

FCC Radio Test Report FCC ID: 2BCGWRE605XV2

This report concerns: Class II permissive Change

Project No. 2405G090

Equipment : AX1800 Wi-Fi 6 Range Extender

Brand Name : tp-link : RE605X Test Model Series Model : N/A

: TP-LINK CORPORATION PTE. LTD. Applicant

Address 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

: TP-LINK CORPORATION PTE. LTD. Manufacturer

: 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987 Address

Date of Receipt : May 23, 2024

: May 23, 2024 ~ May 29, 2024 Date of Test

Issued Date : May 30, 2024

Report Version : R00

Test Sample : Engineering Sample No.: SSL20240523110 : FCC CFR Title 47, Part 15, Subpart C Standard(s)

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

> Grani Zhou
>
> Grani Zhou
>
> Chay. Cai Prepared by

Approved by

Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1 . APPLICABLE STANDARDS	5
2 . SUMMARY OF TEST RESULTS	5
2.1 TEST FACILITY	6
2.2 MEASUREMENT UNCERTAINTY	6
2.3 TEST ENVIRONMENT CONDITIONS	6
3 . GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF EUT	7
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.4 SUPPORT UNITS	10
3.5 CUSTOMER INFORMATION DESCRIPTION	10
4 . RADIATED EMISSIONS	11
4.1 LIMIT	11
4.2 TEST PROCEDURE	11
4.3 DEVIATION FROM TEST STANDARD	12
4.4 TEST SETUP	12
4.5 EUT OPERATING CONDITIONS	13
4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ	13
4.7 TEST RESULTS - ABOVE 1000 MHZ	13
5 . MEASUREMENT INSTRUMENTS LIST	14
6 . EUT TEST PHOTO	15
APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	17
APPENDIX B - RADIATED EMISSION- ABOVE 1000 MHZ	20

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2405G090	R00	Original Report.	May 30, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX A APPENDIX B	PASS		

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The worst cases of radiated emissions except 9kHz to 30 MHz have been re-evaluated by sample of FCC ID: 2BCGWRE605XV2, model name: RE605X. It is found that the new data are the worse, so the test data are reissue from the FCC ID: 2BCGWRE605XV2, model name: RE605X. Model difference(s): (1) Model RE605X changed the signal transformer of the network port. (2) The heat sink on the back of the PCB has been removed and a graphite heat sink is pasted on the upper cover housing instead.
- (3) The other test records and results please refer to the test report number: FR3N1401A, issued date is 2024-03-20, and issued by:

Test Laboratory: Sporton International Inc.(ShenZhen)

Address: 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

Which was accredited by A2LA, FCC registration number is 421272, with the scopes of cited standards in this test report.

This report is only valid conjunction with the above referenced test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan City, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.40
DG-CB03	CIEDD	30MHz ~ 200MHz	Н	3.62
(3m)	m) CISPR	200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03	03 CISPR	1GHz ~ 6GHz	4.08
(3m)	CISER	6GHz ~ 18GHz	4.62

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
Radiated Emissions -30MHz to 1000MHz	23°C	53%	AC 120V/60Hz	Jensen Zhou	May 23, 2024
Radiated Emissions -Above 1000MHz	24°C	56%	AC 120V/60Hz	Jensen Zhou	May 29, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	AX1800 Wi-Fi 6 Range Extender
Brand Name	tp-link
Test Model	RE605X
Series Model	N/A
Model Difference(s)	N/A
Power Source	AC Mains.
Power Rating	100-240V~
Operation Frequency	2412 MHz ~ 2462 MHz
	IEEE 802.11b: DSSS
Modulation Type	IEEE 802.11g/n: OFDM
	IEEE 802.11ax: OFDMA
	IEEE 802.11b: 11/5.5/2/1 Mbps
Bit Rate of Transmitter	IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps
	IEEE 802.11n: up to 300 Mbps
	IEEE 802.11ax: up to 574 Mbps

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20) CH03 - CH09 for IEEE 802.11n(HT40), IEEE 802.11ax(HE40)							
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	01	2412	04	2427	07	2442	10	2457
	02	2417	05	2432	08	2447	11	2462
Γ	03	2422	06	2437	09	2452		

3. Table for Filed Antenna:

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd mod<="" th=""><th>es></th><th></th><th></th><th></th><th></th><th></th></cdd>	es>					
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4 GHz	2.00	2.00	2.00	5.01	0.00	0.00

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

PSD Limit Reduction = DG(PSD) - 6dBi, (min = 0)

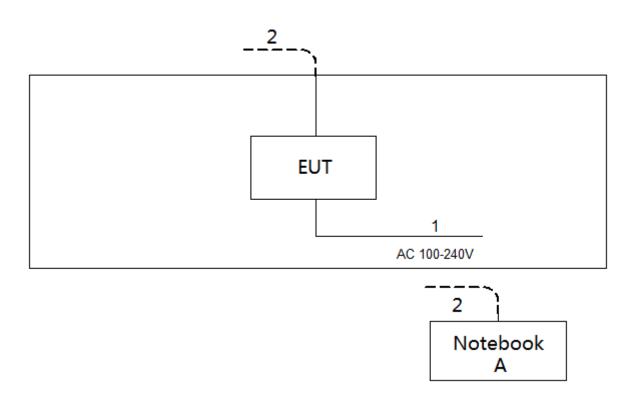
3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 06

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

Radiated emissions test - Below 1GHz				
Final Test Mode	Description			
Mode 1	TX B Mode Channel 06			


Radiated emissions test - Above 1GHz				
Final Test Mode	Description			
Mode 1	TX B Mode Channel 06			

NOTE:

(1) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
Α	Notebook	Honor	14SER5 3500	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.2m
2	RJ45 Cable	NO	NO	10m

3.5 CUSTOMER INFORMATION DESCRIPTION

1) The antenna gain is provided by the manufacturer.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000 MHz)

Frequency (MHz)	Field Strength (µV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

Frequency (MHz)	(dBuV/m at 3 m)		
Frequency (WITIZ)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Spectrum Parameters	Setting	
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz	

Spectrum Parameters	Setting	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1 MHz / 3 MHz for PK value	
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value	

Receiver Parameters	Setting	
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector	

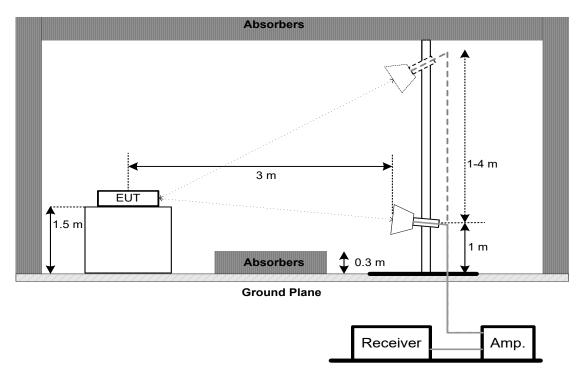
4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

Absorbers

3 m


Ground Plane

Receiver Amp.

30 MHz to 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX A.

4.7 TEST RESULTS - ABOVE 1000 MHZ

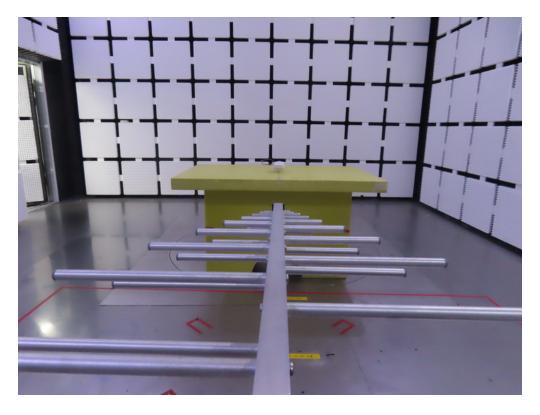
Please refer to the APPENDIX B.

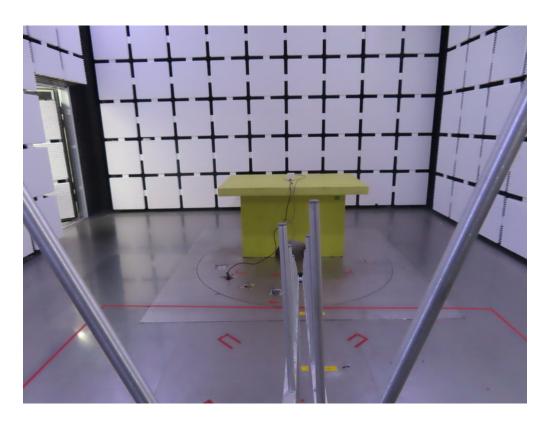
5. MEASUREMENT INSTRUMENTS LIST

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck VULB 9168		1462	Dec. 13, 2024	
2	Attenuator	Attenuator EMC INSTRUMENT		AT-06009	Dec. 13, 2024	
3	Preamplifier	EMC INSTRUMENT	EMC001330	980863	Apr. 07, 2025	
4	Cable	RegalWay LMR400-NMNM-12.5m		N/A	Jul. 04, 2024	
5	Cable RegalWay LMR400-NMNM-3m		N/A	Jul. 04, 2024		
6	Cable	RegalWay	LMR400-NMNM-0.5m	N/A	Jul. 04, 2024	
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
8	Positioning Controller	MF	MF-7802	N/A	N/A	
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
10	966 Chamber room	СМ	9*6*6	N/A	May 16, 2025	

	Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Nov. 17, 2024	
3	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Jun. 16, 2024	
4	Double Ridged Guide Antenna	7 FIS 3115		75789	May 31, 2024	
5	Cable	RegalWay	RWLP50-4.0A-SMSM-1 2.5M	N/A	Feb. 19, 2025	
6	Cable	RegalWay	RWLP50-4.0A-NMRAS M-2.5M	N/A	Aug. 08, 2024	
7	Cable	RegalWay	RWLP50-4.0A-NMRAS MRA-0.8M	N/A	Aug. 08, 2024	
8	966 Chamber room	CM	9*6*6	N/A	May 19, 2025	
9	Attenuator	Attenuator Talent Microwave TA10A2-S-18		N/A	N/A	
10	Filter	STI	STI15-9912	N/A	Jun. 16, 2024	
11	Positioning Controller	MF	MF-7802	N/A	N/A	
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	

Remark "N/A" denotes no model name, serial no. or calibration specified.

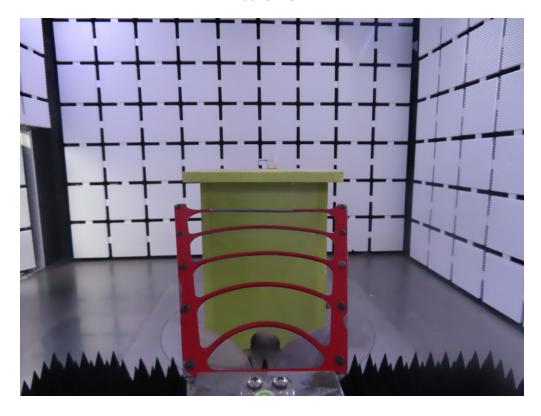

All calibration period of equipment list is one year.

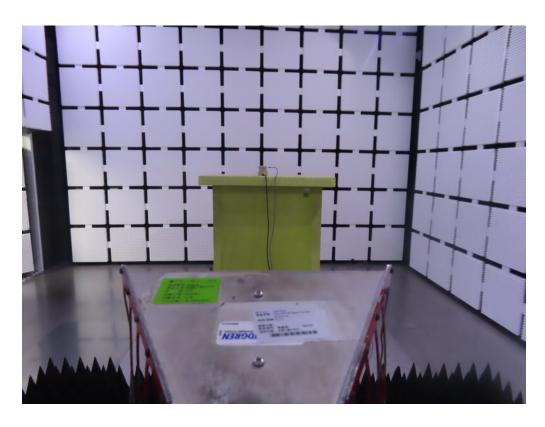


6. EUT TEST PHOTO

Radiated Emissions Test Photos

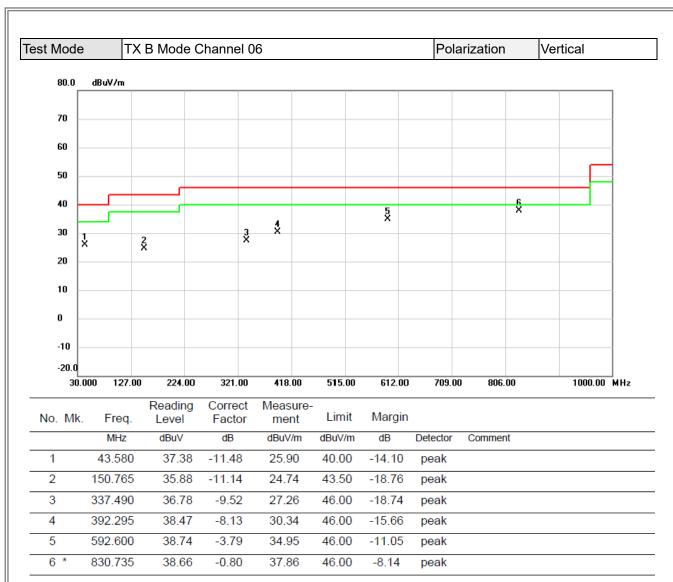
30 MHz to 1 GHz

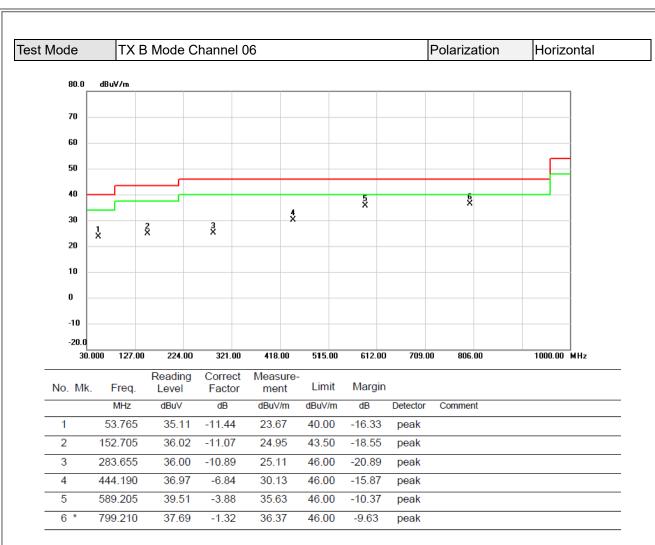




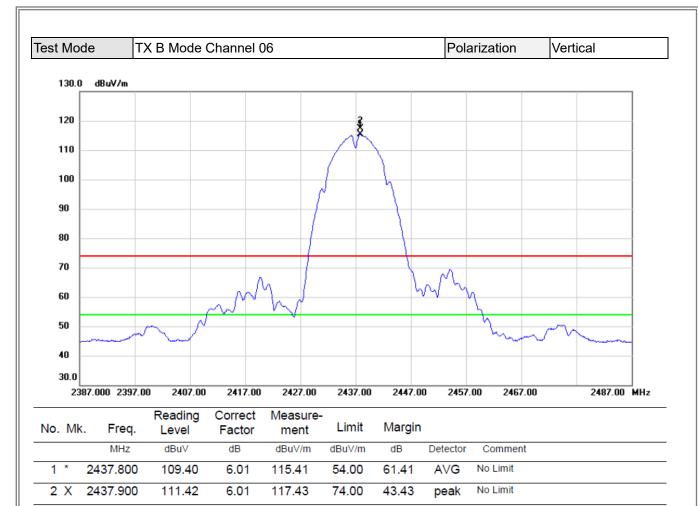
Radiated Emissions Test Photos

Above 1 GHz

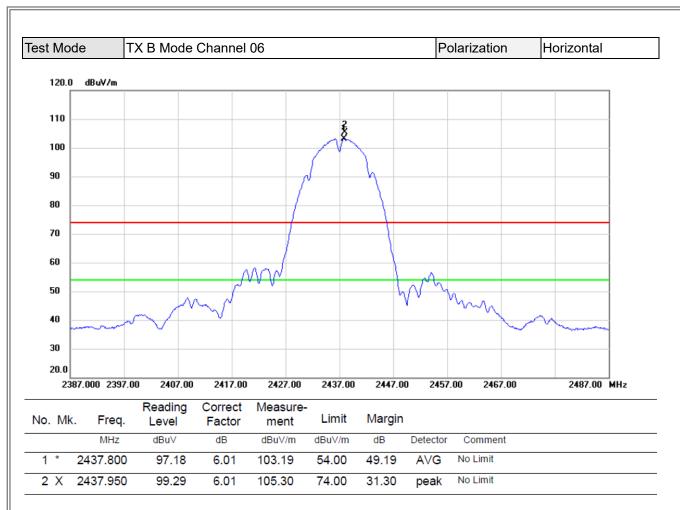



APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1	000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value


APPENDIX B - RADIATED EMISSION- ABOVE 1000 MHZ

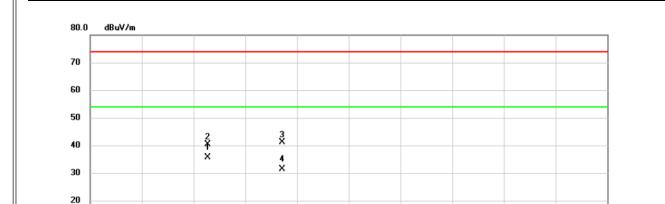
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value

18000.00 MHz

Vertical

Polarization


Test Mode

10

0

-10 -20.0

1000.000 2700.00

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨/m	dBuV/m	dB	Detector	Comment
1	*	4874.025	34.68	0.86	35.54	54.00	-18.46	AVG	
2		4874.050	39.63	0.86	40.49	74.00	-33.51	peak	
3		7308.375	35.29	5.93	41.22	74.00	-32.78	peak	
4		7309.600	25.56	5.93	31.49	54.00	-22.51	AVG	

9500.00

11200.00

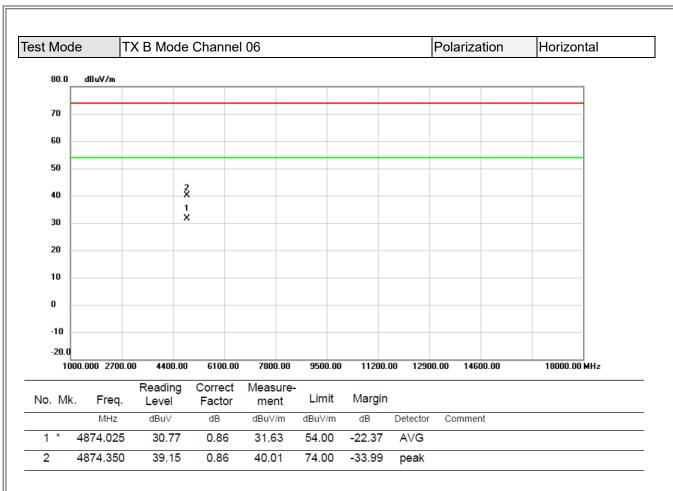
12900.00

14600.00

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

4400.00


6100.00

7800.00

TX B Mode Channel 06

(2) Margin Level = Measurement Value - Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value

End of Test Report