

FCC Radio Test Report

FCC ID: 2BCGWTBE552E

Report No. Equipment Model Name Brand Name	 BTL-FCCP-3-2403G002 BE9300 Wi-Fi 7 Bluetooth PCle Adapter Archer TBE552E tp-link TD-LINK CORPORATION PTE LTD
Applicant Address	 TP-LINK CORPORATION PTE. LTD. 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987
Radio Function	: Bluetooth Low Energy (5.0)
FCC Rule Part(s) Measurement Procedure(s)	: FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2024/4/19 : 2024/4/19 ~ 2024/7/20 : 2024/7/24

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Poken blump Prepared by Poken Huang, Engineer Approved by 0659 Peter Chen, Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	ION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	DEVIATION FROM TEST STANDARD	14
3.4	TEST SETUP	15
3.5	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	DEVIATION FROM TEST STANDARD	17
4.4	TEST SETUP	18
4.5	EUT OPERATING CONDITIONS	19
4.6	TEST RESULT – BELOW 30 MHZ	19
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.8	TEST RESULT – ABOVE 1 GHZ	19
5	BANDWIDTH TEST	20
5.1	APPLIED PROCEDURES / LIMIT	20
5.2	TEST PROCEDURE	20
5.3	DEVIATION FROM STANDARD	20
5.4	TEST SETUP	20
5.5	EUT OPERATION CONDITIONS	20
5.6	TEST RESULTS	20
6	OUTPUT POWER TEST	21
6.1	APPLIED PROCEDURES / LIMIT	21
6.2	TEST PROCEDURE	21
6.3	DEVIATION FROM STANDARD	21
6.4	TEST SETUP	21
6.5	EUT OPERATION CONDITIONS	21
6.6	TEST RESULTS	21
7	POWER SPECTRAL DENSITY TEST	22
7.1	APPLIED PROCEDURES / LIMIT	22
7.2		22
7.3	DEVIATION FROM STANDARD	22
7.4		22
7.5	EUT OPERATION CONDITIONS	22
7.6	TEST RESULTS	22

NTENNA CONDUCTED SPURIOUS EMISSION	23
APPLIED PROCEDURES / LIMIT	23
TEST PROCEDURE	23
DEVIATION FROM STANDARD	23
TEST SETUP	23
EUT OPERATION CONDITIONS	23
TEST RESULTS	23
IST OF MEASURING EQUIPMENTS	24
UT TEST PHOTO	26
UT PHOTOS	26
A AC POWER LINE CONDUCTED EMISSIONS	27
B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
C RADIATED EMISSIONS - ABOVE 1 GHZ	35
D BANDWIDTH	68
E OUTPUT POWER	73
F POWER SPECTRAL DENSITY TEST	75
G ANTENNA CONDUCTED SPURIOUS EMISSION	78
	APPLIED PROCEDURES / LIMIT TEST PROCEDURE DEVIATION FROM STANDARD TEST SETUP EUT OPERATION CONDITIONS TEST RESULTS IST OF MEASURING EQUIPMENTS UT TEST PHOTO UT PHOTOS A AC POWER LINE CONDUCTED EMISSIONS B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ C RADIATED EMISSIONS - ABOVE 1 GHZ D BANDWIDTH E OUTPUT POWER F POWER SPECTRAL DENSITY TEST

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2403G002	R00	Original Report.	2024/7/1	Invalid
BTL-FCCP-3-2403G002	R01	Revised report to address comments.	2024/7/22	Invalid
BTL-FCCP-3-2403G002	R02	Revised report to address comments.	2024/7/24	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	NOTE (3)

NOTE:

 (1) "N/A" denotes test is not applicable in this Test Report.
 (2) The report format version is TP.1.1.1.
 (3) The device what use replaceable antennas with non-standard interfaces are considered sufficient to com ply with the provisions of 15.203.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: (FCC DN: TW0659) No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

 \boxtimes CB20 \boxtimes TR01 \boxtimes C20

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C20	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB20	1 GHz ~ 6 GHz	5.20
CB20	6 GHz ~ 18 GHz	5.50
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.53
Output power	0.37
Power Spectral Density	0.66
Conducted Spurious emissions	0.53
Conducted Band edges	0.53

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120 V	Ken Lu
Radiated emissions below 1 GHz	25°C, 65%	AC 120 V	Barry Tsui
Radiated emissions above 1 GHz	25°C, 65%	AC 120 V	Ken Lu
Bandwidth	24°C, 50%	AC 120 V	Cheng Tsai
Output Power	24°C, 50%	AC 120 V	Cheng Tsai
Power Spectral Density	24°C, 50%	AC 120 V	Cheng Tsai
Antenna conducted Spurious Emission	24°C, 50%	AC 120 V	Cheng Tsai

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	WCN_Combo_Tool #1			
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
1 Mbps	1	1	1	1 Mbps
2 Mbps	3	3	3	2 Mbps
500kbps(S2)	0.5	0.5	0.5	500kbps
125kbps(S8)	0.25	0.25	0.25	125kbps

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	BE9300 Wi-Fi 7 Bluetooth PCIe Adapter	
Brand Name	tp-link	
Model Name	Archer TBE552E	
Model Difference(s)	N/A	
Hardware Version	1.0	
Software Version	1.0	
Power Source	Supplied from PCIe Slot.	
Power Rating	DC 3.3V	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
Modulation Technology	GFSK	
Transfer Rate	1 Mbps, 2 Mbps, 500kbps(S2), 125kbps(S8)	
Output Power Max.	500kbps(S2): 13.45 dBm (0.0221 W)	
Test Model	Archer TBE552E	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

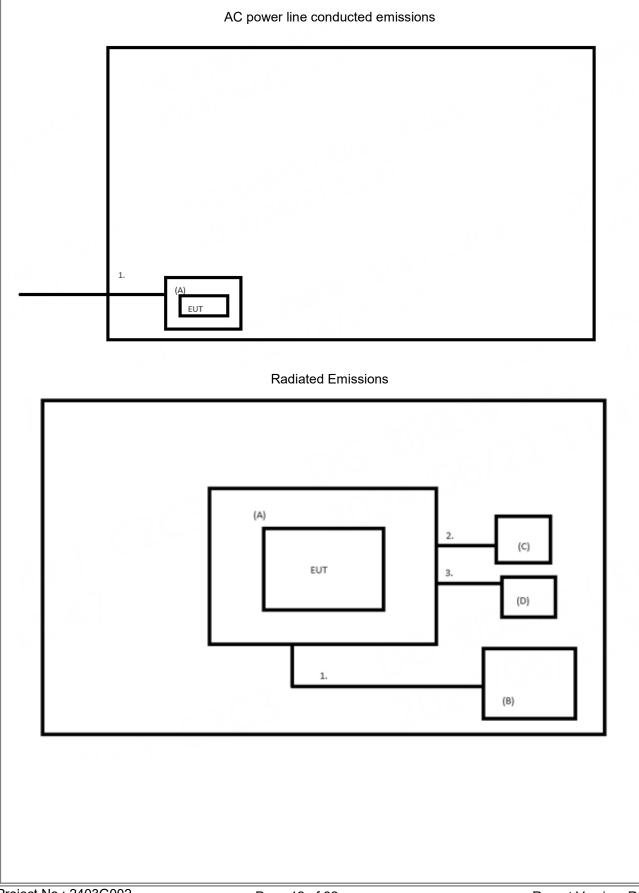
(3) Table for Filed Antenna:

Ant	Brand Name	Model Name	Туре	Connector	Gain (dBi)
1	TP-LINK CORPORATION PTE. LTD.	3101504215	Dipole	N/A	1.00

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	500kbps (S2)	19	-
Transmitter Radiated Emissions	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/39	Bandedge
(above 1GHz)	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/19/39	Harmonic
Bandwidth	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/19/39	-
Output Power	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/19/39	-
Power Spectral Density	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/19/39	-
Antenna conducted Spurious Emission	1/2 Mbps/ 500kbps (S2)/ 125kbps(S8)	00/19/39	-


NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) For radiated emissions below 1 GHz test, the 500kbps (S2) channel 19 is found to be the worst case and recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

	AC power line conducted emissions						
Item	Equipment	Brand	Model No.	Series No.	Remarks		
A	Host computer	HP I	DESKTOP-TBTO665	N/A	Furnished by test lab.		
Item	Shielded	Ferrite Core	e Length	Cable Type	Remarks		
1	Power cable	N	N	0.5m	Supplied by test requester.		
			Radiated Emissio	ns			
Item	Equipment	Brand	Model No.	Series No.	Remarks		
Α	Host computer	HP	DESKTOP-TBT O665	N/A	Furnished by test lab.		
В	Computer screen	PHILIPS	221S8LDAB22" LED	N/A	Furnished by test lab.		
С	Mouse	Lenovo	Moiuuo	8SSM50L24505A VLC25M019Z	Furnished by test lab.		
D	Keyboard	Lenovo	SK-8823	8SSD51B37225A VLC25JOMX4			

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	VGA toVGA	Ν	Ν	1m	Furnished by test lab.
2	Power cable	Ν	N	1.8m	Furnished by test lab.
3	Power cable	Ν	Ν	1.8m	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value – Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

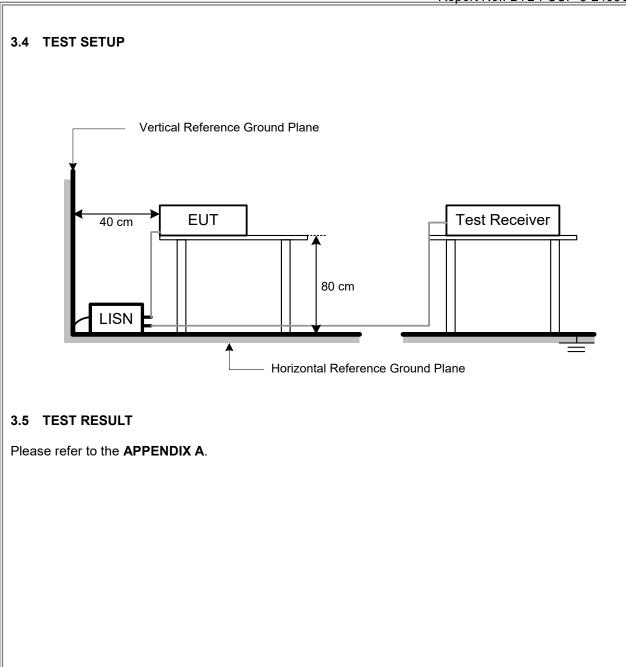
3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).

All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Y Peak Average Y Y	Frequency (MHz)	Radiated I (dBu		Measurement Distance (meters)
Above 1000 74 54 3	(10112)	Peak	Average	(inclusy)
	Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	Ш	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	I	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector

Start ~ Stop Frequency

Start ~ Stop Frequency Start ~ Stop Frequency

Start ~ Stop Frequency

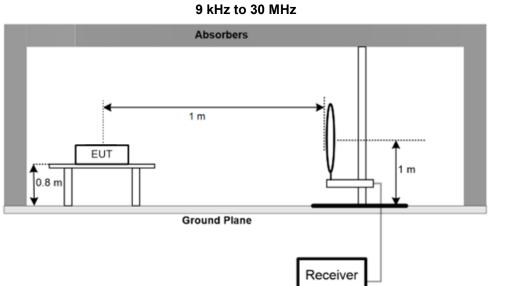
90KHz~110KHz for QP detector

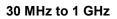
110KHz~490KHz for PK/AVG detector

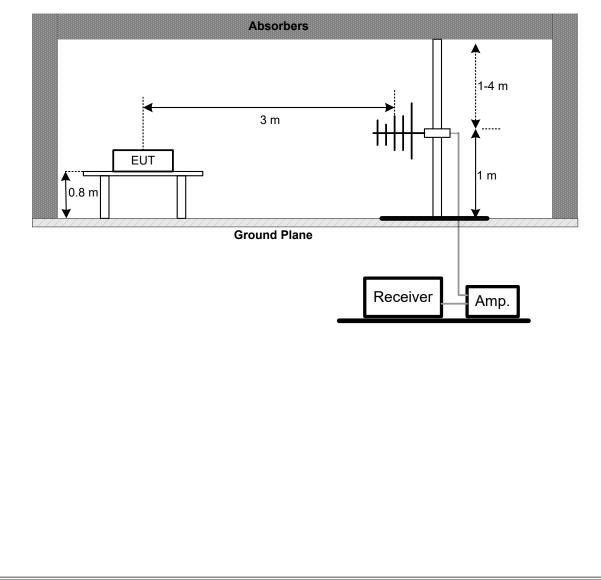
490KHz~30MHz for QP detector

30MHz~1000MHz for QP detector

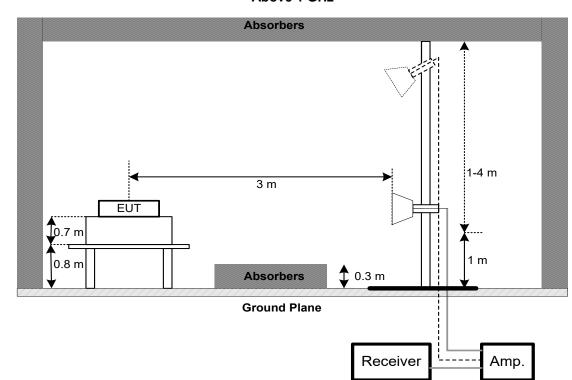
4.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS					

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS							

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS							

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

		AC Pow	er Line Conducted	d Emissions		
Item	Kind of Equipment	Manufacturer Type No. Serial No.		Calibrated Date	Calibrated Until	
1	Two-Line V-Network	R&S	ENV216	101051	2023/7/21	2024/7/20
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10
3	EXA Spectrum Analyzer	keysight	N9038A	MY54130009	2023/6/26	2024/6/25
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Broad-Band Horn Antenna	RFSPIN	DRH18-E	210109A18E	2024/1/10	2025/1/9
2	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10
3	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10
4	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10
5	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2023/12/11	2024/12/10
6	EXA Spectrum Analyzer	keysight	N9010A MY56480554		2023/9/12	2024/9/11
7	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168 01207		2024/12/17
8	EMI Test Receiver	Keysight	N9038A	MY54130009	2023/6/26	2024/6/25
9	Pre-Amplifier	EMCI	EMC001330-202 01222	980807	2023/12/11	2024/12/10
10	Test Cable	EMCI	EMC-8D-NM-NM -5000	150106	2023/12/11	2024/12/10
11	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2023/12/11	2024/12/10
12	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A

	Bandwidth												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25							

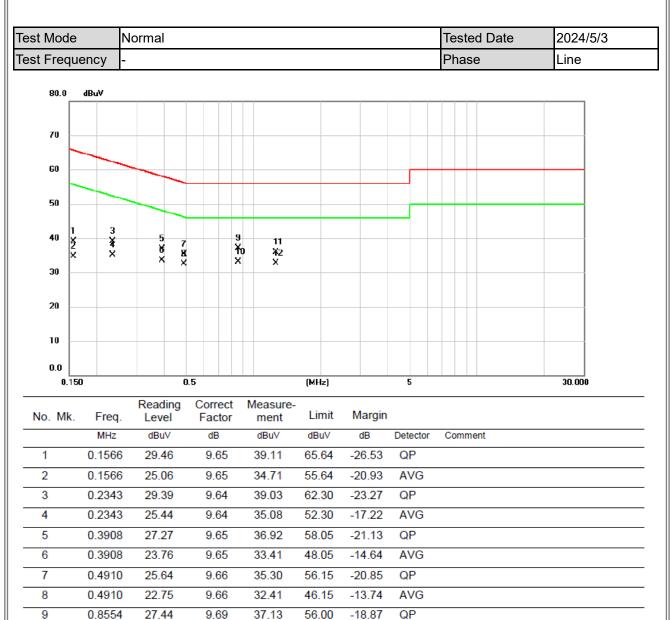
	Output Power												
Iter	m Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25							

	Power Spectral Density												
Item	em Kind of Equipment Manufacturer Type No. Serial No. Calibrated Calibrated Until												
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25							
		Antenna o	conducted Spuric	ous Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1 Spectrum Analyzer R&S FSP 30 100854 2023/6/26 2024/6/25													

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2403G002-FCCP-1 (APPENDIX-TEST PHOTOS).


11 EUT PHOTOS

Please refer to document Appendix No.: EP-2403G002-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

REMARKS:

10

11

12

*

0.8554

1.2604

1.2604

(1) Measurement Value = Reading Level + Correct Factor.

9.69

9.72

9.72

33.12

35.86

32.64

46.00

56.00

46.00

-12.88

-20.14

-13.36

AVG

QP

AVG

(2) Margin Level = Measurement Value - Limit Value.

23.43

26.14

22.92

t Mode		Normal										Tested	Date	2024/5/3
t Frequ	lency	-										Phase		Neutral
80.0	dBuV													
70														
60			_											
50 -														
40	1 2 X		_	з Хч Х	5 X6 X	7 8 8	Ťo	11 X 12 X						
30 -			_	^	Î	n	-							
20														
10														
0.0	50			.5				(MH	z]		5			30.000
		Readi			orrec	t	Measu		-,					00.000
lo. Mk.	Free				acto		men		nit	Margin				
	MHz				dB		dBuV	dBi		dB	Detector	Commen	t	
1	0.234				9.63		39.94			-22.37	QP			
2	0.234				9.63		36.06			-16.25	AVG			
3	0.549				9.64		38.22			-17.78	QP			
4	0.549				9.64		33.93			-12.07	AVG QP			
5 6	0.711				9.67 9.67		37.96 33.69			-18.04 -12.31	AVG			
7	0.860				9.67		33.68			-12.31	QP			
8	0.860				9.68		38.21			-17.73	AVG			
9	1.017				9.69		38.76			-17.24	QP			
10 *	1.017				9.69		34.33			-11.67	AVG			
		4 29.52			9.72		39.24			-16.76	QP			

REMARKS:

12

1.3504

(1) Measurement Value = Reading Level + Correct Factor.

9.72

33.70

46.00 -12.30 AVG

(2) Margin Level = Measurement Value - Limit Value.

23.98

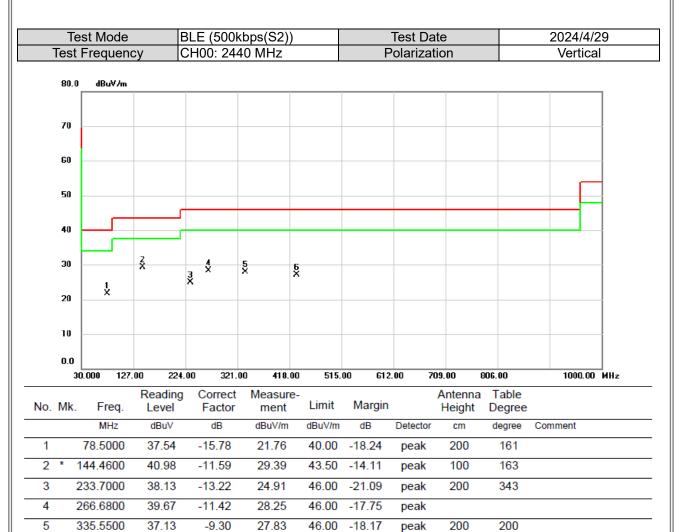
BIL

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

No. Mk	. Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2224	32.44	9.63	42.07	62.73	-20.66	QP	
2	0.2224	27.08	9.63	36.71	52.73	-16.02	AVG	
3	0.3772	25.57	9.63	35.20	58.34	-23.14	QP	
4	0.3772	22.94	9.63	32.57	48.34	-15.77	AVG	
5	0.5404	27.48	9.64	37.12	56.00	-18.88	QP	
6	0.5404	23.81	9.64	33.45	46.00	-12.55	AVG	
7	0.7925	26.64	9.67	36.31	56.00	-19.69	QP	
8	0.7925	23.15	9.67	32.82	46.00	-13.18	AVG	
9	1.0265	28.78	9.69	38.47	56.00	-17.53	QP	
10	1.0265	24.18	9.69	33.87	46.00	-12.13	AVG	
11	1.3595	28.82	9.72	38.54	56.00	-17.46	QP	
12 *	1.3595	24.18	9.72	33.90	46.00	-12.10	AVG	


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

<u>31L</u>

-18.85

46.00

200

peak

250

REMARKS:

6

431.5800

(1) Measurement Value = Reading Level + Correct Factor.

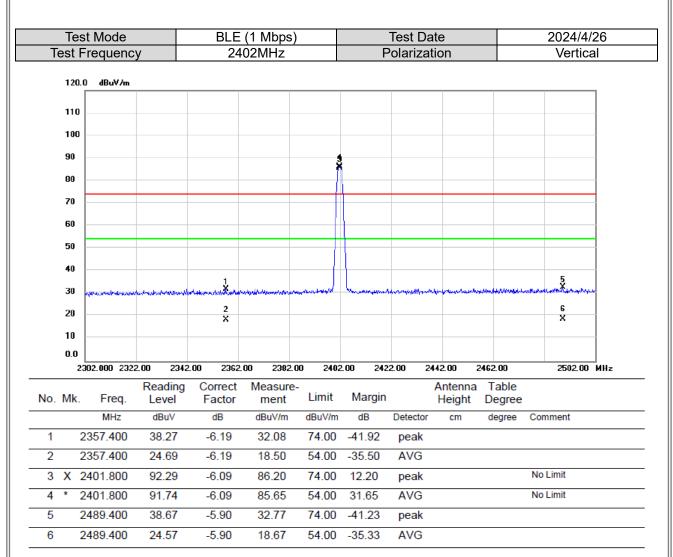
-6.54

27.15

(2) Margin Level = Measurement Value - Limit Value.

33.69

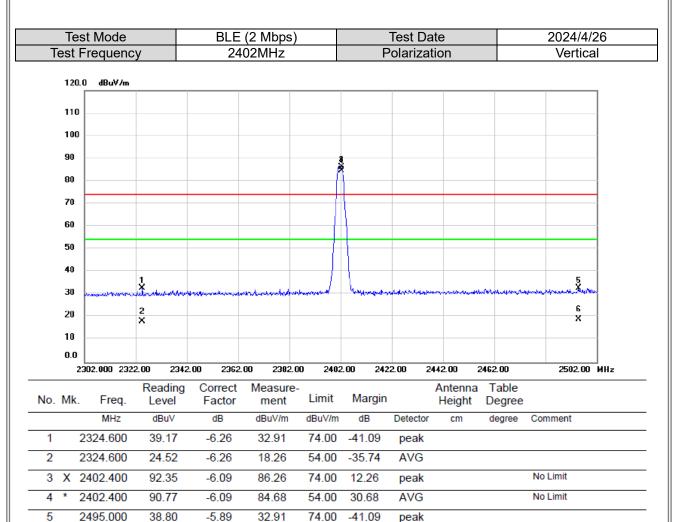
<u>3ĩL</u>


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

BTL


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

31

	Te	est Mode		BLE	(1 Mbps)		•	Test Da	P		2024/4/26
Т		Frequenc	v		.80MHz	<u> </u>		olarizat			Vertical
-			J				•	0.001			
	120).0 dBu∀/m									
	110	,									
	100	J									
	90					4					
	80					, ř					
	70										
	60										
	50										
	40	L								5	
	30	Carpenane-terrolitely	innternentidentation	entre and a start three to	ede-topo,-states,easter-th-	var alf the second	Manhamath	ernahatingtiftendliget	ales and the second	ографија 6	and the second state of the se
	20	ř.								x	
	10										
	0.0	2380.000 2400	0.00 2420.	.00 2440.	.00 2460.0	00 2480	.00 250	0.00 25	20.00 3	2540.00	2580.00 MHz
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2381.000	37.53	-6.13	31.40	74.00	-42.60	peak			
2		2381.000	24.21	-6.13	18.08	54.00	-35.92	AVG			
		2479.800	91.61	-5.92	85.69	74.00	11.69	peak			No Limit
4	*	2479.800	90.97	-5.92	85.05	54.00	31.05	AVG			No Limit
_		2544.200	38.30	-5.70	32.60	74.00	-41.40	peak			
5		2544.200	24.67	-5.70	18.97		-35.03	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

54.00 -34.87

AVG

REMARKS:

6

2495.000

(1) Measurement Value = Reading Level + Correct Factor.

-5.89

19.13

(2) Margin Level = Measurement Value - Limit Value.

25.02

		est Mode			(2 Mbps))		Test Da			2024/4/26	5
Т	est	Frequenc	у	24	80MHz		P	olarizat	ion		Vertical	
	120	.0 dBuV/m										1
	110	ı										
	100	ı										
	90					A						
	80					×						
	70											
	60						}					
	50											
	40							F				
	30	1	the contraction of the second s	haben and the second second	maderationation	aman	hermony	5	, Marian Mar	us de <mark>ante</mark> l antes de la constantes de la constante de la const	where we wanted a state of the second s	
	20	2 X						X E				
	10											
	0.0											
	:	2380.000 2400	.00 2420	.00 2440	.00 2460.	00 2480	.00 250	0.00 2		2540.00	2580.00	MHz
No.	Mk	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2383.400	38.44	-6.13	32.31	74.00	-41.69	peak				
2		2383.400	24.57	-6.13	18.44	54.00	-35.56	AVG				
		2479.400	91.49	-5.92	85.57	74.00	11.57	peak			No Limit	
4		2479.400	89.83	-5.92	83.91	54.00	29.91	AVG			No Limit	
5		2501.400	38.66	-5.88	32.78	74.00		peak				
6		2501.400	24.99	-5.88	19.11	54.00	-34.89	AVG				

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

		est Mode			00kbps(S	2))		Test Dat			2024/4/26	6
T	est	Frequenc	у	24	02 MHz		P	olarizati	on		Vertical	
	120).0 dBuV/m										
	120											
	110	ı										
	100	ı										
	90					3						
	80					Ă						
	70											
	60											
	50											
	40			1 X		[5	
	30	the work of the second	hat Marit Considerations		Antonionallindicateda	en an	man have been been been been been been been be	k-surgebol, Howard	n den hellen normen	the second second		
	20			2 X							6 X	
	10											
	0.0			00 0000	00 0000				10.00			
		2302.000 2323					.00 242			2462.00	2502.00 M	IHZ
0.	Mk	. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2355.600	38.62	-6.19	32.43	74.00	-41.57	peak				
2		2355.600	24.25	-6.19	18.06	54.00	-35.94	AVG				
3	Х	2402.200	92.43	-6.09	86.34	74.00	12.34	peak			No Limit	
4	*	2402.200	90.97	-6.09	84.88	54.00	30.88	AVG			No Limit	
5		2485.600	38.41	-5.91	32.50	74.00	-41.50	peak				
6		2485.600	24.33	-5.91	18.42	54 00	-35.58	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

STL

	Tes	t Mode		BLE (50	0kbps(S	2))	-	Test Da	te		2024/4/2	26
Te	est F	requenc	у		30 MHz		P	olarizat	ion		Vertica	
	120.	0 dBuV/m										
	120.											1
	110											
	100											
	90											
	80					Ĵ						
	70											4
	60											
	50											-
	40											
		1	a. 11		make water the me		-			5	n han manufacture	
	30		*******	h-viteseniersetense	othander av de la more de	and the second		1999 B. 1998	an a	6	and the second	
	20	2 X								×		1
	10 0.0											1
			0.00 242	0.00 2440.	00 2460.	00 2480	.00 250	0.00 2	520.00	2540.00	2590.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	2	2382.400	37.85	-6.13	31.72	74.00	-42.28	peak				
2		2382.400	24.28	-6.13	18.15		-35.85	AVG				
3		2479.800	91.64	-5.92	85.72	74.00	11.72	peak			No Limit	
4	*	2479.800	90.13	-5.92	84.21	54.00	30.21	AVG			No Limit	
5	1	2544.600	38.93	-5.70	33.23	74.00	-40.77	peak				

20.01 54.00 -33.99 AVG

REMARKS:

6

2544.600

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

-5.70

25.71

		st Mode			25kbps(S	8))		Test D			2024/4/	
Te	est l	Frequency	y	24	02MHz		P	Polariza	ition		Vertica	al
	120	.0 dBuV/m										-
	110											-
	100											_
	90					3						-
	80					, Š						-
	70											4
	60											-
	50											
	40										5	-
	30	anderson	h-hadron and the local distances	1 Alexandreamenterior		mound	Munhamment	nayola that do	Man Manada Mara	spage with the	hourse the second	
	20			2 X							6 X	-
	10											-
	0.0											_
	2	302.000 2322	Reading		00 2382.0 Measure		.00 242	2.00 2	Antenna	2462.00	2502.00	MHz
No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		Height	Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2344.200	38.30	-6.22	32.08	74.00	-41.92	peak				
2		2344.200	24.16	-6.22	17.94	54.00	-36.06	AVG				
3		2402.200	92.39	-6.09	86.30	74.00	12.30	peak			No Limit	
4		2402.200	90.78	-6.09	84.69	54.00	30.69	AVG			No Limit	
5		2489.400	39.65	-5.90	33.75	74.00	-40.25	peak				

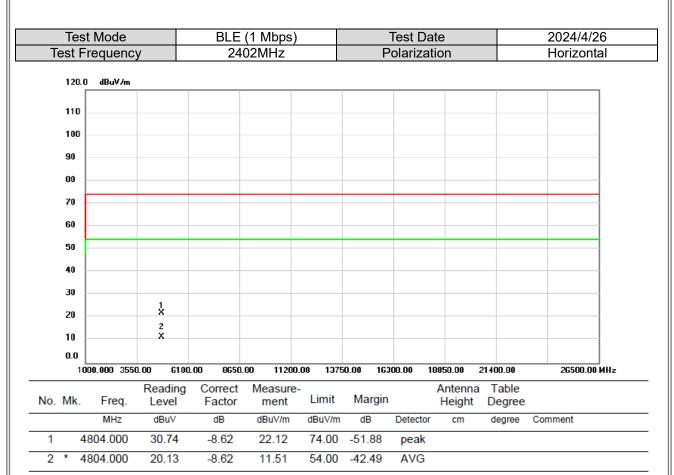
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

3TL

		est Mode			l25kbps(S	58))		Test Da			2024/4/26	6
Т	est	Frequenc	у	24	480MHz		F	Polarizat	ion		Vertical	
	120	.0 dBuV/m										
	110											
	100											
	90					3						
	80					Ĩ						
	70											
	60											
	50											
	40					[
	30	1	with the standards	alaba an	. In all we are the second	man	homene	5	a state of the sta		the gall attraction to a state	
	20	2						6 ×				
		2 X						×				
	10 0.0											
		2380.000 2400	.00 2420	.00 2440	.00 2460.	00 2480	.00 250	0.00 25	20.00 2	540.00	2580.00 MI	Hz
		F	Reading	Correct		;- Limit	Margin		Antenna			
10.	Mk	. Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	Margin dB	Detector	Height	Degree degree	Comment	
1		2381.800	37.81	-6.13	31.68	74.00	-42.32	peak	uii	degree	Comment	
2		2381.800	24.35	-6.13	18.22		-35.78	AVG				
		2479.800	91.39	-5.92	85.47	74.00	11.47	peak			No Limit	
4		2479.800	89.82	-5.92	83.90	54.00	29.90	AVG			No Limit	
-		2511.000	38.86	-5.83	33.03		-40.97	peak				
5		2011.000	30.00	-0.00	00.00							

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

<u>3ĩL</u>



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

<u>3ĩL</u>

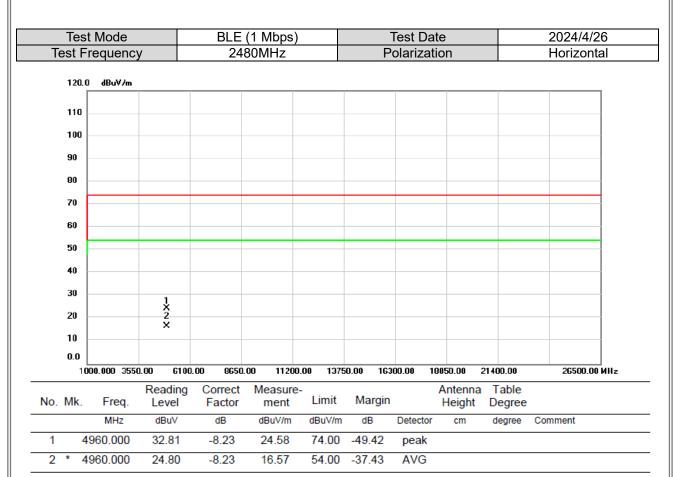
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

<u>3ĩL</u>

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

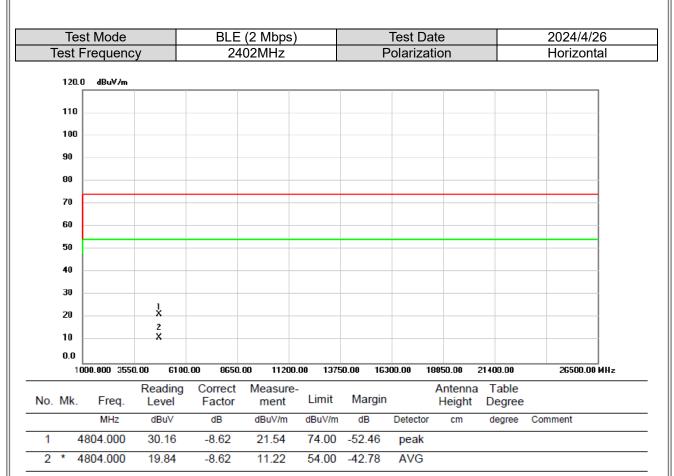

(2) Margin Level = Measurement Value - Limit Value.

	est Mode			(1 Mbps))		Test Da			2024/4/26
les	t Frequenc	;y	24	80MHz			Polarizat	ion		Vertical
12	20.0 dBuV/m									
11	0									
10	00									
90	ı									
80	ı									
70)									
60										
50										
40		1								
20		1 × 2 ×								
10		Â								
0.	0									
	1000.000 355	0.00 6100	0.00 8650.	00 11200).00 1375	0.00 10	5300.00 10	3850.00 21	400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margii	n	Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4960.000	36.61	-8.23	28.38	74.00	-45.62	peak			
2 *	4960.000	27.82	-8.23	19.59	54.00	-34.41	AVG			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

<u>3ĩL</u>

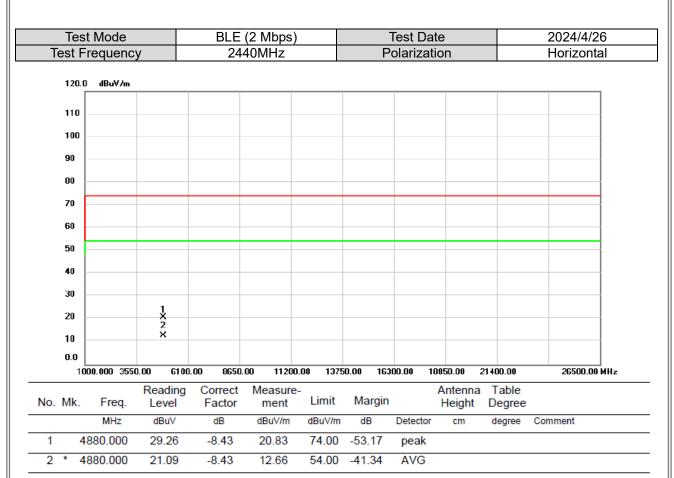


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test				(2 Mbps)		Test Da			2024/4/26
Test Fre	equency		24	02MHz		F	Polarizat	tion		Vertical
120.0	dBu∀/m									
110										
100										
90										
80 -										
70										
60										
50										
40										
30		ł								
20		2								
10 — 0.0		x								
1000.	000 3550.0	io 61 00.	.00 8650.0	0 11200	0.00 1375	0.00 163	300.00 1	8850.00	21400.00	26500.00 MH;
. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin	I	Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
480	4.000	30.05	-8.62	21.43	74.00	-52.57	peak			
2 * 480	4.000	20.07	-8.62	11.45	54.00	-42.55	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

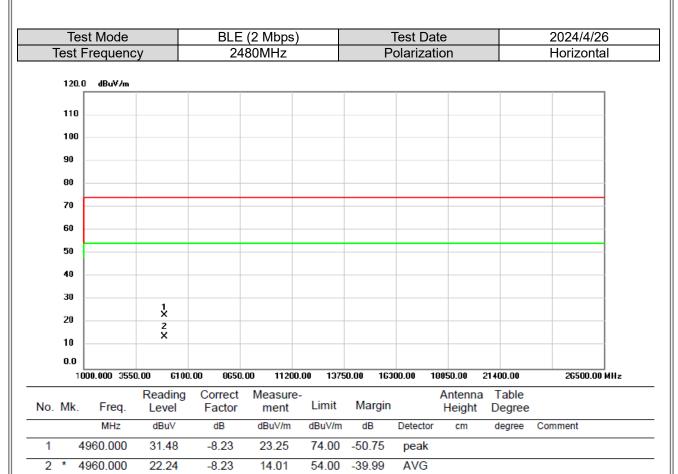
3TL



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

3โL



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

3โL

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

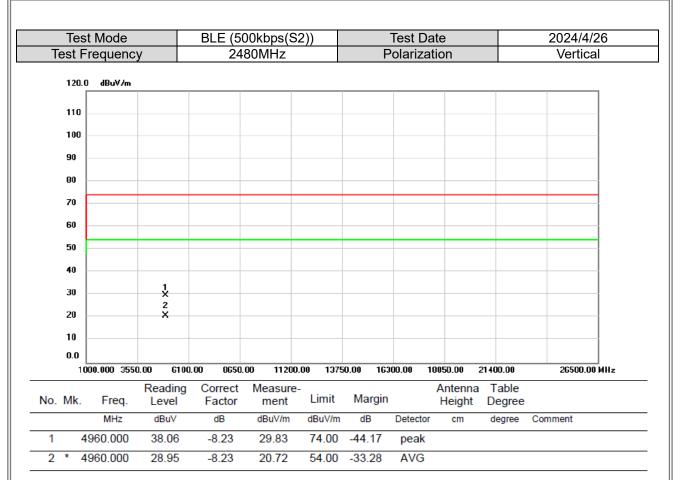
	Mode		BLE (50		52))		Test Da			2024/4/26
Test F	requenc	у	240)2MHz			Polariza	tion		Vertical
120.0	dBuV/m									
]										
110										
100										
90										
80										
70										
60										
50										
40										
30										
20		1 2								
10		x								
0.0										
10	00.000 3550	. OO 61 00.	00 8650.0	0 11200	0.00 1375	0.00 16	300.00 1	8850.00	21400.00	26500.00 MHz
. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margir	1	Antenna Height	Table Degree	
. IVIN.	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
4	804.000	30.04	-8.62	21.42		-52.58	peak	2		
	804.000	23.14	-8.62	14.52		-39.48	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

-								1		0004/4/00
	est Mode			00kbps(S	52))		Test Dat			2024/4/26
lest	Frequenc	;y	24	02MHz			Polarizati	on		Horizontal
120	.0 dBuV/m									
110										
100										
90										
80										
70										
60										
50										
40										
30		1 X								
20		Z X								
10		×						_		
0.0 1	000.000 355	0.00 6100.	.00 8650.	00 11200	.00 1375	0.00 16	300.00 18	850.00 2	21400.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct	Measure ment	- Limit	Margir		Antenna		
INU. IVIK.	MHz	dBuV	Factor dB	dBuV/m	dBuV/m	dB	Detector	cm	Degree degree	Comment
4								CIII	uegree	Comment
	4804.000	32.08	-8.62	23.46		-50.54	peak			
2 *	4804.000	19.24	-8.62	10.62	54.00	-43.38	AVG			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


Test Mode		BLE (500	kbps(S	2))	-	Test Dat	e		2024/4/26
Test Frequence	;y)MHz		Р	olarizati	on		Vertical
120.0 dBuV/m									
110									
100									
90									
80									
70									
60									
50									
40									
30									
20	1 2								
10	×								
0.0									
1000.000 355	0.00 6100.0	0 8650.00	11200.	.00 1375	0.00 163	00.00 18	850.00	21400.00	26500.00 MHz
o. Mk. Freq.	Reading Level	Correct I Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4880.000	30.14	-8.43	21.71	74.00	-52.29	peak			
2 * 4880.000	23.96	-8.43	15.53	54.00	38 / 7	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				00kbps(S2))		Test Dat			2024/4/2	
] (est Freq	luency	/	24	40MHz		-	Polarizati	on		Horizonta	al
	120.0 dl	BuV/m										
	110											
	100											
	90											
	80											
	70											
	60											
	50 40											
	30											
	20		1 2									
	10		x									
	0.0											
	1000.00	00 3550.			.00 1120	0.00 1375	50.00 16			1400.00	26500.00	4Hz
No.	Mk. F	req.	Reading Level	Correct Factor	Measur ment	e- Limit	Margir		Antenna Height	Table Degree		
	I	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	4880	.000	29.81	-8.43	21.38		-52.62	peak				
2	* 4880	.000	23.27	-8.43	14.84	54.00	-39.16	AVG				

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mo	de	BLE (5	00kbps(S2	2))		Test Da	ite		2024/4/26
Test Frequ	ency	24	80MHz		Р	olarizat	tion		Horizontal
120.0 dBu	v/m								
110									
100									
90									
80									
70									
60									
50									
40									
30	1 X								
20	2 X								
10									
0.0									
1000.000	3550.00 61	00.00 8650	.00 11200.0	00 1375	0.00 163	00.00 1	8850.00	21400.00	26500.00 MHz
o.Mk.Fre	Readir q. Level		Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MF		dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4960.0	00 34.28	-8.23	26.05	74.00	-47.95	peak			
2 * 4960.0	00 25.64	-8.23	17.41	54.00	-36.59	AVG			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

	Mode			5kbps(S	8))		Test Dat			2024/4/26
Test Fr	requency	/	240	2MHz		P	olarizati	on		Vertical
120.0 Г	dBuV/m									
110										
100										
90										
80										
70										
60										
50										
40										
30 20		1 X								
10		2 X								
0.0										
10	00.000 3550			00 11200).00 1375	0.00 163	00.00 1	8850.00 2	21 400.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4	774.000	32.63	-8.70	23.93	74.00	-50.07	peak			
2 * 4	774.000	23.32	-8.70	14.62	54.00	-39.38	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mode			25kbps(S	8))		Test Dat			2024/4/26
Test	Frequence	;y	240	02MHz		F	Polarizati	on		Horizontal
12	0.0 dBuV/m	,,								
11	0									
10	0									
90										
80										
70										
60										
50										
40										
30		1×								
20 10		2 X								
0.1		Â								
0.	1000.000 355	0.00 6100	.00 8650.0	0 11200	.00 1375	0.00 16	300.00 18	850.00	21400.00	26500.00 MHz
No. M	. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4804.000	29.49	-8.62	20.87	74.00	-53.13	peak			
2 *	4804.000	19.51	-8.62	10.89	54.00	-43.11	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

3โL

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

3โL

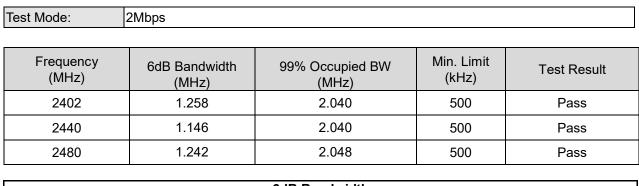
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

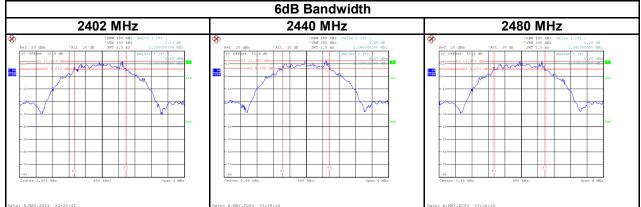
	Mode			25kbps(S	(8)		Test Dat			2024/4/26
Test Fr	equency	/	248	80MHz		P	Polarizati	on		Vertical
120.0	dBu∀/m									
Γ										
110										
100 -										
90 -										
80 -										
70										
60 -										
50										
40										
30 -		1×								
20 -		2 ×								
10										
0.0										
100	0.000 3550					0.00 163			21400.00	26500.00 MI
o. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		Antenna Height	I Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 49	60.000	38.13	-8.23	29.90	74.00	-44.10	peak			

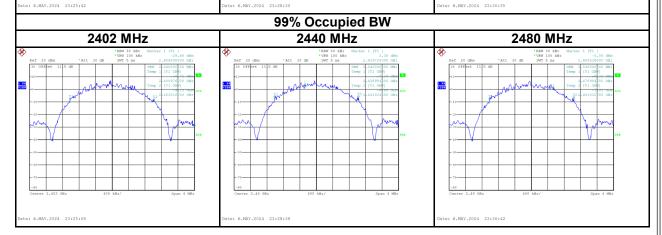

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

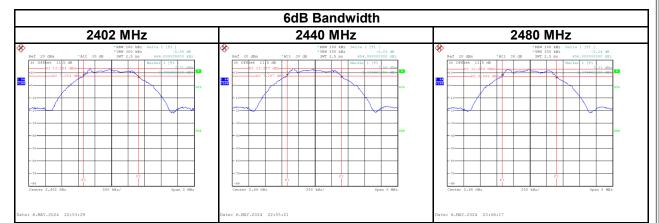
Test Mod			5kbps(S8	3))		Test Da			2024/4/26
Test Freque	ncy	248	30MHz			Polariza	ition		Horizonta
120.0 dBuV	'n								
110									
100									
90									
80									
70									
60									
50									
40									
30									
20	1 2 X								
10	ž								
0.0									
1000.000	3550.00 610	0.00 8650.0	0 11200.0	00 1375	0.00 16	300.00 1	8850.00	21400.00	26500.00 MI
	Reading		Measure-	Limit	Morgin			Table	
No. Mk. Free		Factor	ment	Limit	Margir		Height	Degree	0
MHz		dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 4960.00		-8.23	25.09	74.00	-48.91	peak			
2 * 4960.00	0 24.97	-8.23	16.74	54.00	-37.26	AVG			

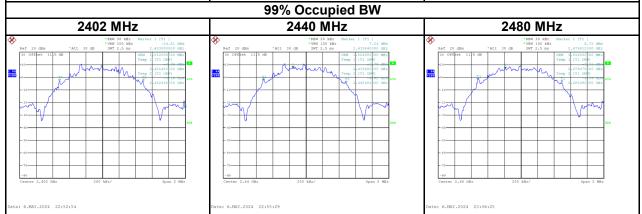
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

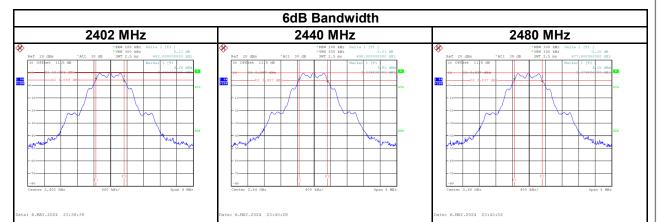


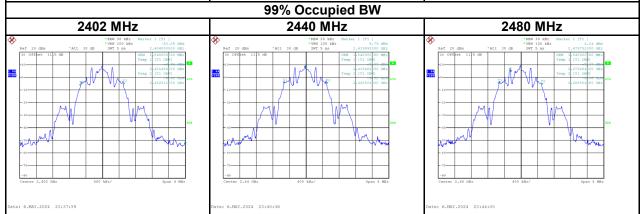









Test Mode: 500kbps(S2)										
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result						
2402	0.666	1.012	500	Pass						
2440	0.655	1.004	500	Pass						
2480	0.656	1.016	500	Pass						



Test Mode: 125kbps(S8)									
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result					
2402	0.682	1.048	500	Pass					
2440	0.690	1.040	500	Pass					
2480	0.678	1.040	500	Pass					

APPENDIX E OUTPUT POWER

BIL

Test Mode :	1Mbps	1	Tested Date 2	024/5/6	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	13.43	0.0220	30.00	1.0000	Pass
2440	13.38	0.0218	30.00	1.0000	Pass
2480	13.06	0.0202	30.00	1.0000	Pass

Test Mode :

2Mbps

Tested Date 2024/5/6

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	13.16	0.0207	30.00	1.0000	Pass
2440	13.40	0.0219	30.00	1.0000	Pass
2480	12.88	0.0194	30.00	1.0000	Pass

Test Mode :	500kbps(S2)	Tested Date	2024/5/6

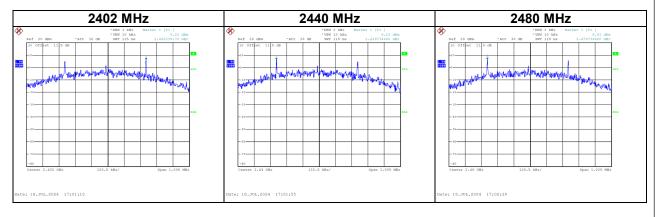
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	13.38	0.0218	30.00	1.0000	Pass
2440	13.45	0.0221	30.00	1.0000	Pass
2480	13.19	0.0208	30.00	1.0000	Pass

Test Mode :

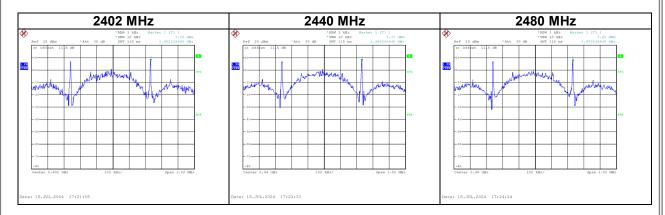
125kbps(S8)

Tested Date 2024/5/6

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	13.24	0.0211	30.00	1.0000	Pass
2440	13.31	0.0214	30.00	1.0000	Pass
2480	12.76	0.0189	30.00	1.0000	Pass

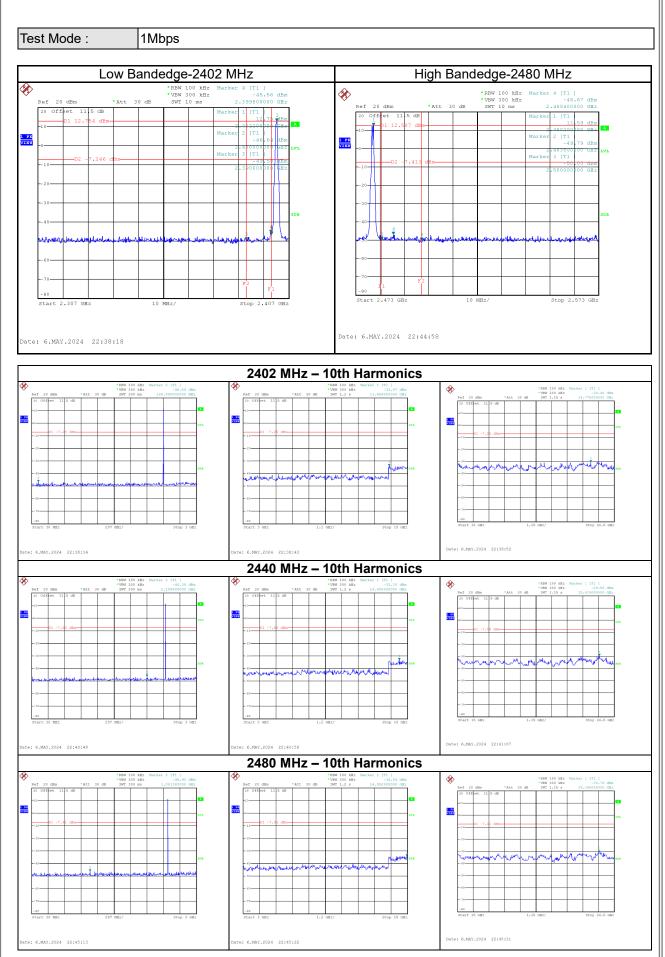

APPENDIX F POWER SPECTRAL DENSITY TEST

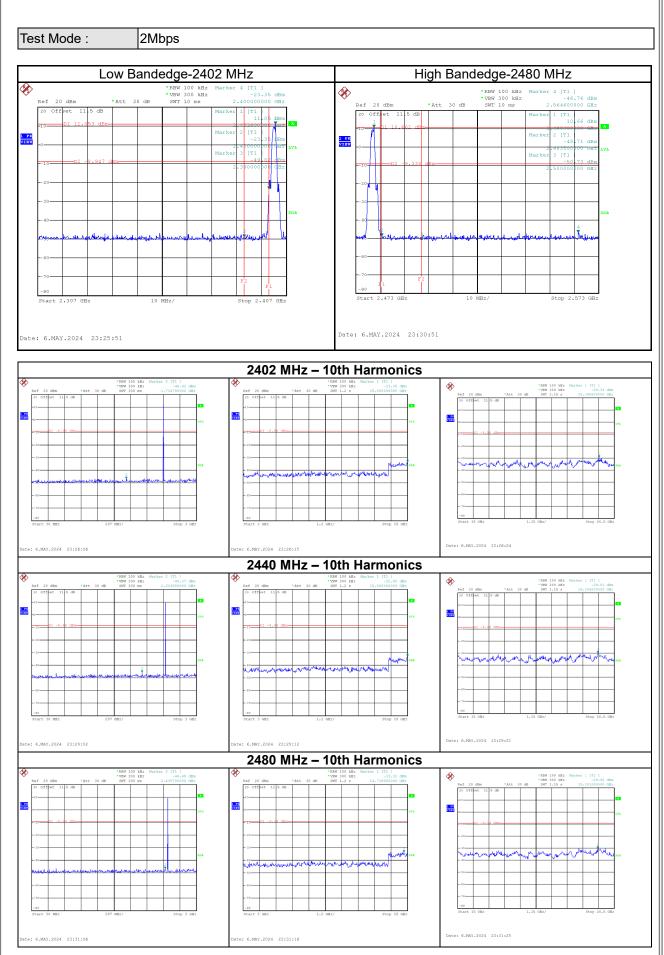
est Mode : 1Mbps			Report No	
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz		Test Result
2402	-3.65	8		Pass
2440	-3.20	8		Pass
2480	-3.47	8		Pass
2402 MHz	244() MHz		2480 MHz
so orfeve: 11 0 cm so so			Date: 18.JUL.2024 1	*800 3 M (100 H (101) *000 3 M (100 H (101) 800 3 M (100 H (101 H (100 H (101 H (1
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz		Test Result
2402	-6.30	8		Pass
2440 2480	-7.49 -6.34	8		Pass Pass
2400	-0.34	0		Fass
2402 MHz		D MHz 2023 J Mar 102 J	Paf 20 dBm F0 OFFAct 3116 d	2480 MHz



Test Mode : 500kbps(S2)					
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result		
2402	6.22	8	Pass		
2440	6.21	8	Pass		
2480	6.41	8	Pass		

Test Mode :	125kbps(S8)
-------------	-------------


Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	7.16	8	Pass
2440	7.37	8	Pass
2480	7.02	8	Pass



APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSION

