

FCC Radio Test Report

FCC ID: 2BCGWH500

Report No. : BTL-FCCP-1-2404G123 Equipment : Smart HomeBase

Model Name : Tapo H500
Brand Name : tp-link, tapo

Applicant: TP-LINK CORPORATION PTE. LTD.

Address : 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2024/5/31

Date of Test : 2024/6/4 ~ 2024/6/26

Issued Date : 2024/9/14

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by :

Poken Huang, Engineer

Poken Huon

Peter Chen Ma

Peter Chen, Manager

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl ga@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2404G123 Page 2 of 91 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 1.2 MEASUREMENT UNCERTAINTY 7 1.3 TEST ENVIRONMENT CONDITIONS 7 1.4 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 2.1 **DESCRIPTION OF EUT** 9 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 TEST SETUP 15 3.5 **TEST RESULT** 15 RADIATED EMISSIONS TEST 4 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 4.5 **EUT OPERATING CONDITIONS** 18 TEST RESULT - 9KHZ TO 30 MHZ 4.6 19 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT - ABOVE 1 GHZ 19 **BANDWIDTH TEST** 5 20 5.1 LIMIT 20 **TEST PROCEDURE** 20 5.2 5.3 **DEVIATION FROM TEST STANDARD** 20 5.4 **TEST SETUP** 20 **EUT OPERATING CONDITIONS** 20 5.5 5.6 **TEST RESULT** 20 **OUTPUT POWER TEST** 21 6 6.1 LIMIT 21 6.2 **TEST PROCEDURE** 21 6.3 **DEVIATION FROM TEST STANDARD** 21 **TEST SETUP** 6.4 21 6.5 **EUT OPERATING CONDITIONS** 21 6.6 **TEST RESULT** 21 7 POWER SPECTRAL DENSITY 22 7.1 LIMIT 22 7.2 **TEST PROCEDURE** 22 7.3 **DEVIATION FROM TEST STANDARD** 22 7.4 **TEST SETUP** 22 7.5 **EUT OPERATING CONDITIONS** 22 7.6 **TEST RESULT** 22

	8	ANTENN	IA CONDUCTED SPURIOUS EMISSIONS TEST	23
	8.1	LIMIT		23
	8.2	TEST	PROCEDURE	23
	8.3	DEVIA	ATION FROM TEST STANDARD	23
	8.4	TEST	SETUP	23
	8.5	EUT C	PERATING CONDITIONS	23
	8.6	TEST	RESULT	23
	9	LIST OF	MEASURING EQUIPMENTS	24
	10	EUT TES	ST PHOTO	26
	11	EUT PHO	DTOS	26
	APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	27
	APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
APPENDIX C RADIATE		IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	35
	APPEND	IX D	BANDWIDTH	68
	APPEND	IXE	OUTPUT POWER	73
APPENDIX F		IX F	POWER SPECTRAL DENSITY	78
	APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS	83

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2404G123	R00	Original Report.	2024/9/14	Valid

Project No.: 2404G123 Page 5 of 91 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX C APPENDIX D APPENDIX E	Pass	
15.247(a)	Bandwidth	APPENDIX E	Pass	
15.247(b)	Output Power	APPENDIX F	Pass	
15.247(e)	Power Spectral Density	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	NOTE (3)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) The device what use replaceable antennas with non-standard interfaces are considered sufficient to comply with the provisions of 15.203.

Project No.: 2404G123 Page 6 of 91 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

□ CB21 □ C06

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

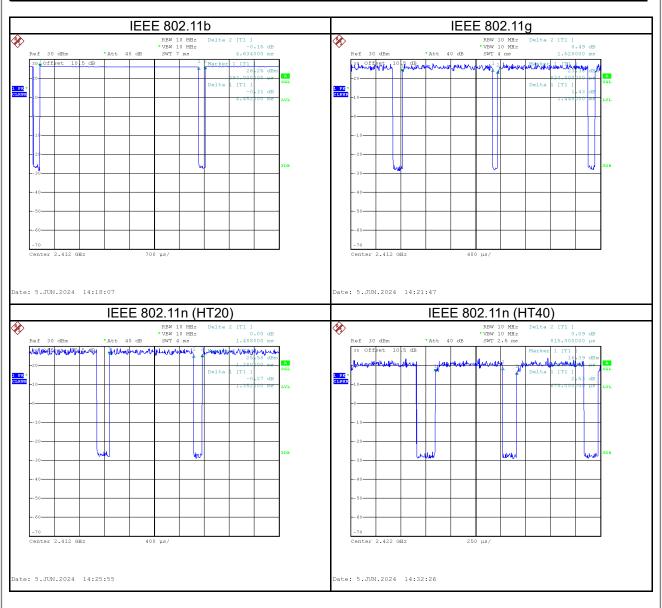
a toot.	
Test Item	U (dB)
Occupied Bandwidth	0.53
Output power	0.37
Power Spectral Density	0.66
Conducted Spurious emissions	0.53
Conducted Band edges	0.53

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Ken Lu
Radiated emissions below 1 GHz	25°C, 65%	AC 120V	Ken Lu
Radiated emissions above 1 GHz	25°C, 65%	AC 120V	Ken Lu
Bandwidth	24°C, 60%	AC 120V	Cheng Tsai
Output Power	24°C, 60%	AC 120V	Cheng Tsai
Power Spectral Density	24°C, 60%	AC 120V	Cheng Tsai
Antenna conducted Spurious Emission	24°C, 60%	AC 120V	Cheng Tsai


Project No.: 2404G123 Page 7 of 91 Report Version: R00

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
IEEE 802.11b	4.452	1	4.452	4.634	96.07%	0.17
IEEE 802.11g	1.448	1	1.448	1.528	94.76%	0.23
IEEE 802.11n (HT20)	1.352	1	1.352	1.488	90.86%	0.42
IEEE 802.11n (HT40)	0.675	1	0.675	0.815	82.82%	0.82

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Smart HomeBase
tp-link, tapo
Таро Н500
N/A
1.X
1.0
DC Voltage supplied from AC adapter. Model: T120200-2B4
I/P: 100-240V~ 50/60Hz 0.8A O/P:12.0V===2.0A
2400 MHz ~ 2483.5 MHz
2412 MHz ~ 2462 MHz
IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM
IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps
IEEE 802.11g: 29.03 dBm (0.7998 W)
Tapo H500
Engineering Sample
N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20) CH03 - CH09 for IEEE 802.11n(HT40)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)					Frequency (MHz)		
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

Project No.: 2404G123 Page 9 of 91 Report Version: R00

(3) Table for Filed Antenna:

Ant.	Brand Name	P/N	Type	Connector	Gain (dBi)
1	TP-LINK CORPORATION PTE. LTD.	3101506738	Dipole	N/A	2.00
2	TP-LINK CORPORATION PTE. LTD.	3101506739	Dipole	N/A	2.00

NOTE:

- 1) The EUT incorporates a CDD function. Physically, the EUT provides two completed transmitters and receivers (2T2R).
- 2) For Output Power

For $N_{ANT} = 2 < 4$,

Direction gain = $G_{ANT} + 0 = 2.00 + 0 = 2.00 dBi$.

The Direction gain is less than 6 dBi, so output power limits will not be reduced.

3) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

(4) Operating Mode and Antenna Configuration

Operating Mode TX Mode	2TX
IEEE 802.11b	V (Ant. 1+Ant. 2)
IEEE 802.11g	V (Ant. 1+Ant. 2)
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2)

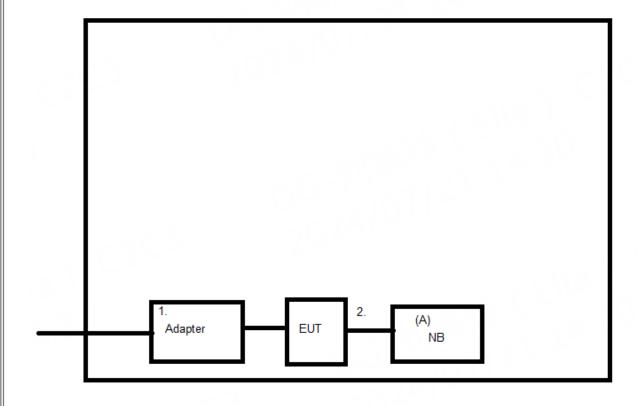
Project No.: 2404G123 Page 10 of 91 Report Version: R00

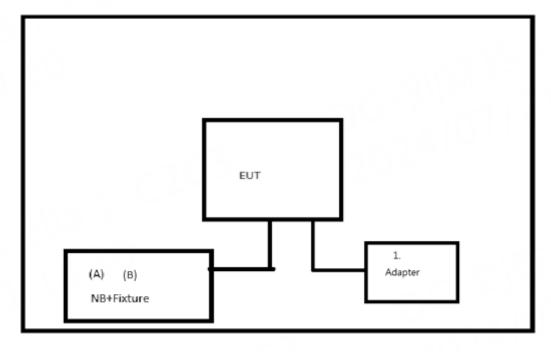
2.2 TEST MODES

Test Items	Test mode	Channel	Note	
AC power line conducted emissions	Normal/Idle	-	-	
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11g	06	-	
	TX Mode_IEEE 802.11b			
Transmitter Radiated Emissions	TX Mode_IEEE 802.11g	01/11	Pandadaa	
(above 1GHz)	TX Mode_IEEE 802.11n (HT20)		Bandedge	
	TX Mode_IEEE 802.11n (HT40)	03/09		
	TX Mode_IEEE 802.11b		Harmonic	
Transmitter Radiated Emissions	TX Mode_IEEE 802.11g	01/06/11		
(above 1GHz)	TX Mode_IEEE 802.11n (HT20)			
	TX Mode_IEEE 802.11n (HT40)	03/06/09		
Transmitter Radiated Emissions (above 18GHz)	TX Mode_IEEE 802.11g	06	-	
Bandwidth &	TX Mode_IEEE 802.11b			
Output Power &	TX Mode_IEEE 802.11g	01/06/11		
Power Spectral Density &	TX Mode_IEEE 802.11n (HT20)		-	
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT40)	03/06/09		

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) For radiated emission below 1 GHz test, the IEEE 802.11g Mode Channel 06 is found to be the worst case and recorded.


Project No.: 2404G123 Page 11 of 91 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

AC power line conducted emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Notebook	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab.

Item	Shielded	Shielded Ferrite Core		Cable Type	Remarks	
1	DC cable	N	N	1m	Supplied by test requester.	
2	RJ45 cable	Υ	N	1m	Furnished by test lab.	

Radiated Emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Fixture	N/A	N/A	N/A	Furnished by test lab.
В	Notebook	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	DC cable	N	N	1m	Supplied by test requester.

Project No.: 2404G123 Page 13 of 91 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB)		(dBµV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBµV)		(dBµV)		(dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

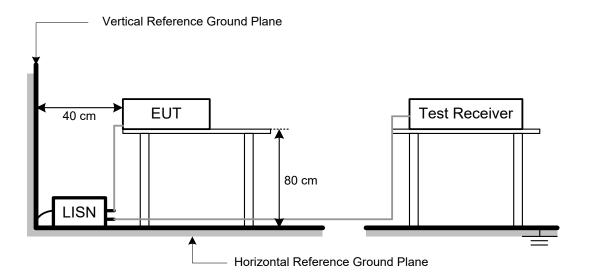
Receiver Parameter	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 KHz		

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2404G123 Page 14 of 91 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

EIIIII OI III IBII II EB EIIII GGIGITG	THE TOOT LINE ITT TO KITE TO TOOO IN	·-/
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated Emissions (dBuV/m)		Measurement Distance
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Mode	VBW(Hz)
IEEE 802.11b	1.8k
IEEE 802.11g	750
IEEE 802.11n (HT20)	300
IEEE 802.11n (HT40)	300
IEEE 802.11ax (HE20)	300
IEEE 802.11ax (HE40)	300
IEEE 802.11be (EHT20)	300
IEEE 802.11be (EHT40)	300

Project No.: 2404G123 Page 16 of 91 Report Version: R00

Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

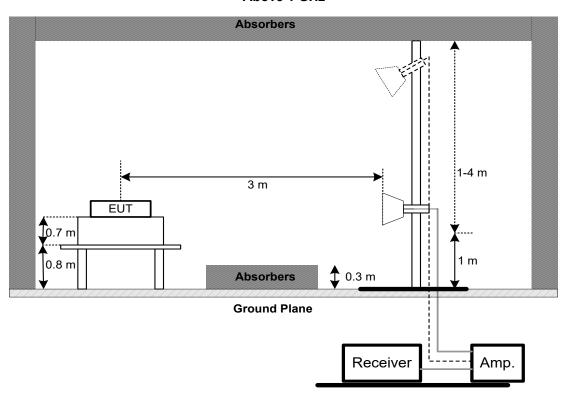
Absorbers

I m

Ground Plane

Receiver

Project No.: 2404G123 Page 17 of 91 Report Version: R00


Absorbers

Absorbers

Ground Plane

Receiver Amp.

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9kHz TO 30 MHz

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2404G123 Page 19 of 91 Report Version: R00

5 BANDWIDTH TEST

5.1 LIMIT

Section	Test Item	Limit
15.247(a)	6 dB Bandwidth	500 kHz

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

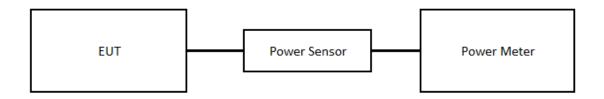
Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 LIMIT

Section	Test Item	Limit
15.247(b)	Maximum Output Power	1 Watt or 30dBm

6.2 TEST PROCEDURE


- a. The EUT was directly connected to the Peak Power Analyzer and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
 The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and

6.3 DEVIATION FROM TEST STANDARD

shall use a fast-responding diode detector.

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX G.

Project No.: 2404G123 Page 23 of 91 Report Version: R00

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Two-Line V-Network	R&S	ENV216	101051	2023/7/21	2024/7/20			
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10			
3	EXA Spectrum Analyzer	keysight	N9038A	MY54130009	2023/6/26	2024/6/25			
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A			

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5		
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5		
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20		
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5		
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7		
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7		
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7		
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22		
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11		
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8		
11	Horn Ant	Schwarzbeck	BBHA 9170	1136	2023/6/28	2024/6/27		
12	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	1371	2023/8/8	2024/8/7		
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2023/8/8	2024/8/7		
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12		
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12		
16	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8		
17	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25	
2	BTL-Conducted Test	N/A	1247788684	N/A	N/A	N/A	

Project No.: 2404G123 Page 24 of 91 Report Version: R00

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25	
2	BTL-Conducted Test	N/A	1247788684	N/A	N/A	N/A	

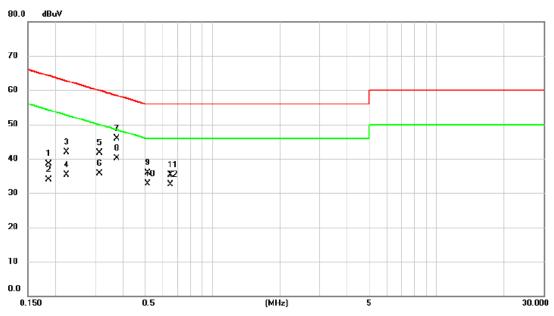
	Power Spectral Density							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25		
2	BTL-Conducted Test	N/A	1247788684	N/A	N/A	N/A		

	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer Type No. Se		Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 30	100854	2023/6/26	2024/6/25				
2	BTL-Conducted Test	N/A	1247788684	N/A	N/A	N/A				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO						
Please refer to document Appendix No.: TP-2404G123-FCCP-1 (APPENDIX-TEST PHOTOS).						
11 EUT PHOTOS						
Please refer to document Appendix No.: EP-2404G123-1 (APPENDIX-EUT PHOTOS).						

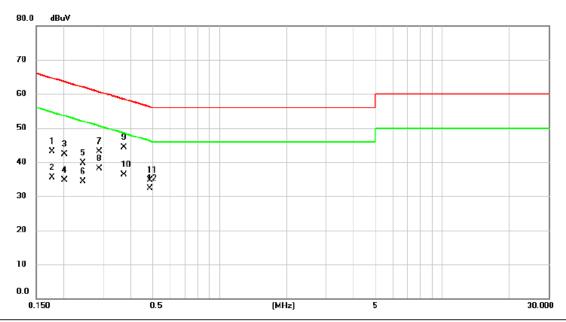
Project No.: 2404G123 Page 26 of 91 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2404G123 Page 27 of 91 Report Version: R00

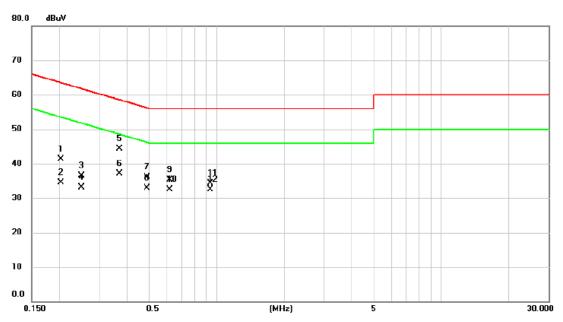
Ш					
	Test Mode	Normal	Tested Date	2024/6/3	ı
	Test Frequency	-	Phase	Line	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1867	28.96	9.64	38.60	64.18	-25.58	QP	
2		0.1867	24.19	9.64	33.83	54.18	-20.35	AVG	
3		0.2228	32.18	9.64	41.82	62.71	-20.89	QP	
4		0.2228	25.74	9.64	35.38	52.71	-17.33	AVG	
5		0.3144	32.02	9.65	41.67	59.85	-18.18	QP	
6		0.3144	26.03	9.65	35.68	49.85	-14.17	AVG	
7		0.3733	36.17	9.65	45.82	58.43	-12.61	QP	
8	*	0.3733	30.37	9.65	40.02	48.43	-8.41	AVG	
9		0.5135	26.17	9.66	35.83	56.00	-20.17	QP	
10		0.5135	23.10	9.66	32.76	46.00	-13.24	AVG	
11		0.6485	25.68	9.67	35.35	56.00	-20.65	QP	
12		0.6485	22.90	9.67	32.57	46.00	-13.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

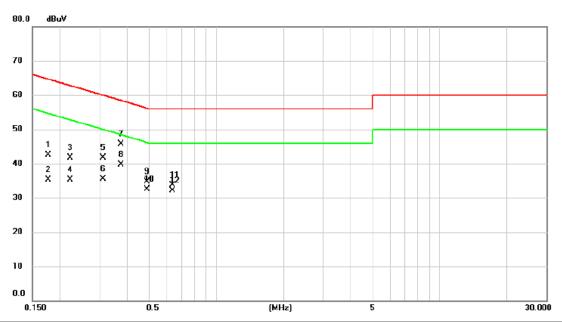
Test Mode	Normal	Tested Date	2024/6/3
Test Frequency	-	Phase	Neutral



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1	0.1768	33.43	9.63	43.06	64.63	-21.57	QP	
2	0.1768	25.87	9.63	35.50	54.63	-19.13	AVG	
3	0.2014	32.60	9.63	42.23	63.55	-21.32	QP	
4	0.2014	25.12	9.63	34.75	53.55	-18.80	AVG	
5	0.2441	30.09	9.63	39.72	61.96	-22.24	QP	
6	0.2441	24.66	9.63	34.29	51.96	-17.67	AVG	
7	0.2878	33.45	9.64	43.09	60.59	-17.50	QP	
8	0.2878	28.41	9.64	38.05	50.59	-12.54	AVG	
9	0.3712	34.66	9.63	44.29	58.47	-14.18	QP	
10 *	0.3712	26.68	9.63	36.31	48.47	-12.16	AVG	
11	0.4864	25.05	9.64	34.69	56.23	-21.54	QP	
12	0.4864	22.69	9.64	32.33	46.23	-13.90	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

١.				
	Test Mode	Idle	Tested Date	2024/6/3
	Test Frequency	-	Phase	Line

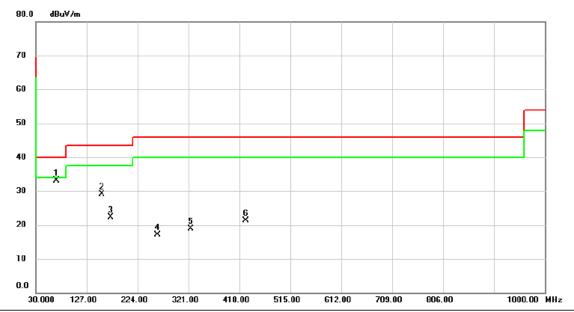


No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2021	31.63	9.64	41.27	63.52	-22.25	QP	
2		0.2021	24.83	9.64	34.47	53.52	-19.05	AVG	
3		0.2508	26.84	9.64	36.48	61.73	-25.25	QP	
4		0.2508	23.45	9.64	33.09	51.73	-18.64	AVG	
5		0.3704	34.70	9.65	44.35	58.49	-14.14	QP	
6 *	k	0.3704	27.50	9.65	37.15	48.49	-11.34	AVG	
7		0.4885	26.45	9.66	36.11	56.19	-20.08	QP	
8		0.4885	23.34	9.66	33.00	46.19	-13.19	AVG	
9		0.6170	25.72	9.67	35.39	56.00	-20.61	QP	
10		0.6170	22.88	9.67	32.55	46.00	-13.45	AVG	
11		0.9410	24.64	9.70	34.34	56.00	-21.66	QP	
12		0.9410	22.71	9.70	32.41	46.00	-13.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2024/6/3
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1776	32.91	9.63	42.54	64.60	-22.06	QP	
2	0.1776	25.68	9.63	35.31	54.60	-19.29	AVG	
3	0.2221	32.14	9.63	41.77	62.74	-20.97	QP	
4	0.2221	25.70	9.63	35.33	52.74	-17.41	AVG	
5	0.3127	32.11	9.63	41.74	59.90	-18.16	QP	
6	0.3127	25.83	9.63	35.46	49.90	-14.44	AVG	
7	0.3747	36.11	9.63	45.74	58.40	-12.66	QP	
8 *	0.3747	30.02	9.63	39.65	48.40	-8.75	AVG	
9	0.4902	25.06	9.64	34.70	56.16	-21.46	QP	
10	0.4902	22.82	9.64	32.46	46.16	-13.70	AVG	
11	0.6350	24.00	9.65	33.65	56.00	-22.35	QP	
12	0.6350	22.51	9.65	32.16	46.00	-13.84	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2404G123 Page 32 of 91 Report Version: R00

Test Mode	IEEE 802.11g	Test Date	2024/6/20
Test Frequency	2437MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	69.7700	46.64	-13.60	33.04	40.00	-6.96	peak	100	329	
2		156.1000	40.19	-11.08	29.11	43.50	-14.39	peak	100	329	
3		172.5900	34.23	-12.01	22.22	43.50	-21.28	peak	100	294	
4		261.8300	28.75	-11.62	17.13	46.00	-28.87	peak	200	124	
5		324.8800	28.48	-9.59	18.89	46.00	-27.11	peak	200	12	
6		429.6400	27.91	-6.60	21.31	46.00	-24.69	peak	100	191	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Те	st Mode		IEE	IEEE 802.11g		Test Date				2024/6/20	
Ţ	est	Frequenc	:y	2437MHz			Polarization				Horizontal	
	80.0	0 dBuV/m										1
	70											
	60											
	50											•
	40		Ž 2									
	30	*	× 3		5 6 X X							
	20			4 ×	× ^							
	10											
	0.0											
	30.000 127.00 224.00 321.00 418.00 515.00 G12.00 709.00 806.00 1000.00 MHz								MHz			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		70.7400	43.38	-13.83	29.55	40.00	-10.45	peak	200	188		
2	*	160.9500	44.45	-11.12	33.33	43.50	-10.17	peak	100	220		
3		198.7800	44.12	-14.17	29.95	43.50	-13.55	peak	100	310		
4		295.7800	31.78	-10.29	21.49	46.00	-24.51	peak	100	357		
5		344.2800	33.36	-9.06	24.30	46.00	-21.70	peak	100	292		

46.00 -21.34 peak

100

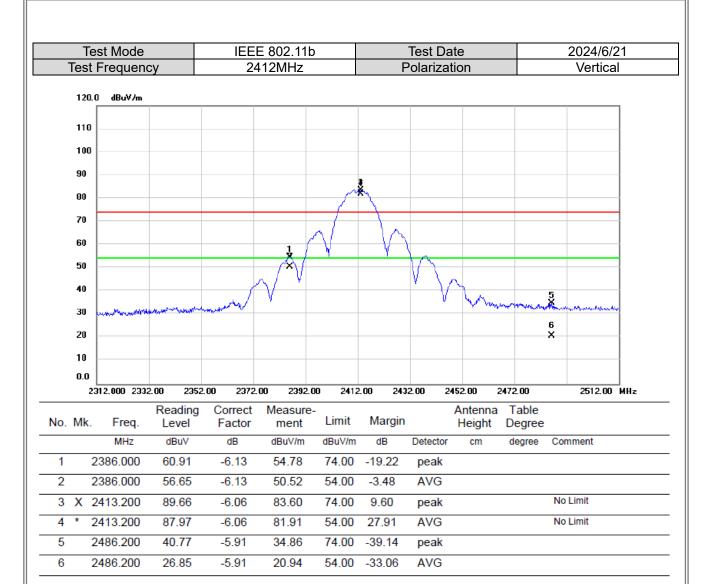
REMARKS:

386.9600

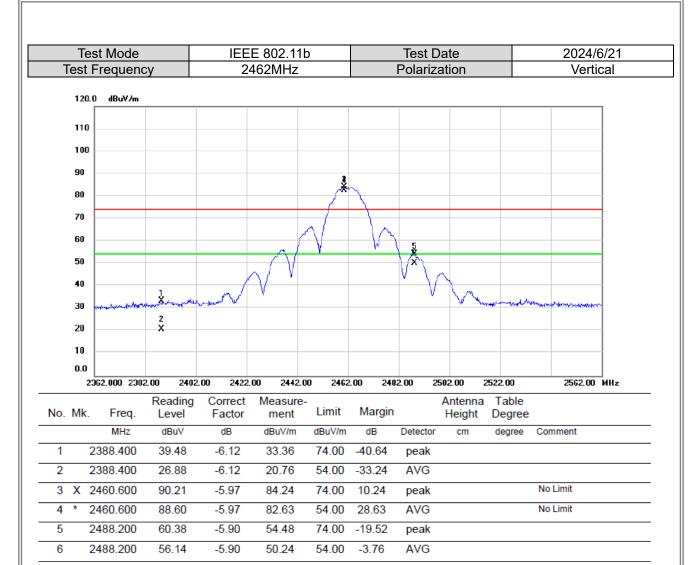
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

-7.85

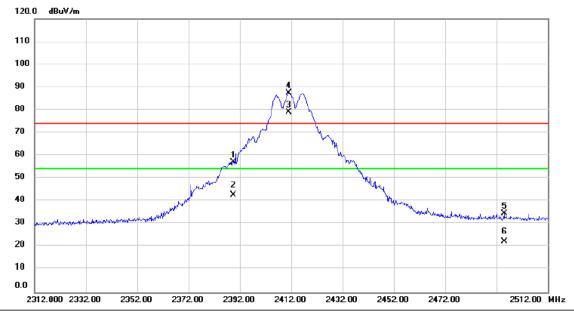
24.66


32.51

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

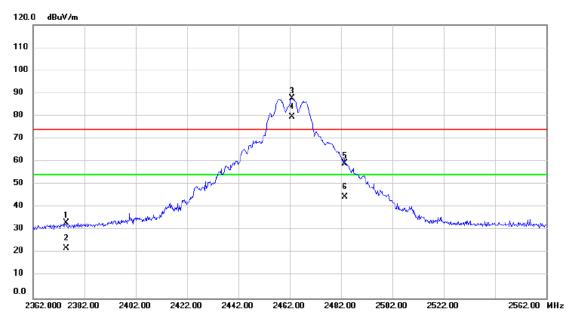

Project No.: 2404G123 Page 35 of 91 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

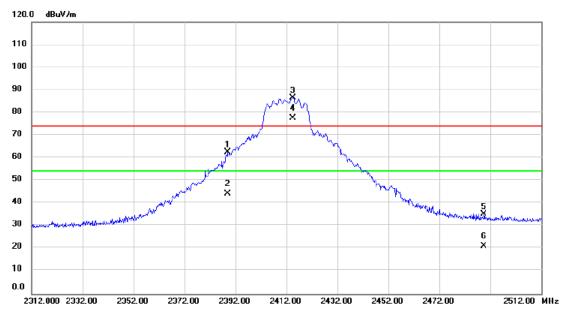
Test Mode	IEEE 802.11g	Test Date	2024/6/21
Test Frequency	2412MHz	Polarization	Vertical



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2389.400	63.24	-6.12	57.12	74.00	-16.88	peak			
2		2389.400	48.82	-6.12	42.70	54.00	-11.30	AVG			
3	Χ	2411.200	85.13	-6.08	79.05	74.00	5.05	peak			No Limit
4	*	2411.200	93.48	-6.08	87.40	74.00	13.40	peak			No Limit
5		2495.000	40.45	-5.89	34.56	74.00	-39.44	peak			
6		2495.000	28.22	-5.89	22.33	54.00	-31.67	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/6/21
Test Frequency	2462MHz	Polarization	Vertical



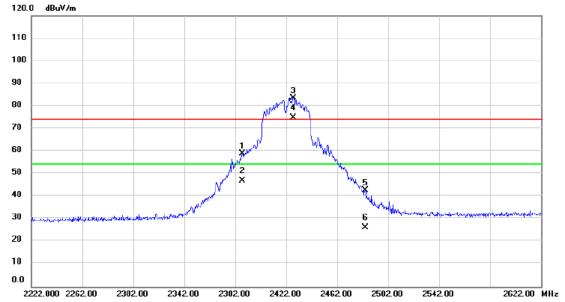
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2374.800	39.44	-6.15	33.29	74.00	-40.71	peak			
2		2374.800	28.19	-6.15	22.04	54.00	-31.96	AVG			
3	X	2462.800	93.83	-5.96	87.87	74.00	13.87	peak			No Limit
4	*	2462.800	85.64	-5.96	79.68	54.00	25.68	AVG			No Limit
5		2483.600	65.25	-5.92	59.33	74.00	-14.67	peak			
6		2483.600	50.46	-5.92	44.54	54.00	-9.46	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT 20)	Test Date	2024/6/21
Test Frequency	2412MHz	Polarization	Vertical

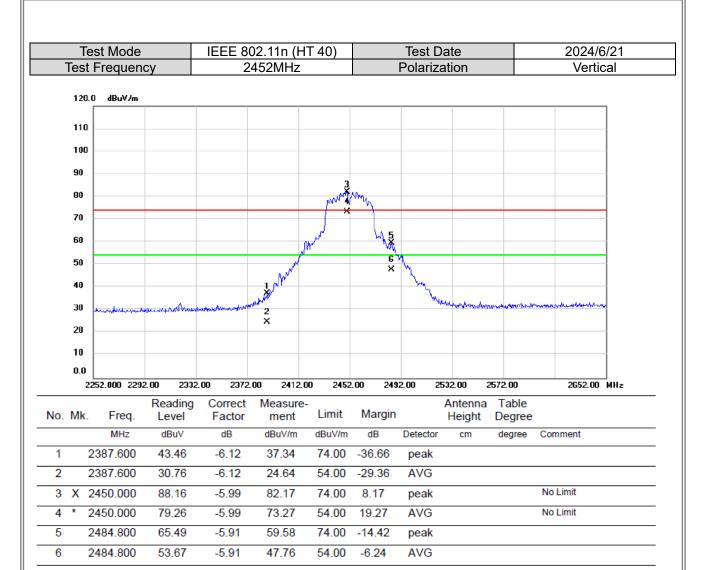
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2389.000	68.69	-6.12	62.57	74.00	-11.43	peak			
2		2389.000	50.48	-6.12	44.36	54.00	-9.64	AVG			
3	X	2414.600	92.67	-6.06	86.61	74.00	12.61	peak			No Limit
4	*	2414.600	83.46	-6.06	77.40	54.00	23.40	AVG			No Limit
5		2489.600	41.12	-5.90	35.22	74.00	-38.78	peak			
6		2489.600	27.18	-5.90	21.28	54.00	-32.72	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



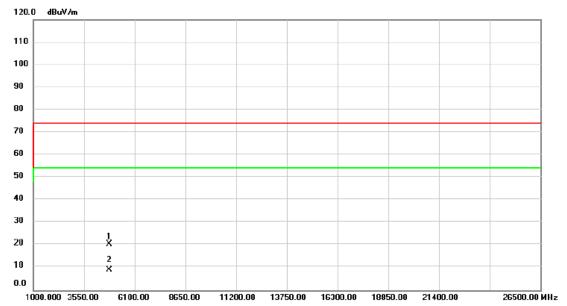
Test Mode IEEE 802.11n (HT20) Test Date 2024/6/21													
120.0 dBwV/m 110 100 90 90 00 70 60 50 40 30 20 20 20 20 20 20 20 20 20 20 20 20 20		Tes	st Mode		IEEE 80)2.11n (H	T20)		Test Da	ate		2024/	6/21
110 90 90 90 90 90 90 90 90 90 90 90 90 90	Te	st F	requenc	у	2462MHz		Polarization			Verti	cal		
100 90 90 90 90 90 90 90 90 90 90 90 90 9		120.	0 dBuV/m										_
90		110											
00		100											
70 60 40 30 20 21 20 22 20 30 80 80 80 80 80 80 80 80 80 80 80 80 80	,	90					3 X	. n.					
80	•	80					\[\sum_{\lambda}^{\infty} \frac{\lambda}{\times} \times \]	- NA					
50 40 30 20 21 20 22 21 20 2352.000 2392.00 2492.00 2422.00 2442.00 2462.00 2492.00 2592.00 2522.00 2562.00 MHz No. Mk. Freq. Reading Factor Measure-Factor Ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 2390.000 39.48 -6.12 33.36 74.00 -40.64 peak 2 2390.000 26.75 -6.12 20.63 54.00 -33.37 AVG 3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak								W.					
40 30							v	•	X				
30 20 20 2392.00 2402.00 2422.00 2442.00 2462.00 2492.00 2502.00 2522.00 2562.00 мHz No. Mk. Freq. Reading Level Factor ment Limit Margin Height Degree МНz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 2390.000 39.48 -6.12 33.36 74.00 -40.64 peak 2 2390.000 26.75 -6.12 20.63 54.00 -33.37 AVG 3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak						arrhanne de la companya della companya de la companya de la companya della compan			6				
20			to be all the second of the second delivery	t the state of the	Kertinan Marina Sandar Spanish				×	AND MANAGEMENT	. سەرىسىسىلىلەر		47
No. Mk. Freq. Reading Level Correct Factor Measurement Limit Margin Antenna Height Table Degree 1 2390.000 39.48 -6.12 33.36 74.00 -40.64 peak 2 2390.000 91.87 -5.97 85.90 74.00 11.90 peak 4 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak				2 X									
No. Mk. Freq. Reading Level Factor Measure ment Limit Margin Antenna Table Degree No. Mk. Freq. dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment Comm		10											
No. Mk. Freq. Reading Level Correct Factor Measurement Limit Margin Antenna Height Degree Table Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 2390.000 39.48 -6.12 33.36 74.00 -40.64 peak 2 2390.000 26.75 -6.12 20.63 54.00 -33.37 AVG 3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak		0.0											
No. Mk. Freq. Level Factor ment Limit Margin Height Degree MHz		2	362.000 2382	2.00 2402	2.00 2422	.00 2442.	00 2462	.00 240	32.00 2	502.00	2522.00	2562.00) MHz
1 2390.000 39.48 -6.12 33.36 74.00 -40.64 peak 2 2390.000 26.75 -6.12 20.63 54.00 -33.37 AVG 3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak	No. N	Λk.	Freq.					Margin	ı				
2 2390.000 26.75 -6.12 20.63 54.00 -33.37 AVG 3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
3 X 2460.000 91.87 -5.97 85.90 74.00 11.90 peak No Limit 4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak													
4 * 2460.000 82.71 -5.97 76.74 54.00 22.74 AVG No Limit 5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak													
5 2483.200 64.20 -5.92 58.28 74.00 -15.72 peak													
· · · · · · · · · · · · · · · · · · ·	•											NO LIMIL	
	6		2483.200	45.69	-5.92	39.77			AVG				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/21
Test Frequency	2422MHz	Polarization	Vertical

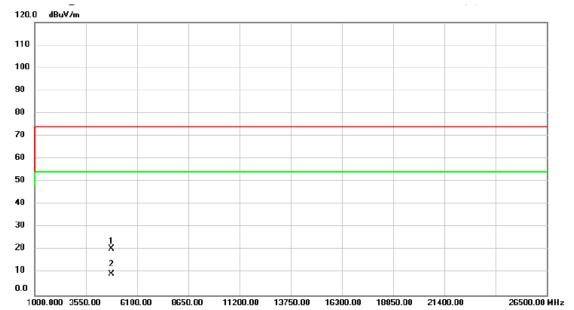
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2387.600	64.97	-6.12	58.85	74.00	-15.15	peak			
2		2387.600	52.93	-6.12	46.81	54.00	-7.19	AVG			
3	Χ	2427.600	89.66	-6.04	83.62	74.00	9.62	peak			No Limit
4	*	2427.600	80.76	-6.04	74.72	54.00	20.72	AVG			No Limit
5		2484.000	48.61	-5.92	42.69	74.00	-31.31	peak			
6		2484.000	32.20	-5.92	26.28	54.00	-27.72	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

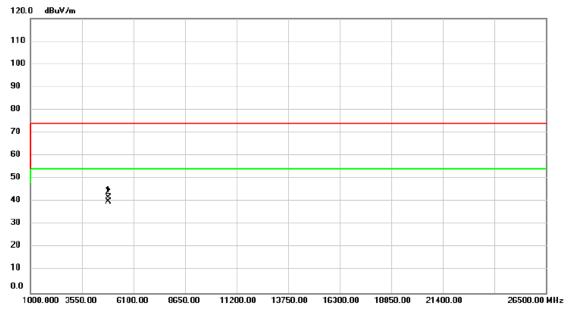
Test Mode	IEEE 802.11b	Test Date	2024/6/25
Test Frequency	2412MHz	Polarization	Vertical



No.	Mk	. Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4824.000	29.16	-8.57	20.59	74.00	-53.41	peak			
2	*	4824.000	17.80	-8.57	9.23	54.00	-44.77	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

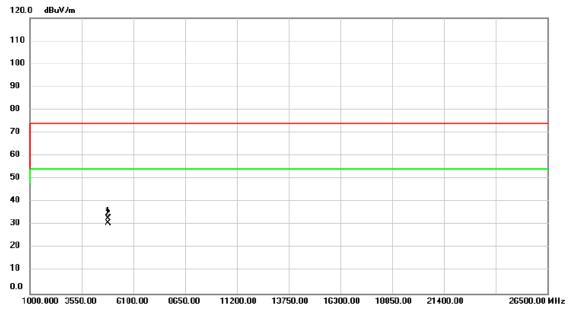
Test Mode	IEEE 802.11b	Test Date	2024/6/25
Test Frequency	2412MHz	Polarization	Horizontal



No.	Mk	c. Freq.	_	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4824.000	29.19	-8.57	20.62	74.00	-53.38	peak			
2	*	4824.000	17.90	-8.57	9.33	54.00	-44.67	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/6/25
Test Frequency	2437MHz	Polarization	Vertical



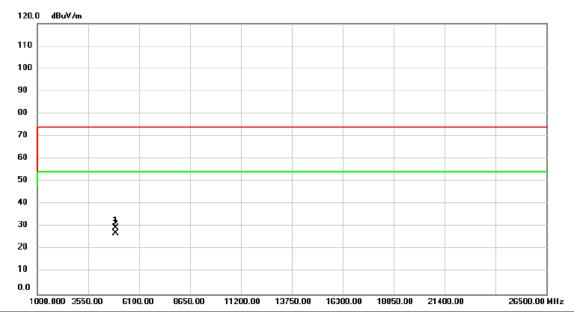
No	. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	l	4874.000	50.28	-8.44	41.84	74.00	-32.16	peak			
2	*	4874.000	48.40	-8.44	39.96	54.00	-14.04	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/6/25
Test Frequency	2437MHz	Polarization	Horizontal

No.	Mk	. Fre		eading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MH	2	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4874.00	00 4	41.40	-8.44	32.96	74.00	-41.04	peak			
2	*	4874.00	00 ;	39.27	-8.44	30.83	54.00	-23.17	AVG			

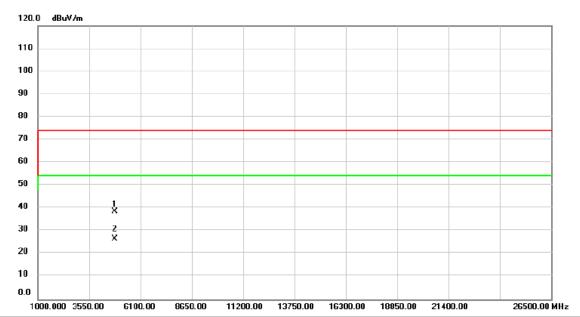
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



Test Mode			IEEE	802.11b	,		Test D	ate		2024/6/25
Test	Frequenc	У	246	62MHz			Polariza	ation		Vertical
120).O dBuV/m									
110	ı									
100	ı									
90										
80										
70										
60										
50										
40		*								
30		^								
20										
10										
0.0	 1000.000 3550	0.00 6100	.00 9650.0	0 11200	.00 1375	0.00 16	300.00 1	18850.00	21 400.00	26500.00 MHz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4924.000	44.51	-8.33	36.18	74.00	-37.82	peak			
2 *	4924.000	42.31	-8.33	33.98	54.00	-20.02	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

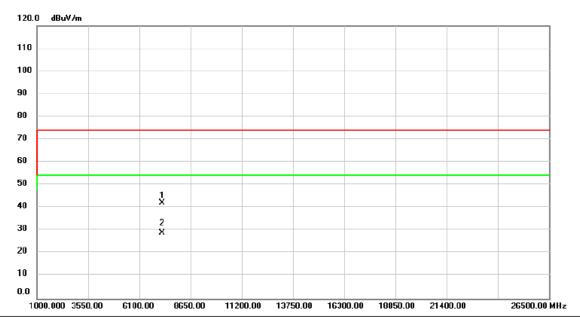
Test Mode	IEEE 802.11b	Test Date	2024/6/25
Test Frequency	2462MHz	Polarization	Horizontal



No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	37.80	-8.33	29.47	74.00	-44.53	peak			
2	*	4924.000	35.56	-8.33	27.23	54.00	-26.77	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/6/25
Test Frequency	2412MHz	Polarization	Vertical



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4825.000	47.23	-8.56	38.67	74.00	-35.33	peak			
2	*	4825.000	34.97	-8.56	26.41	54.00	-27.59	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/6/25
Test Frequency	2412MHz	Polarization	Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		7236.000	45.91	-3.64	42.27	74.00	-31.73	peak			
2	*	7236.000	32.55	-3.64	28.91	54.00	-25.09	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/6/25
Test Frequency	2437MHz	Polarization	Vertical

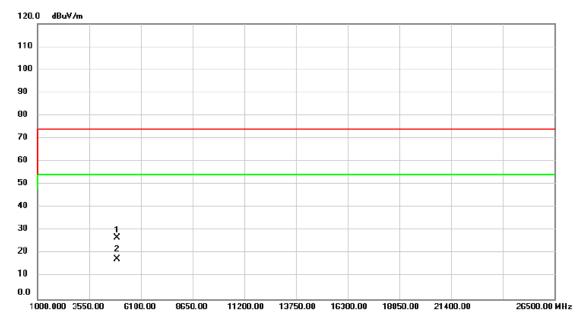
No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		7324.000	50.43	-3.47	46.96	74.00	-27.04	peak			
2	*	7324.000	39.01	-3.47	35.54	54.00	-18.46	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/6/25
Test Frequency	2437MHz	Polarization	Horizontal

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		7324.000	52.61	-3.47	49.14	74.00	-24.86	peak			
2	*	7324.000	41.62	-3.47	38.15	54.00	-15.85	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



	est Mode			802.11g			Test Da			2024/6/25
Tes	t Frequenc	у	24	62MHz			Polariza	ition		Vertical
12	20.0 dBuV/m									
11	0									
10	00									
90	·									
80										
70	•									
60	·									
50	1									
40										
30		1 X 2								
20	ı	×								
10										
0.0	0 1000.000 3550	0.00 6100.	.00 8650.0	0 11200	.00 1375	0.00 16	300.00 1	8850.00 2	1400.00	26500.00 MHz
- 14		Reading	Correct	Measure-	Limit	Margir		Antenna	Table	
o. M	k. Freq.	Level dBuV	Factor	ment dBuV/m	dBuV/m	dB	Detector	Height	Degree	Comment
1	4924.000	40.32	-8.33	31.99	74.00	-42.01		CIII	degree	Confinent
2 *	4924.000	30.97	-8.33	22.64		-31.36	peak AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

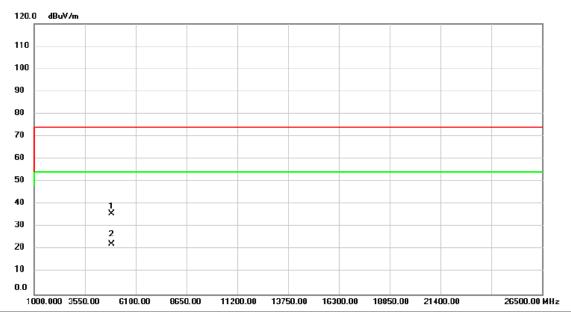
Test Mode	IEEE 802.11g	Test Date	2024/6/25
Test Frequency	2462MHz	Polarization	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	35.13	-8.33	26.80	74.00	-47.20	peak			
2	*	4924.000	25.78	-8.33	17.45	54.00	-36.55	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

7	Test Mode		IEEE 80	2.11n (HT	20)		Test D	ate		2024/6/25
Tes	t Frequenc	:y	24	12MHz			Polariz	ation		Vertical
1:	20.0 dBuV/m									
1	10									
1	00									
9	o									
8	0 -									
7	0									
6	0									
5	0									
4	0	1 ×								
3	0	2 X								
2	0									
1										
0	.0 1000.000 355	0.00 6100.	.00 9650.	00 11200.0	0 1375	0.00 16	300.00	18850.00	21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	Antenna Height	a Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		degree	Comment
1	4825.000	46.37	-8.56	37.81	74.00	-36.19	peak			
2 *	4825.000	34.23	-8.56	25.67	54.00	-28.33	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



٦	Test Mode		IEEE 802	2.11n (HT	20)		Test Da	ate		2024/6/25
Tes	st Frequer	ncy		12MHz			Polariza	ition		Horizontal
1	20.0 dBuV/n	n								
1	10									
	00									
9	00									
8	:0									
7	'o									
6	60									
5	io									
4	0		1 X							
3	:0		2							
2	.0		X							
1	0									
0	.0									
	1000.000 35	550.00 6100	0.00 8650.0	00 11200.	00 1375	0.00 163	00.00 1	8850.00	21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	7247.500	39.30	-3.62	35.68	74.00	-38.32	peak			
2 *	7247.500	27.15	-3.62	23.53	54.00	-30.47	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT20)	Test Date	2024/6/25
Test Frequency	2437MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4876.000	44.27	-8.43	35.84	74.00	-38.16	peak			
2	*	4876.000	30.84	-8.43	22.41	54.00	-31.59	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test	Mode		IEEE 80	2.11n (HT	20)		Test D	ate		2024/6/25
Test Fi	requenc	У		37MHz			Polariza	ation		Horizontal
120.0	dBuV/m									
Γ										
110										
100										
90										
80										
70										
60										
50										
40										
30		1 ×								
20		2								
10		×								
0.0										
100	0.000 3550	0.00 6100.	00 9650.	00 11200.0	0 1375	0.00 16	300.00 1	8850.00	21400.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		degree	Comment
1 48	374.000	34.65	-8.44	26.21	74.00	-47.79	peak			
2 * 48	374.000	23.47	-8.44	15.03	54.00	-38.97	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

26500.00 MHz

Test Mode		IEEE 80)2.11n (I	HT20)		Test Date	Э		2024/6/2		
Test Frequency		2462MHz			Polarization				Vertica		
120.0 dBuV/m											
110											
100											
90											
80											
70											
60											
50											
30											
20	1 ×										
10	2 X										
0.0	^										

N	0.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		4924.000	30.57	-8.33	22.24	74.00	-51.76	peak			
	2	*	4924.000	18.48	-8.33	10.15	54.00	-43.85	AVG			

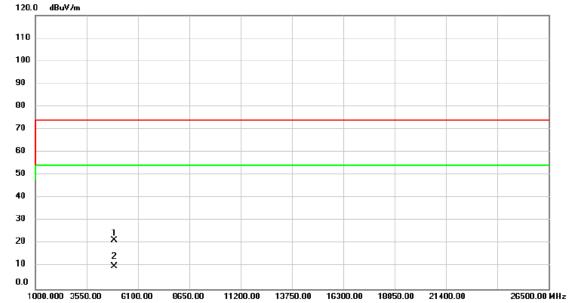
11200.00 13750.00 16300.00

18850.00

21400.00

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


6100.00

8650.00

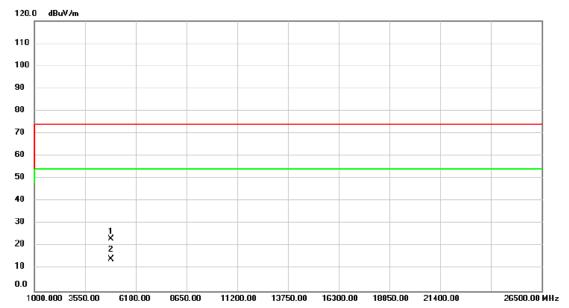
1000.000 3550.00

Tes	st Mode	IEEE 802.11n (HT20)					Test Date	Э	2024/6/	26	
Test F	requenc	У	2462MHz			F	Polarizatio	on	Horizontal		
120.0	dBuV/m										

No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	29.73	-8.33	21.40	74.00	-52.60	peak			
2	*	4924.000	18.35	-8.33	10.02	54.00	-43.98	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/26
Test Frequency	2422MHz	Polarization	Vertical



No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4844.000	36.51	-8.52	27.99	74.00	-46.01	peak			
2	*	4844.000	26.85	-8.52	18.33	54.00	-35.67	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/26
Test Frequency	2422MHz	Polarization	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4844.000	31.83	-8.52	23.31	74.00	-50.69	peak			
2	*	4844.000	22.76	-8.52	14.24	54.00	-39.76	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-1-2404G123

Test M	ode	IEEE 8	02.11n (HT	40)	Test	Date		2024/6/26
Test Fred	quency	2	437MHz		Polariz	zation		Vertical
120.0	dBuV/m							
110								
100								
90								
80								
70								
60								
50								
30	1	:						
20	2							
10								
0.0		2420.00			10000	10050 00		
1000.0	000 3550.00		50.00 11200.		00 16300.00		21400.00	26500.00 MHz
o. Mk.	Rea Freq. Le	ding Correct vel Facto		Limit	Margin	Antenna Height	Table Degree	

32.65 74.00 -41.35

54.00 -32.88

21.12

peak

AVG

REMARKS:

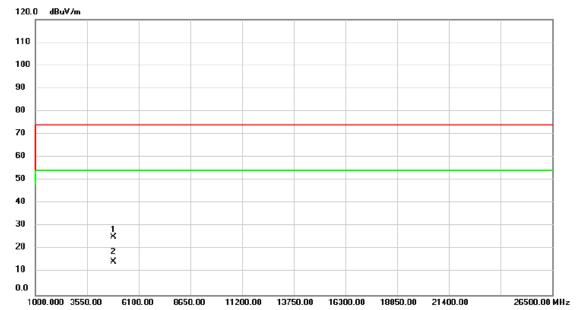
4874.000

2 * 4874.000

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

-8.44

-8.44


41.09

29.56

Project No.: 2404G123 Page 64 of 91 Report Version: R00

Report No.: BTL-FCCP-1-2404G123

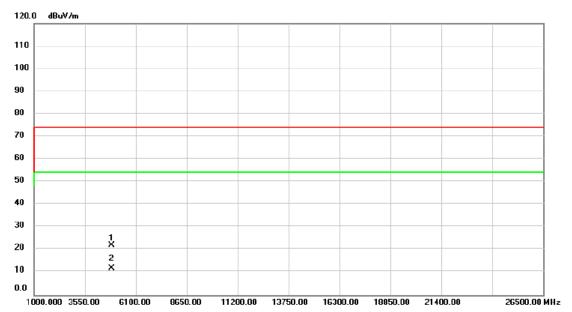
Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/26
Test Frequency	2437MHz	Polarization	Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4874.000	33.84	-8.44	25.40	74.00	-48.60	peak			
2	*	4874.000	22.94	-8.44	14.50	54.00	-39.50	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/26
Test Frequency	2452MHz	Polarization	Vertical



No.	M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4904.000	31.01	-8.36	22.65	74.00	-51.35	peak			
2	*	4904.000	22.23	-8.36	13.87	54.00	-40.13	AVG			

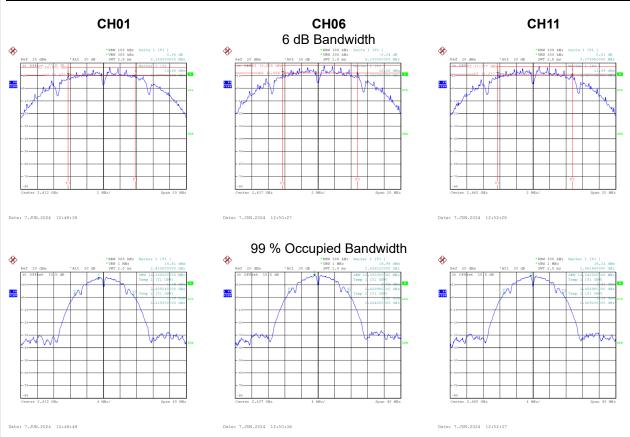
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT40)	Test Date	2024/6/26
Test Frequency	2452MHz	Polarization	Horizontal

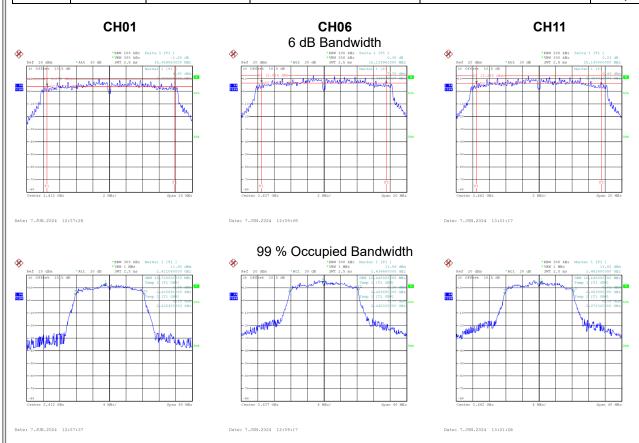
No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4904.000	30.29	-8.36	21.93	74.00	-52.07	peak			
2	*	4904.000	20.22	-8.36	11.86	54.00	-42.14	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D	BANDWIDTH

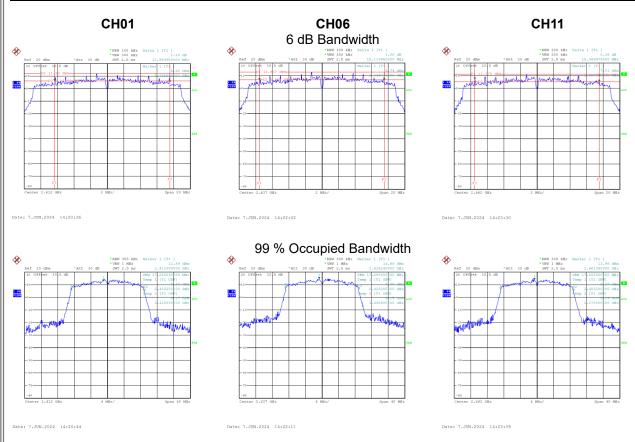

Project No.: 2404G123 Page 68 of 91 Report Version: R00

Test Mode IEEE 802.11b_Ant 1


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	8.140	14.160	0.5	Complies
06	2437	9.100	14.320	0.5	Complies
11	2462	9.080	14.240	0.5	Complies

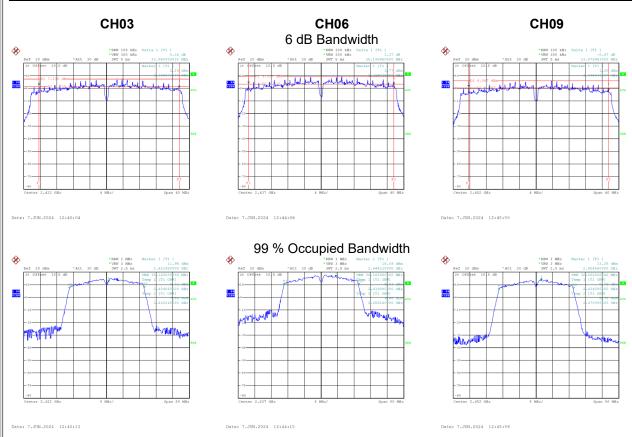
Test Mode	IEEE 802.11g_ Ant 1	
-----------	---------------------	--

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	15.470	16.720	0.5	Complies
06	2437	15.140	16.640	0.5	Complies
11	2462	15.140	16.640	0.5	Complies



TIEST MODE TILLE OUZ. THE CHILD	Test Mode	IEEE 802.11n ((HT20) Ant 1
---------------------------------	-----------	----------------	--------------

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	13.960	17.680	0.5	Complies
06	2437	15.120	17.680	0.5	Complies
11	2462	15.070	17.600	0.5	Complies



Test Mode IEEE 802.11n (HT40)_ Ant 1

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
03	2422	33.960	36.160	0.5	Complies
06	2437	35.200	36.160	0.5	Complies
09	2452	33.880	36.000	0.5	Complies

APPENDIX E	OUTPUT POWER	

Project No.: 2404G123 Page 73 of 91 Report Version: R00

Test Mode IEEE 802.11b Ant 1 Tested Date 2024/6/5

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	24.11	0.17	24.28	30.00	1.0000	Complies
06	2437	25.64	0.17	25.81	30.00	1.0000	Complies
11	2462	25.16	0.17	25.33	30.00	1.0000	Complies

Test Mode IE	EEE 802.11b_ Ant 2	Tested Date	2024/6/5
--------------	--------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	23.63	0.17	23.80	30.00	1.0000	Complies
06	2437	25.02	0.17	25.19	30.00	1.0000	Complies
11	2462	24.50	0.17	24.67	30.00	1.0000	Complies

Test Mode IEEE 802.11b_Total	Tested Date	2024/6/5
------------------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	27.06	30.00	1.0000	Complies
06	2437	28.53	30.00	1.0000	Complies
11	2462	28.03	30.00	1.0000	Complies

Project No.: 2404G123 Page 74 of 91 Report Version: R00

est Mode IEEE 802.11g_ Ant 1	Tested Date	2024/6/5
------------------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	22.08	0.23	22.31	30.00	1.0000	Complies
06	2437	25.75	0.23	25.98	30.00	1.0000	Complies
11	2462	23.70	0.23	23.93	30.00	1.0000	Complies

Test Mode	IEEE 802.11g_ Ant 2	Tested Date	2024/6/5
-----------	---------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.22	0.23	21.45	30.00	1.0000	Complies
06	2437	25.83	0.23	26.06	30.00	1.0000	Complies
11	2462	24.23	0.23	24.46	30.00	1.0000	Complies

Test Mode	IEEE 802.11g_Total	Tested Date	2024/6/5
-----------	--------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	24.92	30.00	1.0000	Complies
06	2437	29.03	30.00	1.0000	Complies
11	2462	27.22	30.00	1.0000	Complies

Project No.: 2404G123 Page 75 of 91 Report Version: R00

Test Mode IEEE 802.11n (HT20)_ Ant 1	Tested Date	2024/6/5
--------------------------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	22.99	0.42	23.41	30.00	1.0000	Complies
06	2437	23.61	0.42	24.03	30.00	1.0000	Complies
11	2462	22.63	0.42	23.05	30.00	1.0000	Complies

Test Mode	IEEE 802.11n (HT20) Ant 2	Tested Date	2024/6/5
	[· · · · · · · · · · · · · · · · · ·		

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.69	0.42	22.11	30.00	1.0000	Complies
06	2437	23.30	0.42	23.72	30.00	1.0000	Complies
11	2462	22.47	0.42	22.89	30.00	1.0000	Complies

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	25.82	30.00	1.0000	Complies
06	2437	26.88	30.00	1.0000	Complies
11	2462	25.98	30.00	1.0000	Complies

Project No.: 2404G123 Page 76 of 91 Report Version: R00

Test Mode	IEEE 802.11n (HT40) Ant 1	Tested Date	2024/6/5

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	20.15	0.82	20.97	30.00	1.0000	Complies
06	2437	22.63	0.82	23.45	30.00	1.0000	Complies
09	2452	18.94	0.82	19.76	30.00	1.0000	Complies

Test Mode	IEEE 802.11n (HT40) Ant 2	Tested Date	2024/6/5
	[· · · · · · · · · · · · · · · · · ·		

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	19.63	0.82	20.45	30.00	1.0000	Complies
06	2437	22.50	0.82	23.32	30.00	1.0000	Complies
09	2452	19.10	0.82	19.92	30.00	1.0000	Complies

Test Mode IEEE 802.11n (HT40)_Total	Tested Date	2024/6/5
-------------------------------------	-------------	----------

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	23.73	30.00	1.0000	Complies
06	2437	26.39	30.00	1.0000	Complies
09	2452	22.85	30.00	1.0000	Complies

Project No.: 2404G123 Page 77 of 91 Report Version: R00

APPENDIX F	POWER SPECTRAL DENSITY	

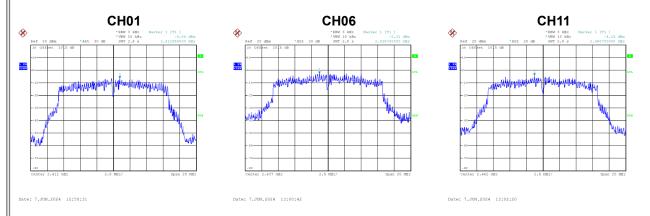
Project No.: 2404G123 Page 78 of 91 Report Version: R00

Test Mode	IEEE 802.11b_Ant 1
-----------	--------------------

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	1.99	8.00	Complies
06	2437	3.76	8.00	Complies
11	2462	3.07	8.00	Complies

Test Mode	IEEE 802.11b_Ant 2

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	0.33	8.00	Complies
06	2437	3.32	8.00	Complies
11	2462	5.17	8.00	Complies



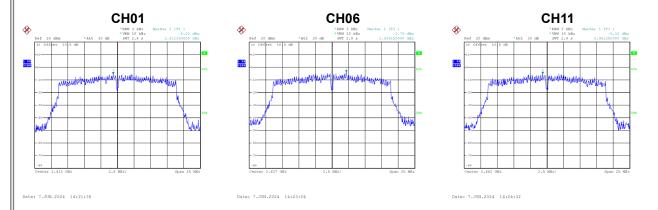
Test Mode	IEEE 802.11b_Total

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	4.25	8.00	Complies
06	2437	6.56	8.00	Complies
11	2462	7.26	8.00	Complies

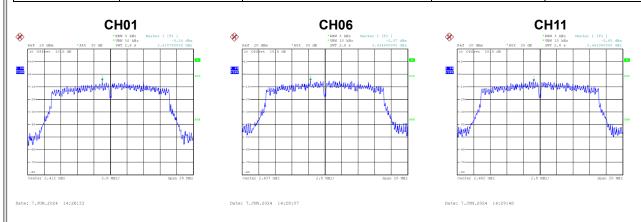
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-6.04	8.00	Complies
06	2437	-2.31	8.00	Complies
11	2462	-4.15	8.00	Complies

Test Mode	IEEE 802.11g_ Ant 2
-----------	---------------------

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-6.22	8.00	Complies
06	2437	-3.20	8.00	Complies
11	2462	-4.35	8.00	Complies


1 -		
	Test Mode	IEEE 802.11g_Total

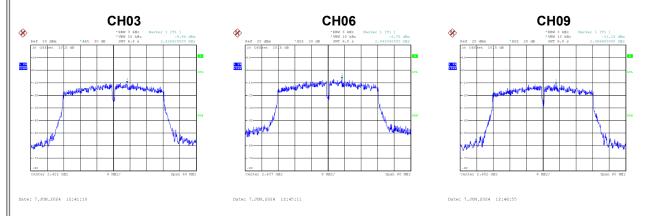
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-3.12	8.00	Complies
06	2437	0.28	8.00	Complies
11	2462	-1.24	8.00	Complies


	Test Mode	IEEE 802.11n ((HT20) Ant 1
--	-----------	----------------	--------------

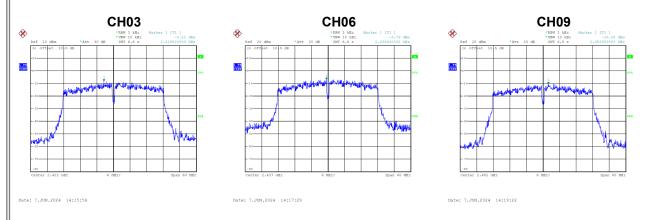
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-5.22	8.00	Complies
06	2437	-3.79	8.00	Complies
11	2462	-5.12	8.00	Complies

ш		
ш	Test Mode	
ш	T+ N/I-	IEEE 802.11n (HT20)
ш	LIEST WINDE	HEFE SUZ TIN (BIZU) ANTZ
ш	TOSE WIDGE	

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-5.14	8.00	Complies
06	2437	-5.07	8.00	Complies
11	2462	-5.65	8.00	Complies


Test Mode	IEEE 802.11n (HT20)_Total

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-2.17	8.00	Complies
06	2437	-1.37	8.00	Complies
11	2462	-2.37	8.00	Complies

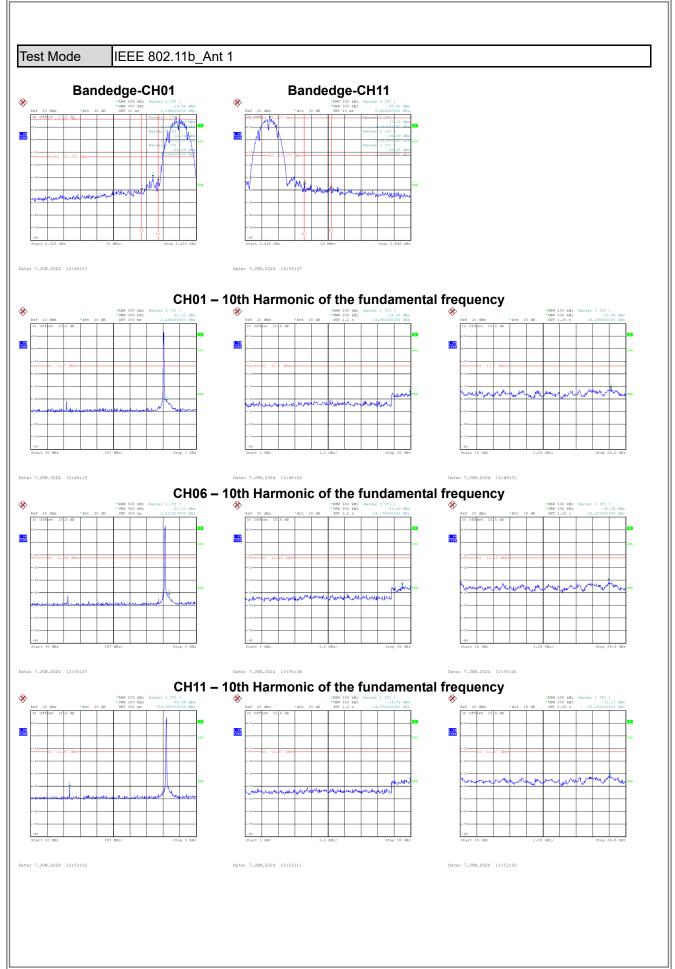

Test Mode	IEEE 802.11n (HT40)_	Ant 1
-----------	----------------------	-------

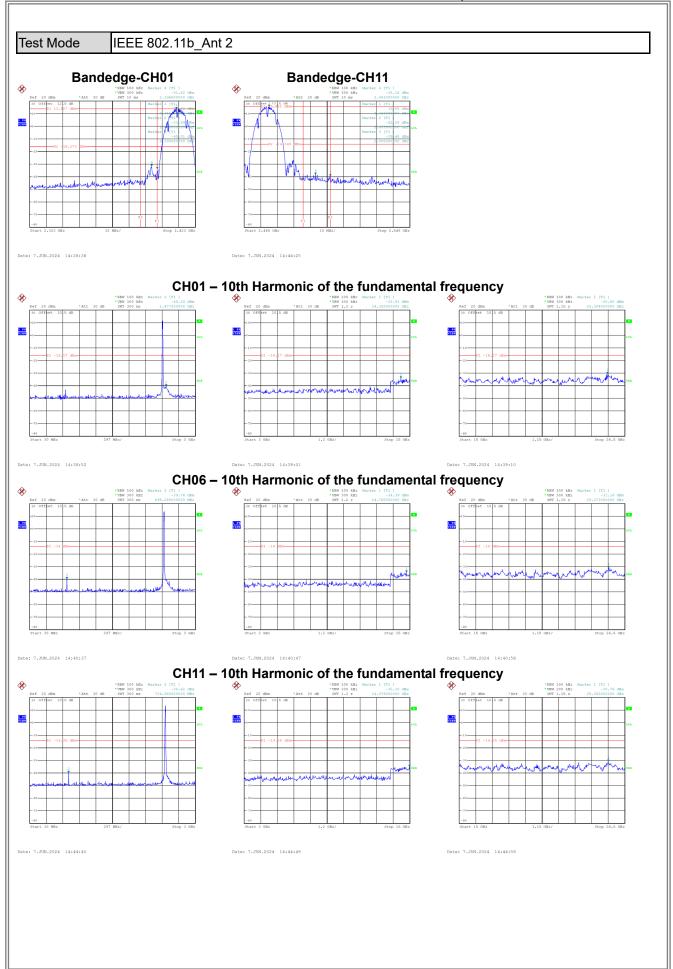
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
03	2422	-9.94	8.00	Complies
06	2437	-6.75	8.00	Complies
09	2452	-11.18	8.00	Complies

_		
	Test Mode	IEEE 802.11n (HT40)_ Ant 2

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
03	2422	-8.22	8.00	Complies
06	2437	-6.79	8.00	Complies
09	2452	-10.28	8.00	Complies

Test Mode	IEEE 802.11n (HT40)_Total


Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
03	2422	-5.99	8.00	Complies
06	2437	-3.76	8.00	Complies
09	2452	-7.70	8.00	Complies


APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS

Project No.: 2404G123 Page 83 of 91 Report Version: R00

