rating	DC 5V		
Operation Band	2400 MHz ~ 2483.5 MHz		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps		
Output Power Max.	1 Mbps: 10.62 dBm (0.0115 W) 2 Mbps: 10.55 dBm (0.0114 W) 3 Mbps: 10.89 dBm (0.0123 W)		
Test Software Version	RTL8851B USB MP Package ALPHA v2.0.29		
Test Model	Archer TX10UB Nano		
Sample Status	Final shipment prototype		
EUT Modification(s)	N/A		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	00	2402	27	2429	54	2456
	01	2403	28	2430	55	2457
	02	2404	29	2431	56	2458
	03	2405	30	2432	57	2459
	04	2406	31	2433	58	2460
	05	2407	32	2434	59	2461
	06	2408	33	2435	60	2462
	07	2409	34	2436	61	2463
	08	2410	35	2437	62	2464
	09	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
Γ	22	2424	49	2451	76	2478
Γ	23	2425	50	2452	77	2479
Γ	24	2426	51	2453	78	2480
Γ	25	2427	52	2454		
	26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-LINK CORPORATION PTE. LTD.	6035500184	Dipole	N/A	0.5

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

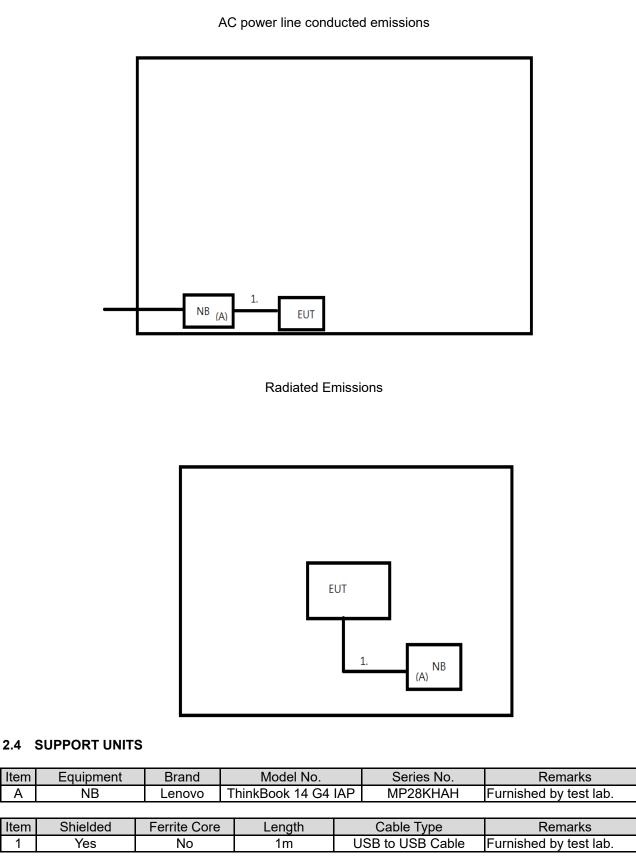
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	00	-
Transmitter Radiated Emissions (above 1GHz)	1/3 Mbps	00/78	Bandedge
	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.

(2) Due to the weak electric field intensity signal emitted from 9 kHz to 30 MHz (below the limit value of 20 dB), the measured values are not recorded in this report.


(3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

(4) For radiated emission below 1 GHz test, the 3 Mbps channel 00 is found to be the worst case and recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	Ш	41.67

Measurement Value (dBµV)		Limit Value (dBµV)		Margin Level (dB)
41.67	-	60	=	-18.33

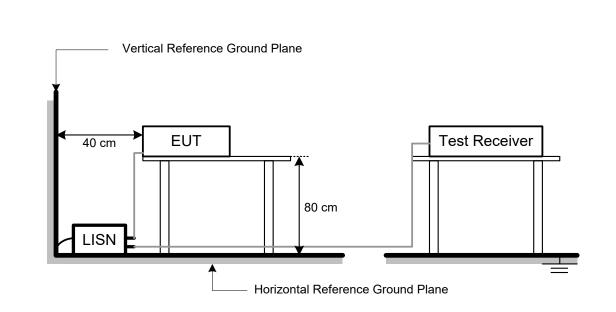
The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

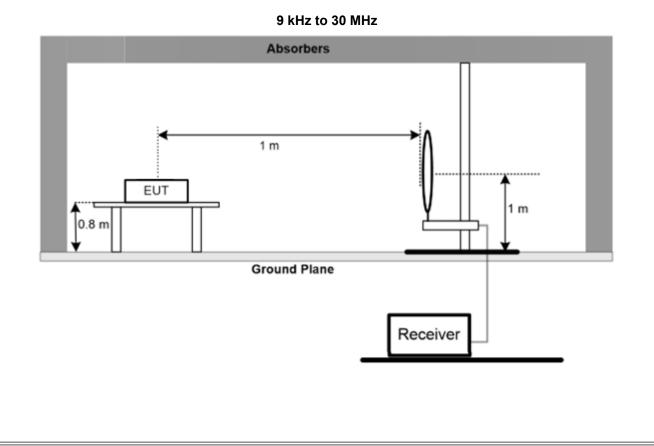
Calculation example:

Reading Level		Correct Factor Measuremen		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
35.45	+	-11.37	П	24.08

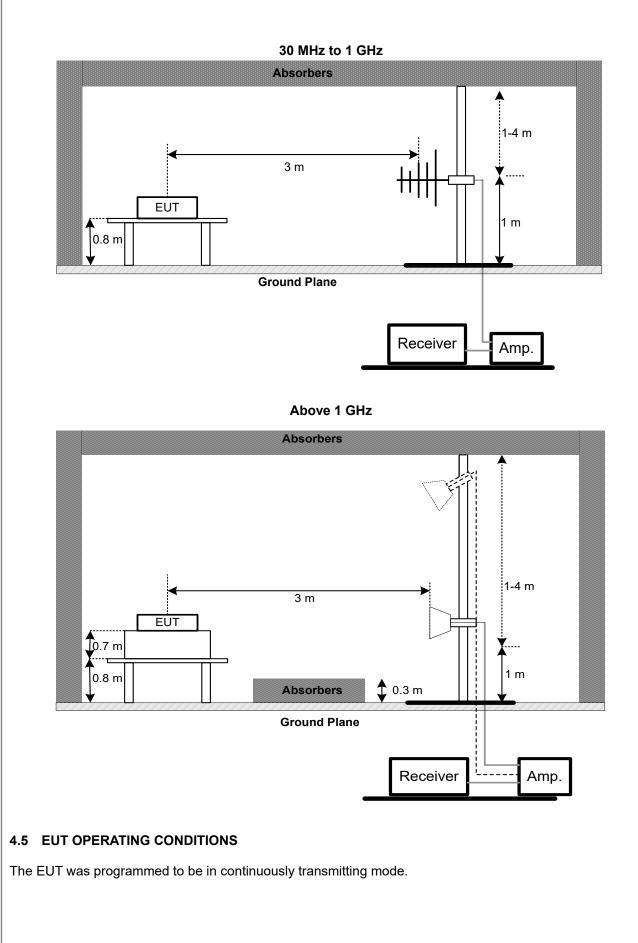
Measurement Value (dBµV/m)		Limit Value (dBµV/m)		Margin Level (dB)
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – BELOW 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number)*0.4

For Normal Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)*31.6/(channel number) DH3 Time Solt: Reading * (1600/2)*31.6/(channel number) DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (1600/2)*8/(channel number) DH3 Time Solt: Reading * (1600/4)*8/(channel number)

DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz		
VBW	100 KHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time Auto			

7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

Spectrum Analayzer

EUT

7.5 TEST RESULTS

Please refer to the APPENDIX G.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting							
Attenuation	Auto							
Span Frequency	> Measurement Bandwidth or Channel Separation							
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)							
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)							
Detector	Peak							
Trace	Max Hold							
Sweep Time	Auto							

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

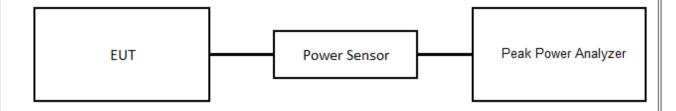
8.6 TEST RESULTS

Please refer to the APPENDIX H.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Two-Line V-Network	R&S ENV216		101051	2023/7/21	2024/7/20							
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10							
3	EXA Spectrum Analyzer	keysight	N9038A	MY54130009	2023/6/26	2024/6/25							
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A							

	Radiated Emissions											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Broad-Band Horn Antenna	RFSPIN	DRH18-E	210109A18E	2024/1/10	2025/1/9						
2	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10						
3	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10						
4	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10						
5	Test Cable	EMCI	EMCI EMC105-SM-SM- 7000		2023/12/11	2024/12/10						
6	EXA Spectrum Analyzer	keysight	N9010A	MY56480554	2023/9/12	2024/9/11						
7	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01207	2023/12/18	2024/12/17						
8	EMI Test Receiver	Keysight	N9038A	MY54130009	2023/6/26	2024/6/25						
9	Pre-Amplifier	EMCI	EMC001330-202 01222	980807	2023/12/11	2024/12/10						
10	Test Cable	EMCI	EMC-8D-NM-NM -5000	150106	2023/12/11	2024/12/10						
11	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2023/12/11	2024/12/10						
12	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A						

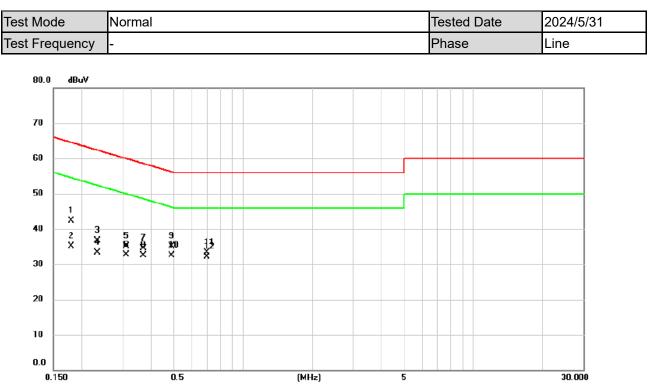
	Number of Hopping Frequency												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25							
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18							
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A							

Average Time of Occupancy												
	Kind of	AVE	rage time of Occ	upancy	Calibrated	Calibrated						
Item	Equipment	Manufacturer	Type No.	Serial No.	Date	Until						
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25						
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18						
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A						
Hopping Channel Separation												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25						
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18						
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A						
			Bandwidth									
	Kind of		Dailuwiuth		Calibrated	Calibrated						
Item	Equipment	Manufacturer	Туре No.	Serial No.	Date	Until						
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25						
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18						
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A						
			Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25						
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18						
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A						
		Antenna	conducted Spurio	us Emission								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25						
2	30dbAttenuator	INMET	00800AK010-30	02	2024/4/19	2025/4/18						
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A						

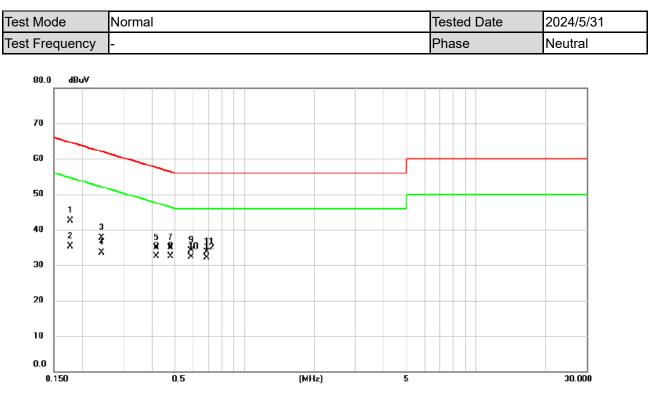
Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

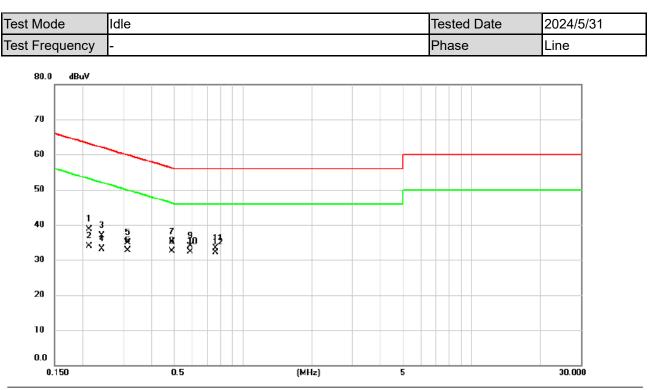
12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2403G134-1 (APPENDIX-TEST PHOTOS).


13 EUT PHOTOS

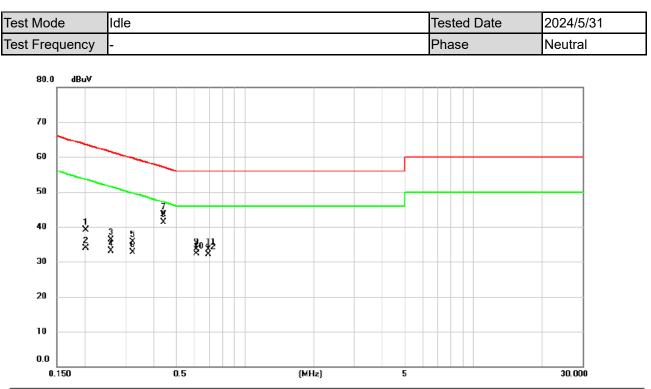
Please refer to document Appendix No.: EP-2403G134-1 (APPENDIX-EUT PHOTOS).


APPENDIX A AC POWER LINE CONDUCTED EMISSIONS


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1790	32.61	9.64	42.25	64.53	-22.28	QP	
2	0.1790	25.52	9.64	35.16	54.53	-19.37	AVG	
3	0.2330	27.11	9.64	36.75	62.34	-25.59	QP	
4	0.2330	23.61	9.64	33.25	52.34	-19.09	AVG	
5	0.3106	25.45	9.65	35.10	59.95	-24.85	QP	
6	0.3106	23.07	9.65	32.72	49.95	-17.23	AVG	
7	0.3684	24.82	9.65	34.47	58.54	-24.07	QP	
8	0.3684	22.84	9.65	32.49	48.54	-16.05	AVG	
9	0.4895	25.44	9.66	35.10	56.18	-21.08	QP	
10 *	0.4895	22.90	9.66	32.56	46.18	-13.62	AVG	
11	0.6980	23.64	9.68	33.32	56.00	-22.68	QP	
12	0.6980	22.50	9.68	32.18	46.00	-13.82	AVG	
-								

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1768	32.90	9.63	42.53	64.63	-22.10	QP	
2	0.1768	25.63	9.63	35.26	54.63	-19.37	AVG	
3	0.2413	28.11	9.63	37.74	62.05	-24.31	QP	
4	0.2413	23.86	9.63	33.49	52.05	-18.56	AVG	
5	0.4167	25.19	9.63	34.82	57.51	-22.69	QP	
6	0.4167	22.88	9.63	32.51	47.51	-15.00	AVG	
7	0.4790	25.26	9.64	34.90	56.36	-21.46	QP	
8	0.4790	22.94	9.64	32.58	46.36	-13.78	AVG	
9	0.5900	24.46	9.65	34.11	56.00	-21.89	QP	
10 *	0.5900	22.59	9.65	32.24	46.00	-13.76	AVG	
11	0.6890	23.95	9.66	33.61	56.00	-22.39	QP	
12	0.6890	22.54	9.66	32.20	46.00	-13.80	AVG	
12	0.6890	22.54	9.66	32.20	40.00	-13.80	AVG	


Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2123	29.06	9.64	38.70	63.11	-24.41	QP	
2		0.2123	24.22	9.64	33.86	53.11	-19.25	AVG	
3		0.2424	27.25	9.64	36.89	62.01	-25.12	QP	
4		0.2424	23.56	9.64	33.20	52.01	-18.81	AVG	
5		0.3144	25.27	9.65	34.92	59.85	-24.93	QP	
6		0.3144	22.99	9.65	32.64	49.85	-17.21	AVG	
7		0.4900	25.43	9.66	35.09	56.17	-21.08	QP	
8	*	0.4900	22.93	9.66	32.59	46.17	-13.58	AVG	
9		0.5900	24.16	9.67	33.83	56.00	-22.17	QP	
10		0.5900	22.56	9.67	32.23	46.00	-13.77	AVG	
11		0.7610	23.62	9.68	33.30	56.00	-22.70	QP	
12		0.7610	22.51	9.68	32.19	46.00	-13.81	AVG	

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

BIL

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2011	29.38	9.63	39.01	63.57	-24.56	peak	
2	0.2011	24.30	9.63	33.93	63.57	-29.64	peak	
3	0.2592	26.70	9.63	36.33	61.46	-25.13	peak	
4	0.2592	23.42	9.63	33.05	61.46	-28.41	peak	
5	0.3233	26.07	9.63	35.70	59.62	-23.92	peak	
6	0.3233	23.12	9.63	32.75	59.62	-26.87	peak	
7 *	0.4420	33.79	9.64	43.43	57.02	-13.59	peak	
8	0.4420	31.64	9.64	41.28	57.02	-15.74	peak	
9	0.6125	23.84	9.65	33.49	56.00	-22.51	peak	
10	0.6125	22.58	9.65	32.23	56.00	-23.77	peak	
11	0.6935	23.91	9.66	33.57	56.00	-22.43	peak	
12	0.6935	22.54	9.66	32.20	56.00	-23.80	peak	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

				(0.14)		-				0000000	_	
	st Mode			<u>(3 Mbps)</u> I02MHz		Test Date				2024/6/20		
Test Frequency Temp			24	25°C		Polarization Hum.				Vertical 65%		
				25 0			num.		05%			
120.0	0 dBuV/m										_	
110												
100												
90	<u>}</u>										_	
80											_	
70											_	
60	N										_	
50											_	
40	1										-	
30	1 X 2 X	ЭX	*5 *X	6							-	
20		×	^^	×							-	
10											-	
0.0					45.00							
U.	009 3.01	6.01	9.01	12.01	15.00) 18.0			24.00	30.00	MHz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment		
1 *	1.2386	34.87	-1.51	33.36	65.74	-32.38	peak					
2	2.4682	33.78	-4.29	29.49	69.54	-40.05	peak					
3	5.1974	29.66	-5.34	24.32	69.54	-45.22	peak					
4	6.9970	30.34	-3.77	26.57	69.54	-42.97	peak					
5	7.4168	29.55	-3.78	25.77	69.54	-43.77	peak					
6	9.4561	29.30	-4.12	25.18	69.54	-44.36	peak					

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

						(_		-	
Test Mode					BT (3 Mbps)				est Dat			2024/6/20		
Test Frequency			y	2402MHz 25°C				Polarization				Vertical 65%		
Temp						25 0		Hum.				05%		
13	20.0 dBuV	/m												
11	10													
	00													
9(
80	0													
70	▫╎╲┌													
6													_	
50														
4		ş												
30		X	3 X	4 X	5 X	5×							_	
20	0		<u>^</u>	Ê	^	^							-	
10		_												
0.				_				10.0						
	0.009	3.01	6.01		9.01	12.01	15.00	18.0	JU 2		24.00	30.00	MHz	
No. M	k. Fre		Reading Level		Correct Factor	Measure ment	Limit	Margin		Antenna Height	Table Degree			
	MH:		dBuV		dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment		
1 *	1.238		42.11		-1.51	40.60	65.74	-25.14	peak					
2	2.438	33	37.69		-4.24	33.45	69.54	-36.09	peak					
3	3.698		31.20		-5.48	25.72		-43.82	peak					
4	6.187		29.44		-4.09	25.35		-44.19	peak					
5	8.316		30.18		-3.89	26.29		-43.25	peak					
6	9.666	51	29.93		-4.13	25.80	69.54	-43.74	peak					

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

	Fest Mode			(3 Mbps)			est Date			2024/6/12	
les	t Frequen	ю	2	402MHz 25°C		Po	olarizatio	วท	_	Vertical 65%	
	Temp			25 0			Hum.			00%	
80.0) dBuV/m										-
70											-
60											
50											-
40		ſ									
30											
		2 X	4 ×	- 6							1
20		X	X	5 ×							
10								_			-
0.0	0.000 127.	.00 224.0	00 321.0	00 418.00	515.0	00 612.		D9.00	806.00	1000.00	
	127.					JU 612.	.00 7.			1000.00	MHZ
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	136.7000	28.98	-12.31	16.67	43.50	-26.83	peak	200	31		
2 *	201.6900	38.44	-14.23	24.21	43.50	-19.29	peak	100	204		
3	254.0700	28.46	-11.88	16.58	46.00	-29.42	peak	100	316		
4	302.5700	35.54	-10.18	25.36	46.00	-20.64	peak	200	179		
5	329.7300	28.48	-9.46	19.02	46.00	-26.98	peak	154	0		
6	351.0700	30.04	-8.89	21.15	46.00	-24.85	peak	100	169		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

					<u>/~ • • • • • • • • • • • • • • • • • • •</u>		_			_		
		est Mode Frequen			<u>(3 Mbps)</u> I02MHz			est Dat plarizati		-	2024/6/12 Horizontal	
	Test	Temp	icy		25°C			Hum.			65%	
		Temp			23 0			Tium.			0070	
	80.0	dBu∀/m										-
	70											
	60											
	50											
	40											
	30		2 X	4 X X	ě							1
	20		1 X	3 X								1
	10											
	0.0											
	30	.000 127.	.00 224.0	00 321.0	0 418.00	515.0	00 612	.00 7	09.00	806.00	1000.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	1	43.4900	28.59	-11.67	16.92	43.50	-26.58	peak	100	139		
2	2	00.7200	39.34	-14.24	25.10	43.50	-18.40	peak	100	89		
3	2	56.0100	28.82	-11.82	17.00	46.00	-29.00	peak	100	338		
4	2	81.2300	34.41	-10.71	23.70	46.00	-22.30	peak	100	84		
5	* 3	00.6300	37.97	-10.24	27.73	46.00	-18.27	peak	100	84		
		52.0400	32.85	-8.86	23.99		-22.01	peak	100	80		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

	Те	st Mode		BT	(1 Mbps)		-	Test Da	te		2024/6/1	1
Т		Frequen	cv		102MHz	<u> </u>		olarizat			Vertical	
		Temp	,		25°C			Hum.			65%	
	120.0	dBuV/m										
	110											
	100											
	90											
	80											
	70											
	60											
	50											
	40					1					5	
	30	en de Maren Marenda	et som en efter han an an en efter hande som en efter hande som en efter hande som en efter hande som en efter	a la	e hahaad when the transfer	manderadoud	Jan Martin	warning at many and	erendeter termet	when a second determined at the second determin		
	20					2 X					6 6	
	10											
	0.0											
	23	02.000 2322					.00 242	2.00 2		2462.00	2502.00	MHz
No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		388.400	38.12	-6.12	32.00	74.00	-42.00	peak				
		000 400	25.08	-6.12	18.96	54.00	-35.04	AVG				
2		388.400									All and the state	
3	X 2	402.200	81.45	-6.09	75.36	74.00	1.36	peak			No Limit	
3 2	X 2 * 2	402.200 402.200	81.45 80.36	-6.09 -6.09	74.27	54.00	20.27	AVG			No Limit No Limit	
3	X 2 * 2 2	402.200	81.45	-6.09		54.00 74.00						

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		Test Mode			(1 Mbps)			Test Da			2024/6/1	1
	Tes	st Frequen	су		80MHz		P	olariza			Vertical	
		Temp			25°C			Hum.			65%	
	120).0 dBuV/m						1				7
	110)										_
	100	J										-
	90											-
	80					3						-
	70					ļ						1
	60											-
	50											1
	40	1								5		-
	30	1 million to an an	eseter and the set of the set	an a	where and so and	undersonagen	munihippop	diagon water and	h damaay bi a digadishaa	5 5 6	and a second	*
	20	2 X								×		-
	10											-
	0.0	2380.000 2400	0.00 2420.	00 2440.0	00 2460.0	0 2490	.00 250	0.00 2	2520.00	2540.00	2580.00	MHz
			Reading	Correct	Measure-				Antenna			
No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		Height	Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2389.800	38.17	-6.12	32.05	74.00	-41.95	peak				
2		2389.800	24.44	-6.12	18.32	54.00	-35.68	AVG				
		2479.800	81.10	-5.92	75.18	74.00	1.18	peak			No Limit	
4	*	2479.800	79.91	-5.92	73.99	54.00	19.99	AVG			No Limit	
5		2543.200	39.02	-5.70	33.32	74.00	-40.68	peak				
6		2543.200	26.48	-5.70	20.78	54.00	-33.22	AVG				

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

		est Mode			3 Mbps)			est Da			2024/6/1	
1	est	Frequency	/		02MHz		Po	olarizat	ion		Vertical	
		Temp			25°C			Hum.			65%	
	10	1.0 dBuV/m										
	120											1
	110	J										
	10											
	90											1
	80					3						1
	70					-						1
	60					(
	50											-
	50											1
	40			1							5	1
	30	and a second and a second		1 X	manutation	mound	-	monorm	water	man and the second second	mer person .	4
	20			2 X							6 X	
	10			Ŷ								
	0.0											1
		2302.000 2322.	00 2342	2.00 2362.	.00 2382.0	0 2402	2.00 242	2.00 2	2442.00	2462.00	2502.00	 MHz
			Reading	Correct	Measure-				Antenna	Table		
No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		Height			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2345.400	38.04	-6.22	31.82	74.00	-42.18	peak				
2		2345.400	25.00	-6.22	18.78	54.00	-35.22	AVG				
3	Х	2402.000	83.35	-6.09	77.26	74.00	3.26	peak			No Limit	
4	*	2402.000	79.23	-6.09	73.14	54.00	19.14	AVG			No Limit	
5		2493.800	38.31	-5.90	32.41	74.00	-41.59	peak				
		2402.000	04.57	E 00	18.67	E4 00	-35.33	AVG				
6		2493.800	24.57	-5.90	10.07	54.00	-30.33	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Te	est Mode		BT	(3 Mbps)		٦	Fest Dat	te		2024/6/12	
	Test	Frequen	су		80MHz		P	olarizati	ion		Vertical	
		Temp			25°C			Hum.			65%	
	120.0	0 dBuV/m										-
	110											
	100											
	90											-
	80					3						
	70					ĥ						
	60											
	50											
	40	1							5			1
	30			aaanaa ka k	stelen til her skilder	man the second	mannahiden	nd had a second state	6	ubergaleurplanard	when the test of the test of the second s	1
	20	2 X							X			1
	10											
	0.0											
	23	380.000 2400					.00 250	0.00 2		2540.00	2590.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2382.600	37.42	-6.13	31.29	74.00	-42.71	peak				
2		2382.600	24.45	-6.13	18.32	54.00	-35.68	AVG				
		2480.000	82.93	-5.92	77.01	74.00	3.01	peak			No Limit	
4		2480.000	78.92	-5.92	73.00	54.00	19.00	AVG			No Limit	
5		2529.800 2529.800	39.13 26.25	-5.76 -5.76	33.37 20.49	74.00	-40.63 -33.51	peak AVG				
6												

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Test Mode	BT (1 Mbps)	Test Date	2024/6/11
Test Frequency	2402MHz	Polarization	Vertical
Temp	25°C	Hum.	65%
120.0 dBuV/m			
110			
100			
90			
80			
70			
60			
50			
40			
30 1 20 ×			
20 2			
10 ×			
0.0 1000.000 3550.00 6	100.00 8650.00 11200.00 137	50.00 16300.00 18850.00 21400	0.00 26500.00 MHz
Readir No. Mk. Freq. Level	ng Correct Measure- Factor ment Limit	Antenna Ta Margin Height De	
No. Mk. Freq. Level		j	egree egree Comment
1 4804.000 31.90		-50.72 peak	gree comment
2 * 4804.000 22.17		-40.45 AVG	

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

lest F	st Mode			1 Mbps)			est Date			2024/6/11
-	⁻ requenc Temp	у		02MHz 25°C		PC	olarizatio Hum.	חכ		Horizontal 65%
120.0	0 dBu¥/m									
110										
100										
90										
80										
70										
60										
50										
40										
30										
20		1 X								
10		z								
0.0										
10	00.000 3550					0.00 163			1400.00	26500.00 MH
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4	1804.000	31.63	-8.62	23.01	74.00	-50.99	peak			
2 * 4	1804.000	19.89	-8.62							
		19.09	-0.02	11.27	54.00	-42.73	AVG			

110 100 90 80 70 60 50 40 30 20 10 0.0 1000.000	BuV/m BuV/m 1 1 2 2 3 00 3550.00 610 Freq. Level MHz dBuV	00.00 8650.0 g Correct Factor	Measure-	13750	0.00 1631	Hum.			
110 100 90 80 70 60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	1 1 2 2 3 50.00 610 Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
100 90 80 70 60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
90 80 70 60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
90 80 70 60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
70 60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
60 50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1631				
50 40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.1	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
40 30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
30 20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
20 10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
10 0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
0.0 1000.000 No. Mk. Fr M 1 4882.0	00 3550.00 610 Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630				
1000.000 No. Mk. Fr M 1 4882.1	Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	13750	0.00 1630		1		
No. Mk. Fr M 1 4882.0	Reading Freq. Level MHz dBuV	g Correct Factor	Measure-	15750	0.00 16.30	100 100 100	350.00 2	21400.00	26500.00 MH
M 1 4882.0	MHz dBuV		mont				Antenna		26300.00 M h
1 4882.				Limit	Margin		Height	-	
		dB -8.42		lBuV/m 74 00	dB -51.47	Detector peak	cm	degree	Comment
2 4002.					-39.85	AVG			
	ent Value = Re rel = Measurer				Dr.				

Test Frequer 120.0 dBuV/r 110 0 90 0 90 0 80 0 70 0 60 0 50 0 40 0 30 0 20 0 1000.000 33 0.0 0 1000.000 32 0.0 0 1000.000 32 0. MHz 1 4882.000 2 * 4882.000 2	1 1 1 1 2 550.00 610 Reading 1. Level dBuV 0 30.47	0.00 8650	Measure ment dBuV/m	e- Limit dBuV/m	50.00 163 Margin		250.00 Antenna	21400.00	Horizontal 65%
120.0 dBuV/r 110 100 90 80 70 60 50 40 30 20 10 0.0 1000.000 39 c. Mk. Freq. MHz 1 4882.000	1 2 2 x 1550.00 610 Reading Level dBuV 0 30.47	0.00 9650 Correct Factor dB	0.00 1120 Measure ment dBuV/m	e- Limit dBuV/m	Margin	00.00 18	Antenna	Table	
110 100 90 80 70 60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	1 2 2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
100 90 80 70 60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
90 80 70 60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
80 70 60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
70 60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
60 50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
50 40 30 20 10 0.0 1000.000 39 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
40 30 20 10 0.0 1000.000 3 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
30 20 10 0.0 1000.000 3 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
20 10 0.0 1000.000 3 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
10 0.0 1000.000 3 0. Mk. Freq. MHz 1 4882.000	2 x 1550.00 610 Reading Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
0.0 1000.000 39 5. Mk. Freq. MHz 1 4882.000	8550.00 610 Reading I- Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
0. Mk. Freq. Mk. Freq. MHz 1 4882.000	Reading I- Level dBuV 0 30.47) Correct Factor dB	Measure ment dBuV/m	e- Limit dBuV/m	Margin		Antenna	Table	26500.00 M
MHz 1 4882.000	l. Level dBu∨ 0 30.47	Factor dB	ment dBuV/m	Limit dBuV/m	_				
1 4882.000	0 30.47				dB		Height	Degree	
		-8.42	00.05			Detector	cm	degree	Comment
2 * 4882.000	0 21.13	-8.42	22.05 12.71		-51.95 -41.29	peak AVG			
ARKS: leasurement ' largin Level =	Value = Re	eading Le	evel + Cori	rect Fact	or.				

	t Mode			1 Mbps)			est Dat		_	2024/6/11
	requency Temp	y		80MHz 25°C		PC	larizati Hum.	on		Vertical 65%
							TIGHT.			0070
120.0	0 dBuV/m									
110										
100										
90										
80										
70										
60										
50										
40										
30		1 X								
20		Z X								
10 0.0		×								
	00.000 3550	0.00 6100.	00 8650	00 11200.	00 1375	0.00 163	00.00 1	8850.00 2	1400.00	26500.00 N
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1960.000	31.42	-8.23	23.19		-50.81	peak			
2 * 4	1960.000	19.54	-8.23	11.31	54.00	-42.69	AVG			
/ARKS /leasure	ement Va	ilue = Rea	ding Lev	rel + Corre e - Limit Va	ect Facto	or.				

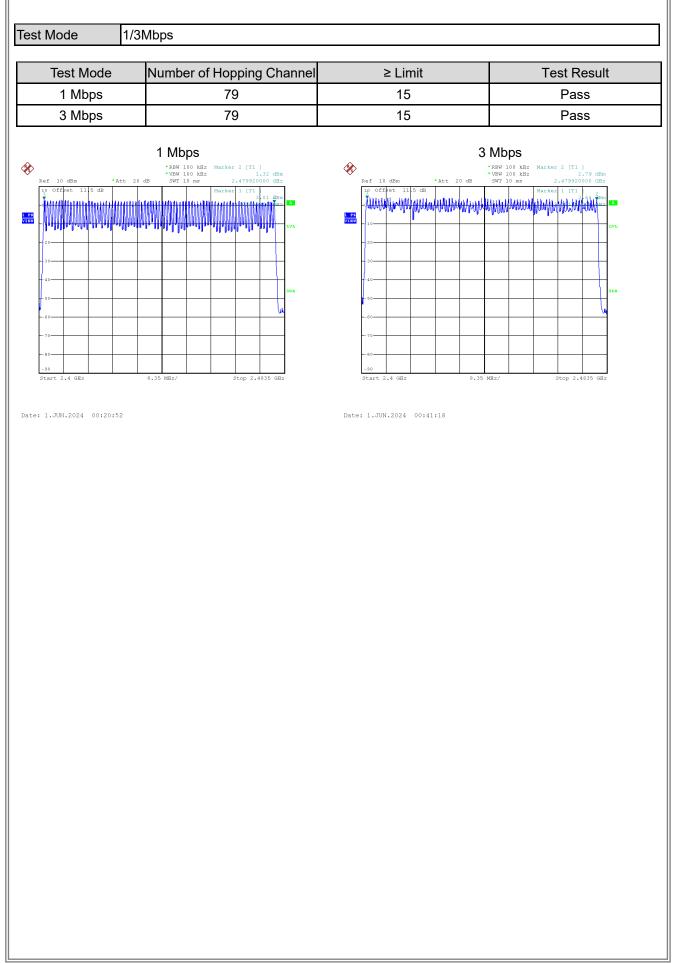
Temp 25°C Hum. 65% 120.0 dBuV/m 100 1	Т				1 Mbps)			est Date			2024/6/11
120.0 d8uV/m 110			/						Π		Horizontal 65%
110 1100 1100<	120 .)										0070
100 90 <t< td=""><td></td><td>) dBuV/m</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>) dBuV/m	1								
30	110										
80	100										
80	90										
70 70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
60											
50 50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
40 30 1											
30 30 1											
20 1	40										
10 2 <	30		1								
No X X A	20		×								
Idea.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 Mi Reading Correct Measure- ment Antenna Table Table	10		2 X								
No. Mk.Freq.Reading LevelCorrect FactorMeasure- mentLimit LimitMarginAntenna HeightTable DegreeMHzdBuVdBdBuV/mdBDetectorcmdegreeComment14960.00030.28-8.2322.0574.00-51.95peak		00.000.255	0.00 0100	00 0050	00 11200	00 1070	0.00 1.00	0.00 10	050.00 2	1 400 60	20500.001
No. Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4960.000 30.28 -8.23 22.05 74.00 -51.95 peak		100.000 3550					0.00 16.30				Z6000.001
1 4960.000 30.28 -8.23 22.05 74.00 -51.95 peak	lo. Mk.	Freq.				Limit	Margin				
									cm	degree	Comment
2 * 4960.000 16.49 -8.23 8.26 54.00 -45.74 AVG											
	2 * 4	1960.000	16.49	-8.23	8.26	54.00	-45.74	AVG			

	st Mode									2024/6/11
	Frequenc Temp	;y		02MHz 25°C		Р	olarizati Hum.	on		Vertical 65%
	Temp			25.0			Tium.			0376
120	.0 dBuY/m									
110										
100										
90										
80										
70										
60										
50										
40										
30										
20		1 X								
10		2 X								
0.0										
1	000.000 355					0.00 163	00.00 1		1400.00	26500.00 MH
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4804.000	31.34	-8.62	22.72	74.00	-51.28	peak			
2 *	4804.000	20.72	-8.62	12.10	54.00	-41.90	AVG			
//ARK		alue = Rea	adina Lev	/el + Corre	ect Fact					

120. ultv/m 110 100		est Mode Frequency Temp	y	240	3 Mbps) 02MHz 25°C			lest Dat olarizati Hum.	ion		2024/6/11 Horizontal 65%
100 1	12).0 dBuV/m									
30	11() (
80	10(J									
70 1	90										
60 1	80										
50 40<	70										
40 30 1	60										
30 1	50										
20 1	40										
20 2 2 10 10 10 10 10 10 10 100 1000 3550.00 6100.00 3650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 Height Degree No. Mk. Freq. Level Factor Measure- ment Limit Margin Antenna Table Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 31.84 -8.62 23.22 74.00 -50.78 peak 2 * 4804.000 20.80 -8.62 12.18 54.00 -41.82 AVG AVG	30										
ID Z ID ID </td <td></td>											
0.0 0.0 9550.00 6100.00 9550.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Level Correct Measure- ment Limit Margin Antenna Table MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 31.84 -8.62 23.22 74.00 -50.78 peak 2 * 4804.000 20.80 -8.62 12.18 54.00 41.82 AVG			2 ×								
Reading No. Mk. Reading Level Correct Factor Measure- ment Limit Margin Antenna Height Table Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 31.84 -8.62 23.22 74.00 -50.78 peak 2 * 4804.000 20.80 -8.62 12.18 54.00 -41.82 AVG	0.0										
No. Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 31.84 -8.62 23.22 74.00 -50.78 peak 2 * 4804.000 20.80 -8.62 12.18 54.00 -41.82 AVG		1000.000 3550					0.00 163	00.00 18			26500.00 MH
1 4804.000 31.84 -8.62 23.22 74.00 -50.78 peak 2 * 4804.000 20.80 -8.62 12.18 54.00 -41.82 AVG	No. Mk	. Freq.	Level			- Limit	Margin				
2 * 4804.000 20.80 -8.62 12.18 54.00 -41.82 AVG	max										
1ARKS:								Detector	cm	degree	Comment
	1	4804.000	31.84	-8.62	23.22	74.00	-50.78	peak	cm	degree	Comment
/argin Level = Measurement Value - Limit Value.	1	4804.000	31.84	-8.62	23.22	74.00	-50.78	peak	cm	degree	Comment

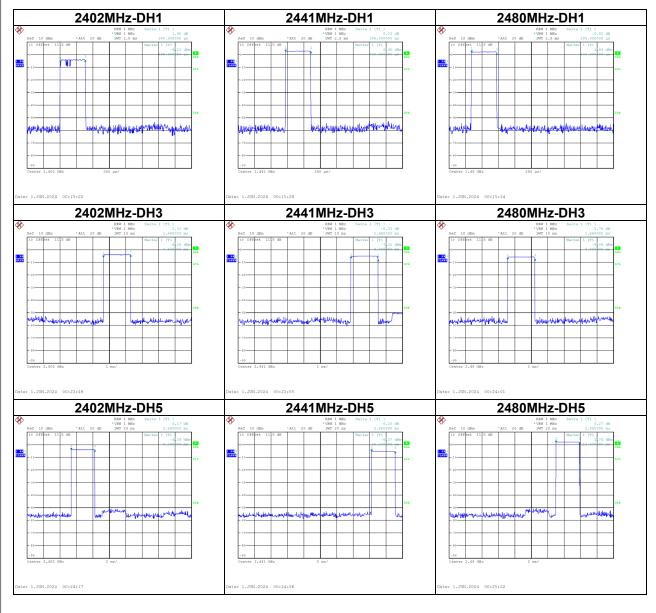
		t Mode BT (3 Mbps) requency 2441MHz				Test Dat Polarizati			2024/6/11 Vertical	
	Temp	Uy		25°C		F	Hum.	on		65%
				20 0			- Tolini			0070
120.0	dBuV/m	1		1					1	
110										
100										
90										
80										
70										
60										
50										
40										
30										
20		1 X						_		
10		2 X								
0.0										
10	00.000 3550					0.00 163			21400.00	26500.00 MH
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4	882.000	31.30	-8.42	22.88		-51.12	peak			
2 * 4	882.000	19.02	-8.42	10.60	54 00	-43.40	AVG			

1110 100 90 80 70 60 50 40 30				41MHz 25°C			larizatic Hum.			Horizonta 65%
120.0 1110 90 80 70 60 50 40 30										
1110 100 90 80 70 60 50 40 30	dB uV /m									
100 90 80 70 60 50 40 30										
SO 80 70 60 50 40 30										
SO 80 70 60 50 40 30										
80 70 60 50 40 30										
70 60 50 40 30										
60 50 40 30										
50 40 30										
40 30										
30										
		1 X								
20										
10 -		2 X								
0.0	000 3550	.00 6100	.00 8650.	.00 11200.	.00 1375	0.00 1630	0.00 18	850.00 2	1400.00	26500.00
		Reading	Correct	Measure-	-			Antenna		
. Mk.	Freq.	Level	Factor	ment	Limit	Margin			Degree	
488	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	2.000	31.44 18.58	-8.42 -8.42	23.02 10.16		-50.98 -43.84	peak AVG			
ARKS:	ient Val	lue = Rea	ading Lev	el + Corre - Limit Va	ect Facto	Dr.				

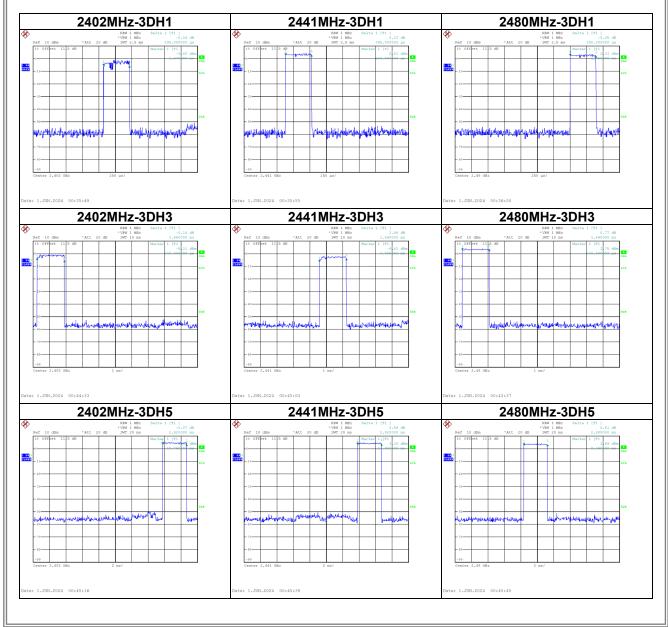

Teste	st Mode			(3 Mbps)			Test Da			2024/6/11
	⁻ requenc Femp	;y		80MHz 25°C		P	olarizat Hum.	ion		Vertical 65%
				20 0			Tidili.			0070
120.0 Г	dB uV/m									
110										
100										
90										
80										
70										
60										
50										
40										
30		1 X								
20										
10		2 X								
0.0	00.000 3550	1.00 6100 .	00 8650.	.00 11200.	.00 1375	0.00 163	800.00 1	8850.00	21400.00	26500.00 MH
		Reading	Correct	Measure	-	0.00 10.	100.00	Antenna		20,00,00 Mil
o. Mk.	Freq.	Level	Factor	ment	Limit	Margin		Height	Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	960.000	31.69	-8.23	23.46	74.00	-50 54				
/ ~ 4	960 000	20.17	-8.23				peak AVG			
2 ⁻ 4	960.000	20.17	-8.23	11.94		-42.06	AVG			
2 * 4	960.000	20.17	-8.23				-			

Test Mode Test Frequency		24			BT (3 Mbps) 2480MHz			te ion		2024/6/11 Horizontal
	Temp	<i>,</i> y		25°C		<u> </u>	olarizat Hum.			65%
120.0) dBu¥/m									
110										
100										
90										
80										
70										
60										
50										
40										
30										
20		1 X								
		2								
10 0.0		×								
L	00.000 3550	0.00 6100.	00 8650	.00 11200.0	00 1375	0.00 163	00.00 1	8850.00	21400.00	26500.001
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	960.000	32.08 19.16	-8.23 -8.23	23.85 10.93		-50.15 -43.07	peak AVG			
/ARKS Veasure	ement Va	alue = Rea	ading Lev	vel + Corre e - Limit Va	ect Fact	or.				

APPENDIX E NUMBER OF HOPPING CHANNEL



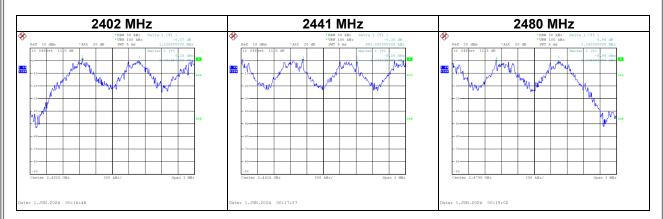
APPENDIX F AVERAGE TIME OF OCCUPANCY


Test Mode :	1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	0.3800	0.1216	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH1	2402	2.8800	0.3072	0.4000	Pass
DH5	2441	0.3850	0.1232	0.4000	Pass
DH3	2441	1.6600	0.2656	0.4000	Pass
DH1	2441	2.8800	0.3072	0.4000	Pass
DH5	2480	0.3850	0.1232	0.4000	Pass
DH3	2480	1.6600	0.2656	0.4000	Pass
DH1	2480	2.8800	0.3072	0.4000	Pass

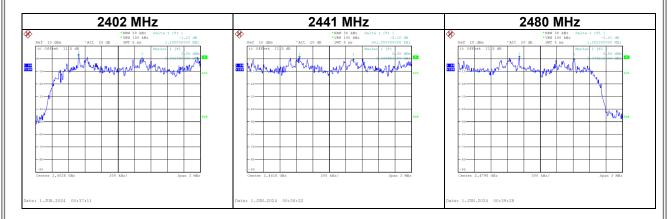
3ī

Test Mode : 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	0.3950	0.1264	0.4000	Pass
3DH3	2402	1.6600	0.2656	0.4000	Pass
3DH1	2402	2.9200	0.3115	0.4000	Pass
3DH5	2441	0.3950	0.1264	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	2.9200	0.3115	0.4000	Pass
3DH5	2480	0.3900	0.1248	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	2.8800	0.3072	0.4000	Pass



APPENDIX G HOPPING CHANNEL SEPARATION MEASUREMENT


Test Mode :	Hopping on _1Mbps		
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.036	0.632	Pass
2441	0.982	0.634	Pass
2480	1.140	0.639	Pass

Test Mode :

Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.155	0.911	Pass
2441	0.981	0.915	Pass
2480	1.002	0.912	Pass

BIL

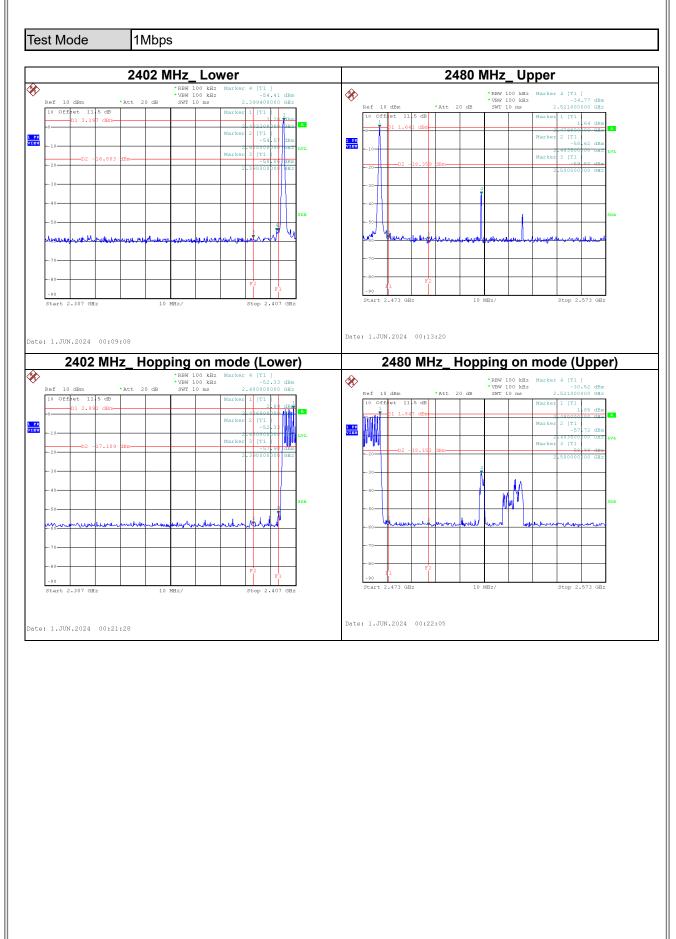
Test Mode :	1Mbps				
Frequency (MHz)		Bandwidth (MHz)	99% Occu (MH		Test Result
2402		0.948	0.89	96	Pass
2441		0.951	0.88	38	Pass
2480		0.958	0.89	92	Pass
2402 MF	z	2441	MHz	2	2480 MHz
Image: state	ница (14400)77 оны ма 1971 - 244505 00 оны ма 1971 - 244505 00 оны 1971 - 244505 00 оны 1971 - 24505 00 оны 1971 - 24505 00 оны 1971 - 24505 00 оны 1971 - 24505 00 оны 1972 - 24505 00 оны	Date: 1.JUN.2024 00:12:17	1 440 470 20 000 maps 1 1 20 20 mm tests 1 4 40 20 20 mm tests 1 4 40 20 00 mm 4 4 4 4 00 00 mm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Liste: 1.JUN.2024 00:13:57	200 kHz/ 2013 200 kHz/ 2014 200 kHz/ 2014 201
Frequency (MHz)		Bandwidth (MHz)	99% Occu (MH		Test Result
2402		1.366	1.19	96	Pass
2441		1.372	1.19)2	Pass
2480		1.368	1.20	00	Pass
2402 MH		2441			2480 MHz
**************************************	Palse 1 (73) 0-87 dB 1-36400000 MB Marker 1, 164000 MB 	Image: Second	Attr. 0.57 db 0 btr. 0.57 db	Inf 10 dist *Act 20 10 orffed 11 5 dist 21 11 -1 -4 40 dist 21 11 -21 -4 40 dist 21 12 -21 -4 -20 dist -21 -21 12 -22 -21 -7.7 21 -21 <td>*398 30 Mit: Selie 1 (71) *398 10 Mit: Selie 1 (71) di Set 2.6 met 1 (72) Mit: Set 2.6 met 1 (72) Mit:</td>	*398 30 Mit: Selie 1 (71) *398 10 Mit: Selie 1 (71) di Set 2.6 met 1 (72) Mit:

te: 1.JUN.2024 00:31:33

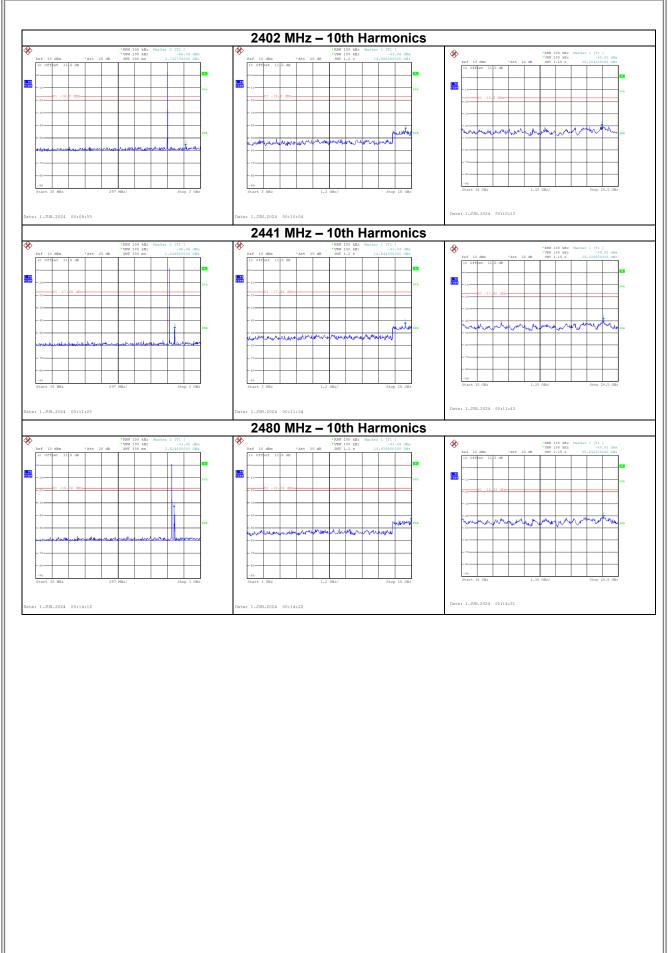
te: 1.JUN.2024 00:33:32

te: 1.JUN.2024 00:34:31

APPENDIX I OUTPUT POWER



Test Mode :	1Mbps		Tested Date 2		2024/5/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.62	0.0115	21.00	0.1259	Pass
2441	10.19	0.0104	21.00	0.1259	Pass
2480	9.77	0.0095	21.00	0.1259	Pass
Test Mode :	2Mbps		Testec	d Date	2024/5/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.55	0.0114	21.00	0.1259	Pass
2441	10.47	0.0111	21.00	0.1259	Pass
2480	10.05	0.0101	21.00	0.1259	Pass
Test Mode :	3Mbps		Tested Date 2		2024/5/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.89	0.0123	21.00	0.1259	Pass
2441	10.80	0.0120	21.00	0.1259	Pass
2480	10.46	0.0111	21.00	0.1259	Pass



APPENDIX J ANTENNA CONDUCTED SPURIOUS EMISSION

