

FCC Radio Test Report

FCC ID: 2BCGWH500

Report No. : BTL-FCCP-4-2404G123 Equipment : Smart HomeBase

Model Name : Tapo H500
Brand Name : tp-link, tapo

Applicant: TP-LINK CORPORATION PTE. LTD.

Address : 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

Radio Function : SRD (908 - 922MHz)

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/5/31

Date of Test : 2024/6/4 ~ 2024/6/26

Issued Date : 2024/9/26

The above equipment has been tested and found in compliance with the requirement of the above standards by eLab Inc.

Prepared by :

Poken Huang, Engineer

Poken Guar

Approved by : Peter Chen, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2404G123 Page 2 of 51 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 1.2 MEASUREMENT UNCERTAINTY 7 1.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 7 2 **GENERAL INFORMATION** 8 2.1 **DESCRIPTION OF EUT** 8 2.2 **TEST MODES** 9 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 10 2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 **TEST PROCEDURE** 12 **TEST SETUP** 13 3.3 3.4 **TEST RESULT** 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 **TEST SETUP** 15 4.4 **EUT OPERATING CONDITIONS** 16 4.5 TEST RESULT - BELOW 30 MHZ 16 TEST RESULT - 30 MHZ TO 1 GHZ 4.6 16 4.7 TEST RESULT - ABOVE 1 GHZ 16 **BANDWIDTH TEST** 5 17 5.1 APPLIED PROCEDURES / LIMIT 17 5.2 TEST PROCEDURE 17 5.3 **TEST SETUP** 17 5.4 **EUT OPERATION CONDITIONS** 17 5.5 **TEST RESULTS** 17 MAXIMUM OUTPUT POWER 6 18 6.1 APPLIED PROCEDURES / LIMIT 18 6.2 **TEST PROCEDURE** 18 **TEST SETUP** 6.3 18 **EUT OPERATION CONDITIONS** 6.4 18 6.5 **TEST RESULTS** 18 7 CONDUCTED SPURIOUS EMISSION 19 7.1 LIMIT 19 7.2 **TEST PROCEDURE** 19 7.3 **DEVIATION FROM STANDARD** 19 7.4 **TEST SETUP** 19 7.5 **EUT OPERATION CONDITIONS** 19 7.6 **TEST RESULTS** 19 POWER SPECTRAL DENSITY 20 8 8.1 LIMIT 20 8.2 **TEST PROCEDURE** 20 8.3 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 8.4 20

8.5	TEST	RESULTS	20
9	LIST OF	MEASURING EQUIPMENTS	21
10 EUT TEST PHOTO		T PHOTO	22
11	EUT PHO	DTOS	22
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	23
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	28
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPEND	IX D	BANDWIDTH	44
APPEND	IXE	MAXIMUM OUTPUT POWER	46
APPEND	IX F	CONDUCTED SPURIOUS EMISSION	48
APPEND	IX G	POWER SPECTRAL DENSITY	50

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2404G123	R00	Original Report.	2024/9/14	Invalid
BTL-FCCP-4-2404G123	R01	Revised report to address comments.	2024/9/26	Valid

Project No.: 2404G123 Page 5 of 51 Report Version: R01

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C							
Standard(s) Section	Test Result	Judgment	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS				
15.209 15.249(a)	Radiated Emissions	APPENDIX B APPENDIX C	PASS				
15.215(c)	Bandwidth	APPENDIX D	PASS				
15.247(b)(3)	Maximum Output Power	APPENDIX E	PASS				
15.247(d)	Conducted Spurious Emission	APPENDIX F	PASS				
15.247(e)	Power Spectral Density	APPENDIX G	PASS				
15.203	Antenna Requirement		Pass	NOTE (3)			

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The report format version is TP.1.1.1.
- (3) The device what use replaceable antennas with non-standard interfaces are considered sufficient to comply with the provisions of 15.203.

Project No.: 2404G123 Page 6 of 51 Report Version: R01

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

⊠ CB21

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The eLab measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

C06

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)			
Occupied Bandwidth	0.53			
Output power	0.37			
Power Spectral Density	0.66			
Conducted Spurious emissions	0.53			
Conducted Band edges	0.53			

NOTE

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Ken Lu
Radiated Emissions	25°C, 65%	AC 120V	Ken Lu
Bandwidth	24°C, 60%	AC 120V	Cheng Tsai
Maximum Output Power	24°C, 60%	AC 120V	Cheng Tsai
Conducted Spurious Emission	24°C, 60%	AC 120V	Cheng Tsai
Power Spectral Density	24°C, 60%	AC 120V	Cheng Tsai

Project No.: 2404G123 Page 7 of 51 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Smart HomeBase
Brand Name	tp-link, tapo
Model Name	Tapo H500
Model Difference	N/A
Software Version	1.X
Hardware Version	1.0
Power Source	DC Voltage supplied from AC adapter. Model: T120200-2B4
Power Rating	I/P: 100-240V~ 50/60Hz 0.8A O/P:12.0V===2.0A
Operation Frequency	920.9 MHz ~ 922.3 MHz
Modulation Type	GFSK
Max. Output Power	15.21 dBm (0.0332W)

NOTE:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

2. Channel List:

Channel	Frequency (MHz)
00	920.9
01	921.7
02	922.3

3. Table for Filed Antenna:

An	ıt.	Brand Name	P/N	Antenna Type	Connector	Gain (dBi)
1		TP-LINK CORPORATION PTE. LTD.	3101506737	Dipole	N/A	-6.10

Note:

The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

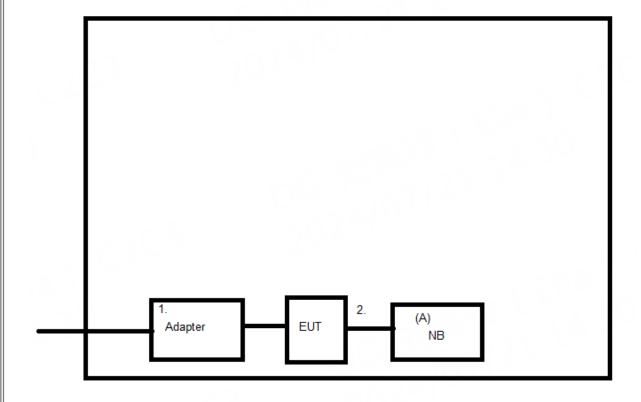
Project No.: 2404G123 Page 8 of 51 Report Version: R01

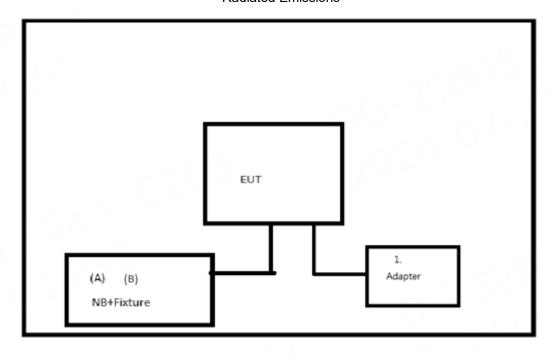
2.2 TEST MODES

Test Items	Test mode	Channel
AC power line conducted emissions	Normal	-
Transmitter Radiated Emissions (below 1GHz)	TX mode	02
Transmitter Radiated Emissions (above 1GHz)	TX mode	00/01/02
Bandwidth	TX mode	00/01/02
Maximum Output Power	TX mode	00/01/02
Conducted Spurious Emission	TX mode	00/01/02
Power Spectral Density	TX mode	00/01/02

NOTE

- (1) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (2) For radiated emissions below 1 GHz test, the channel 03 is found to be the worst case and recorded.
- (3) The test sample with two adapters, only the cable is different. For radiated spurious emissions below 1 GHz test, two adapters had been pre-tested and in this report only recorded the worst case.


Project No.: 2404G123 Page 9 of 51 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

AC power line conducted emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Notebook	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	DC cable	N	N	1m	Supplied by test requester.
2	RJ45 cable	Y	N	1m	Furnished by test lab.

Radiated Emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Fixture	N/A	N/A	N/A	Furnished by test lab.
В	Notebook	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	DC cable	N	N	1m	Supplied by test requester.

Project No.: 2404G123 Page 11 of 51 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Calculation example:					
Reading Level		Correct Factor		Measurement Value	
38.22	+	3.45	=	41.67	

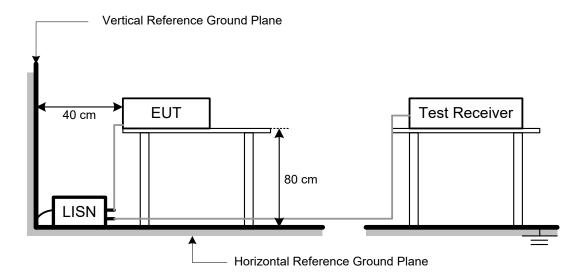
Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

Project No.: 2404G123 Page 12 of 51 Report Version: R01

3.3 TEST SETUP

3.4 TEST RESULT

Please refer to the **APPENDIX A**.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission falls within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

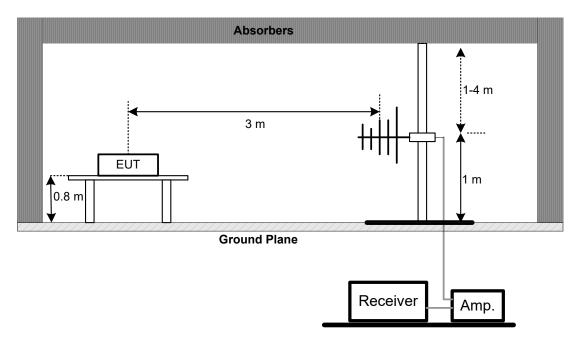
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	=	-9.95

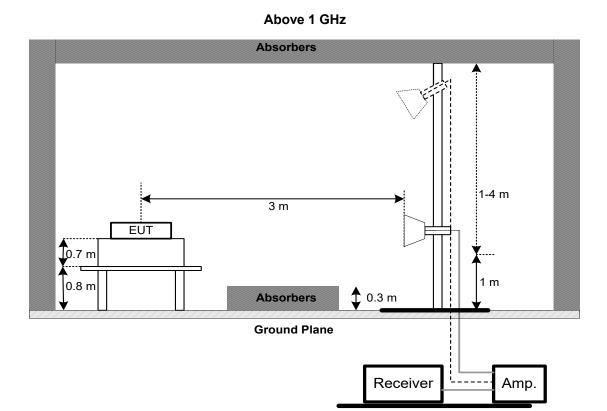
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2404G123 Page 14 of 51 Report Version: R01



4.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 TEST SETUP

30 MHz to 1 GHz

4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit
FCC 15.247(a)(2)	6 dB Bandwidth	>= 500 kHz
	99% Emission Bandwidth	-

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting
Span Frequency	2 MHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Emission Bandwidth:

Spectrum Parameters	Setting
Span Frequency	2 MHz
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.5 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2404G123 Page 17 of 51 Report Version: R01

6 MAXIMUM OUTPUT POWER

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 watt or 30.00 dBm

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	≥ 3×RBW
RBW	3 MHz
VBW	3 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

Spectrum Parameters	Setting	
Span Frequency	At least 1.5 times the OBW	
RBW	1% to 5% of the OBW, not to exceed 1 MHz	
VBW	≥ 3×RBW	
Detector	RMS	
Trace	Max Hold	
Sweep Time	≤ (number of points in sweep) × T (Note)	

Note: Where T is defined in 11.6 of ANSI C63.10-2013.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.5 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2404G123 Page 18 of 51 Report Version: R01

7 CONDUCTED SPURIOUS EMISSION

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For Reference Level:

Setting	
≥ 1.5 times the bandwidth.	
100 kHz	
300 kHz	
Peak	
Max Hold	
Auto	

For Emission Level:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

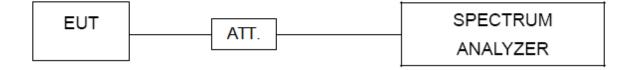
The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 POWER SPECTRAL DENSITY

8.1 LIMIT


Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	900 kHz
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.5 TEST RESULTS

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Two-Line V-Network	R&S	ENV216	101051	2023/7/21	2024/7/20			
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10			
3	EXA Spectrum Analyzer	keysight	N9038A	MY54130009	2023/6/26	2024/6/25			
4 Measurement Software		Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A			

			Radiated Emissio	ns		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7
8	EXA Signal keysight N9020B		MY57120120	2024/2/23	2025/2/22	
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8
11	Horn Ant	Schwarzbeck	BBHA 9170	1136	2023/6/28	2024/6/27
12	TRILOG Broadband Schwarzbeck Antenna		VULB9168	1371	2023/8/8	2024/8/7
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2023/8/8	2024/8/7
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12
16	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8
17	Measurement F7 FMC (Version		N/A	N/A	N/A	

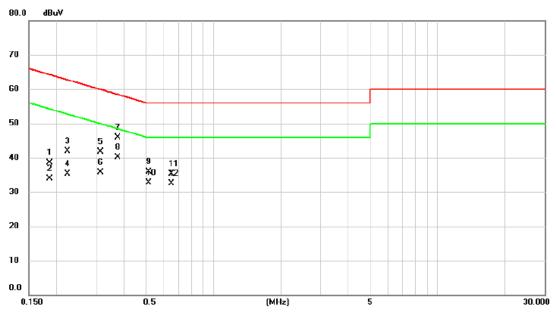
Bandwidth & Maximum Output Power & Power Spectral Density & Conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25	
2	BTL-Conducted Test	N/A	1247788684	N/A	N/A	N/A	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2404G123 Page 21 of 51 Report Version: R01

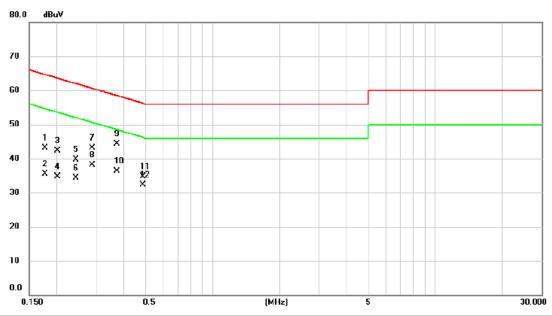
10 EUT TEST PHOTO	
Please refer to APPENDIX-TEST PHOTOS.	
11 EUT PHOTOS	
Please refer to APPENDIX-EUT PHOTOS.	

Project No.: 2404G123 Page 22 of 51 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

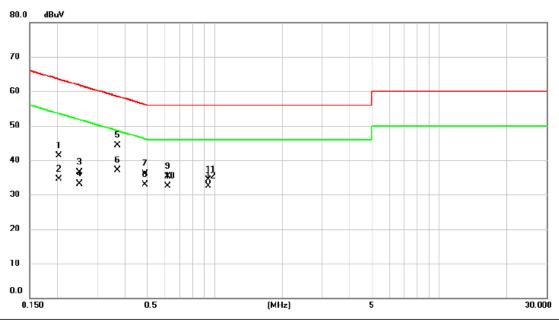
Project No.: 2404G123 Page 23 of 51 Report Version: R01


Ш					
	Test Mode	Normal	Tested Date	2024/6/3	
	Test Frequency	-	Phase	Line	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1867	28.96	9.64	38.60	64.18	-25.58	QP	
2		0.1867	24.19	9.64	33.83	54.18	-20.35	AVG	
3		0.2228	32.18	9.64	41.82	62.71	-20.89	QP	
4		0.2228	25.74	9.64	35.38	52.71	-17.33	AVG	
5		0.3144	32.02	9.65	41.67	59.85	-18.18	QP	
6		0.3144	26.03	9.65	35.68	49.85	-14.17	AVG	
7		0.3733	36.17	9.65	45.82	58.43	-12.61	QP	
8	*	0.3733	30.37	9.65	40.02	48.43	-8.41	AVG	
9		0.5135	26.17	9.66	35.83	56.00	-20.17	QP	
10		0.5135	23.10	9.66	32.76	46.00	-13.24	AVG	
11		0.6485	25.68	9.67	35.35	56.00	-20.65	QP	
12		0.6485	22.90	9.67	32.57	46.00	-13.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

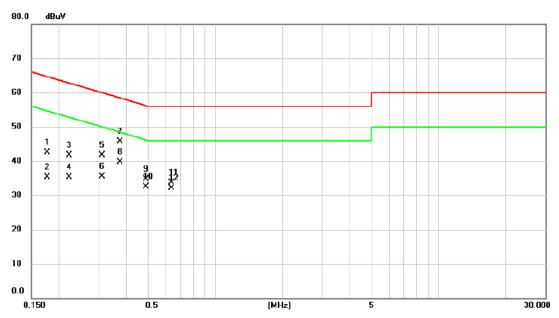
Ш					
	Test Mode	Normal	Tested Date	2024/6/3	
	Test Frequency	-	Phase	Neutral	



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1768	33.43	9.63	43.06	64.63	-21.57	QP	
2	0.1768	25.87	9.63	35.50	54.63	-19.13	AVG	
3	0.2014	32.60	9.63	42.23	63.55	-21.32	QP	
4	0.2014	25.12	9.63	34.75	53.55	-18.80	AVG	
5	0.2441	30.09	9.63	39.72	61.96	-22.24	QP	
6	0.2441	24.66	9.63	34.29	51.96	-17.67	AVG	
7	0.2878	33.45	9.64	43.09	60.59	-17.50	QP	
8	0.2878	28.41	9.64	38.05	50.59	-12.54	AVG	
9	0.3712	34.66	9.63	44.29	58.47	-14.18	QP	
10 *	0.3712	26.68	9.63	36.31	48.47	-12.16	AVG	
11	0.4864	25.05	9.64	34.69	56.23	-21.54	QP	
12	0.4864	22.69	9.64	32.33	46.23	-13.90	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


Ш					
	Test Mode	Idle	Tested Date	2024/6/3	
	Test Frequency	-	Phase	Line	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2021	31.63	9.64	41.27	63.52	-22.25	QP	
2		0.2021	24.83	9.64	34.47	53.52	-19.05	AVG	
3		0.2508	26.84	9.64	36.48	61.73	-25.25	QP	
4		0.2508	23.45	9.64	33.09	51.73	-18.64	AVG	
5		0.3704	34.70	9.65	44.35	58.49	-14.14	QP	
6	*	0.3704	27.50	9.65	37.15	48.49	-11.34	AVG	
7		0.4885	26.45	9.66	36.11	56.19	-20.08	QP	
8		0.4885	23.34	9.66	33.00	46.19	-13.19	AVG	
9		0.6170	25.72	9.67	35.39	56.00	-20.61	QP	
10		0.6170	22.88	9.67	32.55	46.00	-13.45	AVG	
11		0.9410	24.64	9.70	34.34	56.00	-21.66	QP	
12		0.9410	22.71	9.70	32.41	46.00	-13.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Ш					
	Test Mode	Idle	Tested Date	2024/6/3	
	Test Frequency	-	Phase	Neutral	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1776	32.91	9.63	42.54	64.60	-22.06	QP	
2		0.1776	25.68	9.63	35.31	54.60	-19.29	AVG	
3		0.2221	32.14	9.63	41.77	62.74	-20.97	QP	
4		0.2221	25.70	9.63	35.33	52.74	-17.41	AVG	
5		0.3127	32.11	9.63	41.74	59.90	-18.16	QP	
6		0.3127	25.83	9.63	35.46	49.90	-14.44	AVG	
7		0.3747	36.11	9.63	45.74	58.40	-12.66	QP	
8	*	0.3747	30.02	9.63	39.65	48.40	-8.75	AVG	
9		0.4902	25.06	9.64	34.70	56.16	-21.46	QP	
10		0.4902	22.82	9.64	32.46	46.16	-13.70	AVG	
11		0.6350	24.00	9.65	33.65	56.00	-22.35	QP	
12		0.6350	22.51	9.65	32.16	46.00	-13.84	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2404G123 Page 28 of 51 Report Version: R01

		st Mode			de Channe	el 02		Test D			2024/6		
Т	est	Frequenc	ey e	92	22.3MHz		F	Polariza	ation		Vertical		
	80.0	D dBuV/m										7	
	70												
	60												
	50											1	
	40	ı,											
	30		3 X Z X 4		c							-	
	20		× 4	. . 5	×								
	10 0.0											-	
			.00 224	.00 321.	00 418.0	0 515.	00 612	.00 7	709.00	906.00	1000.00	_ MHz	
No.	Mk.	. Freq.	Reading Level	Correct Factor		- Limit	Margin		Antenna Height	Table Degree			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment		
1	*	69.7700	47.44	-13.60	33.84	40.00	-6.16	peak	100	261			
2		140.5800	34.81	-11.92	22.89	43.50	-20.61	peak	200	240			
3		157.0700	40.02	-11.08	28.94	43.50	-14.56	peak	100	329			
4		197.8100	34.76	-14.12	20.64	43.50	-22.86	peak	100	5			
5		293.8400	29.23	-10.30	18.93	46.00	-27.07	peak	100	78			
6		386.9600	29.30	-7.85	21.45	46.00	-24.55	peak	164	360			

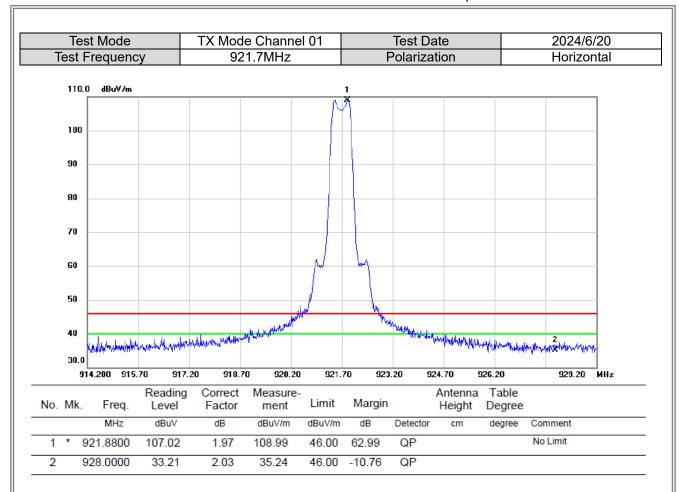
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mode			le Channe	102		Test Da			2024/6/		
T	est	Frequen	icy	92	22.3MHz		P	olariza	tion		Horizontal		
	80.0	dBuV/m	1									7	
	70											_	
	60												
	50												
	40		Ž										
	30	1 ×	, 3 X	4 ×	5 6 X							-	
	20			×									
	10 0.0												
		0.000 12	7.00 224	l.00 321.	00 418.00	D 515.	00 612	.00 7	709.00	806.00	1000.00	_ IMHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment		
1		70.7400	43.26	-13.83	29.43	40.00	-10.57	peak	200	182			
2	*	160.9500	44.56	-11.12	33.44	43.50	-10.06	peak	100	221			
3		197.8100		-14.12	29.35	43.50	-14.15	peak	100	168			
4		271.5300	32.82	-11.20	21.62	46.00	-24.38	peak	100	360			
5		345.2500	32.61	-9.04	23.57	46.00	-22.43	peak	100	293			
6		386.9600	32.11	-7.85	24.26	46.00	-21.74	peak	100	21			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Tes	t Mode		TX Mode	e Channe	l 00		Test Da	te		2024/6/20)
Te	est F	requenc	y	920	0.9MHz		Polarization				Vertical	
	110.0) dBuV/m										
						1 Y	Λ					
	100						1					
	90											
	80											
	70											
	60					\int						
						\ <u>~</u>						
	50					. North						
	40				- North All	Na	TW/W	Made all a			2	
	30.0	fandrik pliftfalker probl	krypturtar-adelphar	Manual Control of the Article of the	MANUAL II.			. A. M. Linke P.V.	no-survey planting	rthannana	May Market 1984	
	91	3.400 914.	90 916.	.40 917.9	0 919.4	0 920.	90 922	2.40 92	23.90 9	25.40	928.40 M	Hz
0.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	* 6	20.6900	104.87	1.96	106.83	46.00	60.83	QP			No Limit	
2		28.0000	33.25	2.03	35.28	46.00	-10.72	QP				

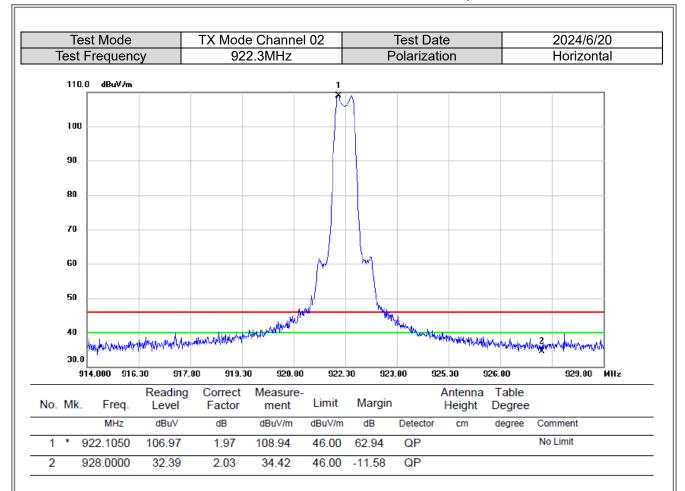
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


	Test Mo				e Channel	00		Test Da			2024/6/2	
Te	est Freq	uenc	У	92	0.9MHz		Р	olarizat	ion		Horizont	al
	110.0 dB	uV/m				1_						1
	100					Ĭ.	1					
!	90											
;	80											
	70											
ı	60					M	-					
!	50				100							
	40				Juny 1		, _{(M} ,	WANTA WATER TO				ļ
;	30.0	apropyt/h	arandopular middle	profesionalist	10 919 40			AN ANALYSIA	arapo Mariapola da apol	warmet de datase.	hyraphaphaphaphaphaphaphaphaphaphaphaphapha	
	913.400	914.9	90 916.4	40 917.9	919.40	920.	90 922	2.40 93	23.90	925.40	928.40	MHz
No. N		req.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	М	Hz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1 '	* 920.6	900	105.44	1.96	107.40	46.00	61.40	QP	200	109	No Limit	
2	928.0	000	31.60	2.03	33.63	46.00	-12.37	QP	200	225		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	st Mode			e Channe	l 01		Test Da			2024/6/20
Test I	Frequenc	:y	92	1.7MHz		F	Polariza	tion		Vertical
110	0 dBuV/m									
110.	G GBGV7III					1 X				
					Λ	7				
100										
90					-					
30										
80										
70										
						1				
60					M	M				
50						\				
50										
40				the March	М	"My	A.			gradegran Lifetherard adverse
	Kunglahas Addikari41-17	KKANAMININANAN	, nt. official physical programmer, and the state of the	ANGER AND A			W. Marketin V.	haperekenggelden	hanaly wally had had	raham bahambahan
30.0	14.200 915.				921.	70 000	.20 9	24.70 9	26.20	929.20 MHz
9	14.200 815.					70 923	1.20 S			929.20 MHZ
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 * 9	921.8800	104.81	1.97	106.78	46.00	60.78	QP			No Limit
2 9	928.0000	33.48	2.03	35.51	46.00	-10.49	QP			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	st Mode			e Channel	02		Test Da			2024/6/2	
Test F	requenc	y	92:	2.3MHz		F	Polariza	tion		Vertica	l
110.	0 dBuV/m										
						Λ					
100						1					
90											
80											
70											
60					N	4					
50											
40				A Landon Marie	ľ	MANA	Wheel.			_	
30.0	hydrogheddyn	Magahasharharas	44pmarallyanyanyahil	(this)				Ministration	apple politica de la constante	alvillannidadkapapa	
	 4.800 916.				922.3	30 923	.80 9	25.30	926.80	929.80	 MHz
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1 * 9	22.0900	104.86	1.97	106.83	46.00	60.83	QP			No Limit	
2 9	28.0000	33.67	2.03	35.70	46.00	-10.30	QP				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2404G123 Page 37 of 51 Report Version: R01

Т	est Mode		TX Mode	Channel	00		Test Da	ate		2024/6/21
Tes	t Frequenc	су	920).9MHz		Р	olariza	tion		Vertical
12	0.0 dBuV/m									
11	0									
10	0									
90										
80										
70										
60										
50										
40	·									
30	3									
20	·									
10										
0.0	0 	0.00 2800.	.00 3700.0	0 4600.00) 5500		0.00 7	7300.00	9200.00	10000.00 MHz
	1000.000 130			Measure-) 3300	.00 640	0.00		a Table	10000.00 MHZ
o. Mi	c. Freq.	Reading Level	Correct Factor	ment	Limit	Margin		Height		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1841.800	43.73	-17.49	26.24	74.00	-47.76	peak			
2 *	1841.800	41.36	-17.49	23.87	54.00	-30.13	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

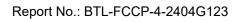
	Test Mode			e Channe	el 00		Test Da			2024/6/21	
Tes	st Frequenc	су	92	0.9MHz		Р	olarizat	ion		Horizontal	
12	0.0 dBuV/m										
11	0										
10	0										
90											
80											
70											
60											
50											
40											
30	1										
20	\$										
10											
0.0	0 1000.000 1900).00 2800	.00 3700.	.00 4600.0	00 5500	IOO 640	0.00 7	300.00 €	3200.00	10000.00 MHz	
	1000.000	Reading		Measure			0.00	Antenna		1000.00 11112	
No. Mk	c. Freq.	Level	Factor	ment	Limit	Margin		Height	Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	1841.800	39.83	-17.49	22.34	74.00	-51.66	peak				
2 *	1841.800	37.15	-17.49	19.66	54.00	-34.34	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

T	est Mode		TX Mode	e Channel	01		Test Da	ite		2024/6/21
Test	t Frequenc	су	92 ⁻	1.7MHz		F	olariza	tion		Vertical
120	0.0 dBuV/m									
121	J.O GBGY7III									
110	o									
100) 									
90										
80										
70										
60										
50										
40										
30	*									
20										
10										
0.0										
	1000.000 1900				5500	.00 640	0.00 7		8200.00	10000.00 MHz
. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
l	1843.400	44.28	-17.49	26.79	74.00	-47.21	peak			
*	1843.400	42.72	-17.49	25.23	54.00	-28.77	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Te	est Mode		TX Mod	e Channe	el 01		Test D	ate		2024/6/21
_	Test	Frequenc	су	92	1.7MHz			Polariza	ation		Horizontal
	120	.0 dBuV/m									
	110										
	100	ı									
	90										
	80										
	70										
	60										
	50										
	40										
	30	*									
	20	*									
	10 0.0										
		000.000 1900	0.00 2800	.00 3700.	00 4600.0	0 5500	.00 64	00.00 7	300.00	8200.00	10000.00 MHz
No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1843.400	39.56	-17.49	22.07	74.00	-51.93	peak			
2	*	1843.400	37.06	-17.49	19.57	54.00	-34.43	AVG			

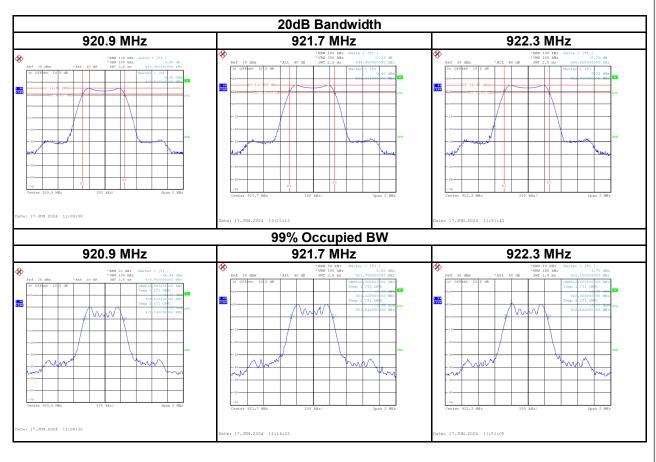

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Te	est Mode			e Channe	102		Test Da			2024/6/21
Test	Frequenc	су	92	2.3MHz		ı	Polariza	tion		Vertical
120.	.0 dBuV/m									
110										
100										
90										
80										
70										
60										
50										
40										
30	\$									
20										
10 0.0										
1	000.000 1900	0.00 2800.	00 3700.	00 4600.0	0 5500	.00 640	00.00 7	300.00	8200.00	10000.00 MH:
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	ı	Antenna Height		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1844.600	44.86	-17.48	27.38	74.00	-46.62	peak			
2 *	1844.600	43.48	-17.48	26.00	54.00	-28.00	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode			e Channe	102		Test Da			2024/6/21	
Те	st Frequenc	су	92	2.3MHz		F	Polariza	tion		Horizontal	_
1	20.0 dBuV/m										
1	10										
1	00										
9	00										
8	90										
7	70										
6	60										
5	50										
4	10										
3	30										
2	20 8										
1	0										
0	0.0										
	1000.000 1900		00 3700.			.00 640	0.00 7	300.00	8200.00	10000.00 MHz	
o. M	1k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	_
1	1844.600	40.60	-17.48	23.12	74.00	-50.88	peak				
2 *	1844.600	38.36	-17.48	20.88	54.00	-33.12	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


APPENDIX D	BANDWIDTH

Test Mode: Channel 00, Channel 01, Channel 02

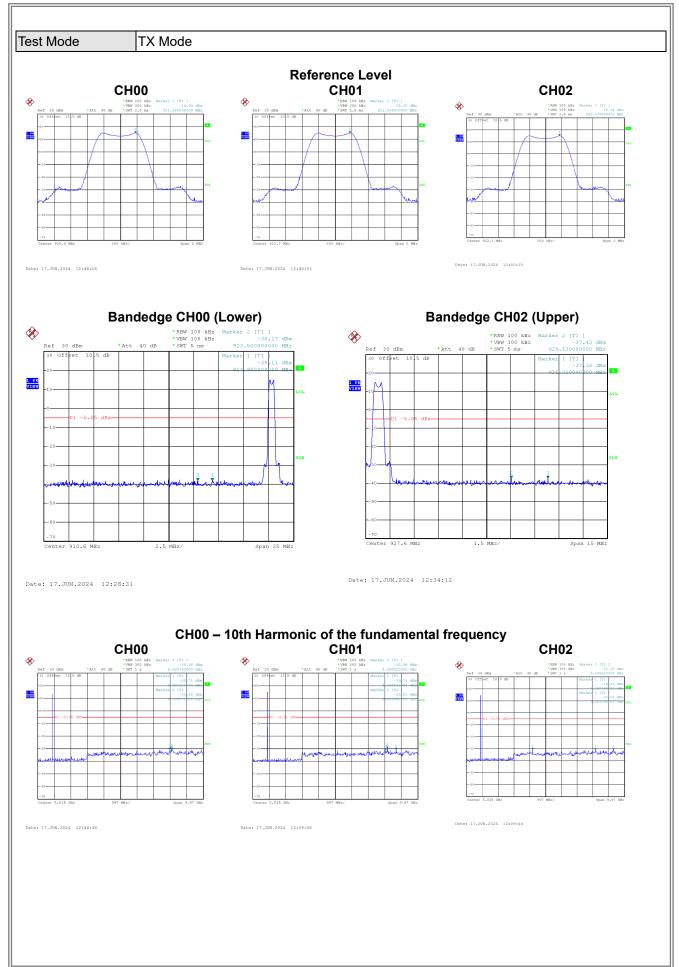
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
920.9	0.540	0.512	500	Pass
921.7	0.549	0.512	500	Pass
922.3	0.550	0.512	500	Pass

APPENDIX E	MAXIMUM OUTPUT POWER	

Project No.: 2404G123 Page 46 of 51 Report Version: R01

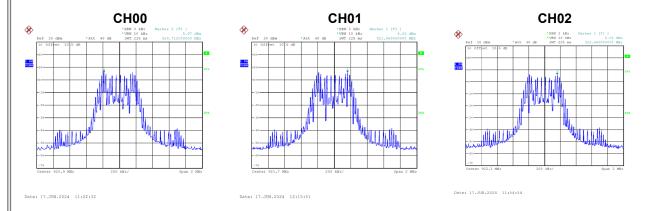
ı			
	lest Mode	IIX Mode	
1	TOST WIDGE	1X Wode	

Frequency (MHz)	Output Power (dBm)	Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
920.9	15.05	0.0320	30.00	1.0000	Pass
921.7	15.19	0.0330	30.00	1.0000	Pass
922.3	15.21	0.0332	30.00	1.0000	Pass



APPENDIX F	CONDUCTED SPURIOUS EMISSION		

Project No.: 2404G123 Page 48 of 51 Report Version: R01


APPENDIX G	POWER SPECTRAL DENSITY		

Project No.: 2404G123 Page 50 of 51 Report Version: R01

Test Mode TX Mode _1Mbps

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result
00	920.9	5.97	8.00	Pass
01	921.7	6.06	8.00	Pass
02	922.3	6.06	8.00	Pass

End of Test Report