

FCC Radio Test Report

FCC ID: 2BCGWC410

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-1-2312G166B Smart Wire-Free Indoor/Outdoor Security Camera Tapo C410, Tapo C402, TC82 tp-link TP-LINK CORPORATION PTE. LTD. 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987
Radio Function	: WLAN 2.4 GHz
FCC Rule Part(s) Measurement Procedure(s)	: FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2024/09/05 : 2024/09/06 ~ 2024/09/20 : 2024/10/11

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

:

Poken Huang, Enginee

TAF Testing Laboratory 0659

Approved by

Peter Chen, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISIO	NHISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	DUTY CYCLE	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	10
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4	SUPPORT UNITS	11
3	AC POWER LINE CONDUCTED EMISSIONS TEST	12
3.1	LIMIT	12
3.2	TEST PROCEDURE	12
3.3	DEVIATION FROM TEST STANDARD	12
3.4	TEST SETUP	13
3.5	TEST RESULT	13
4	RADIATED EMISSIONS TEST	14
4.1	LIMIT	14
4.2	TEST PROCEDURE	15
4.3	DEVIATION FROM TEST STANDARD	15
4.4	TEST SETUP	16
4.5	EUT OPERATING CONDITIONS	17
4.6	TEST RESULT – 9KHZ TO 30 MHZ	17
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	17
4.8	TEST RESULT – ABOVE 1 GHZ	17
5	BANDWIDTH TEST	18
5.1		18
5.2	TEST PROCEDURE	18
5.3	DEVIATION FROM TEST STANDARD	18
5.4	TEST SETUP	18
5.5	EUT OPERATING CONDITIONS	18
5.6	TEST RESULT	18
6	OUTPUT POWER TEST	19
6.1		19
6.2	TEST PROCEDURE DEVIATION FROM TEST STANDARD	19 10
6.3	TEST SETUP	19 19
6.4 6.5	EUT OPERATING CONDITIONS	19
6.6	TEST RESULT	19
0.0 7	POWER SPECTRAL DENSITY	20
7.1	LIMIT	20
7.1	TEST PROCEDURE	20
7.2 7.3	DEVIATION FROM TEST STANDARD	20
7.3 7.4	TEST SETUP	20
7.5	EUT OPERATING CONDITIONS	20
7.6	TEST RESULT	20
		20

8	ANTENN	IA CONDUCTED SPURIOUS EMISSIONS TEST	21
8.1	LIMIT		21
8.2	TEST	PROCEDURE	21
8.3	DEVIA	ATION FROM TEST STANDARD	21
8.4	TEST	SETUP	21
8.5	EUT C	OPERATING CONDITIONS	21
8.6	TEST	RESULT	21
9	LIST OF	MEASURING EQUIPMENTS	22
10	EUT TES	ST PHOTO	24
11	EUT PHO	DTOS	24
APPEND	A XIC	AC POWER LINE CONDUCTED EMISSIONS	25
APPEND	IX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	28
APPEND	DIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	DIX D	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX E	BANDWIDTH	61
APPEND	NX F	OUTPUT POWER	65
APPEND	NX G	POWER SPECTRAL DENSITY	67
APPEND	NX H	ANTENNA CONDUCTED SPURIOUS EMISSIONS	70

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2312G166B	R00	Original Report.	2024/10/11	Valid

1 SUMMARY OF TEST RESULTS

Test procedures accord	ing to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247(a)	Bandwidth	APPENDIX E	Pass	
15.247(b)	Output Power	APPENDIX F	Pass	
15.247(e)	Power Spectral Density	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	

Note:

- (1) N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) All test items have been re-evaluated by sample of FCC ID: 2BCGWC410, model name: Tapo C410, TC82, Tapo C402. It is found that the new data are the worst, so the test data are reissue from the
 - FCC ID: 2BCGWC410, model name: Tapo C410, TC82, Tapo C402. Model difference(s):
- a. Added a battery with reduced cell capacity (without RF circuit).
- b. On the basis of the original, one patch antenna was removed, and two antennas were used alternately (ANT1 antenna was removed and ANT2 was retained).
- c. The adapter plug will not be sale together, and the USB cable will be sale together.
- c. The adapter plug will not be saled. Updated the Hardware Version.
- (4) The original test records and results please refer to the test report number:
- eLab-FCCP-1-2312G166, issued date is 2024/3/22.

Which was accredited by TAF, FCC registration number is 681248, with the scopes of cited standards in this test report.

This report is only valid conjunction with the above referenced test report.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

⊠ C01 ⊠ CB20 ⊠ TR01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C01	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range (GHz)	U (dB)	U _{CISPR} (dB)
	0.03~0.2	4.01	6
	0.02~1	4.64	6
CB20	1~6	5.91	6
(3m)	6 ~ 18	6.24	6
	18 ~ 26	3.93	6
	26 ~ 40	4.06	6

C. Conducted test :

Test Item	U
Occupied Bandwidth	86 %
Output power	0.8412 dB
Power Spectral Density	0.8602 dB
Conducted Spurious emissions	1.8304 dB
Conducted Band edges	1.8338 dB

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Ken Lu
Radiated emissions below 1 GHz	Refer to data	AC 120V	Ken Lu
Radiated emissions above 1 GHz	Refer to data	AC 120V	Ken Lu
Bandwidth	25°C, 70%	DC 5V	Cheng Tsai
Output Power	25°C, 70%	DC 5V	Tye Lin
Power Spectral Density	25°C, 70%	DC 5V	Cheng Tsai
Antenna conducted Spurious Emission	25°C, 70%	DC 5V	Cheng Tsai

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)						
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor						
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)						
IEEE 802.11b	0.090	1	0.090	0.090	100.00%	0.00						
IEEE 802.11g	1.000	1	1.000	1.000	100.00%	0.00						
IEEE 802.11n (HT20)	0.470	1	0.470	0.470	100.00%	0.00						
IE	EE 802.	11b			IEEE 802.11g	IEEE 802.11b IEEE 802.11g						
RBW 3 MHz Marker 1 [T1] RBW 3 MHz Marker 1 [T1] *UBW 10 MHz 17.55 dBm *UBW 10 MHz 17.55 dBm Ref 30 dBm *Att 40 dB SWT 1 ms 88.000000 µs Ref 30 dBm *Att 40 dB SWT 5 ms 2.350000 ms												
Ref 30 dBm *Att 40 dB	*VBW 10 ME	Iz 17.	51 dBm	•	*VBW 10 MHz	Marker 1 [T1] 17.55 dBm						
Ref 30 dBm *Att 40 dB 30 Offset 11 5 dB 11 5 dB	*VBW 10 ME	Iz 17.	51 dBm	•	*VBW 10 MHz	Marker 1 [T1] 17.55 dBm						

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Smart Wire-Free Indoor/Outdoor Security Camera	
Model Name	Таро С410, ТС82, Таро С402	
Brand Name	tp-link	
Model Difference	Only differ in model name.	
Software Version	1.X	
Hardware Version	1.20	
Power Source	 1# DC Voltage supplied from AC adapter (support unit). 2# Supplied from battery. 1) Model: INR18650/33V 2) Model: CMICR18650F8 3# Supplied from solar panel. Model: Tapo A201 	
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.2A Max. O/P: 5V 1A 2# 1) DC 3.3V*2 2) DC 3.7V*2 3# DC 5V	
Products Covered	N/A	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2412 MHz ~ 2462 MHz	
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM	
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps	
Output Power Max.	IEEE 802.11b: 22.61 dBm (0.1824 W)	
Test Model	Tapo C410	
Sample Status	Engineering Sample	
EUT Modification(s)	N/Ă	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
01	2412	05	2432	09	2452			
02	2417	06	2437	10	2457			
03	2422	07	2442	11	2462			
04	2427	08	2447					

(3) Table for Filed Antenna:

Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
1	BIG FIELD GLOBAL PTE. LTD	3101506732	Dipole	N/A	0

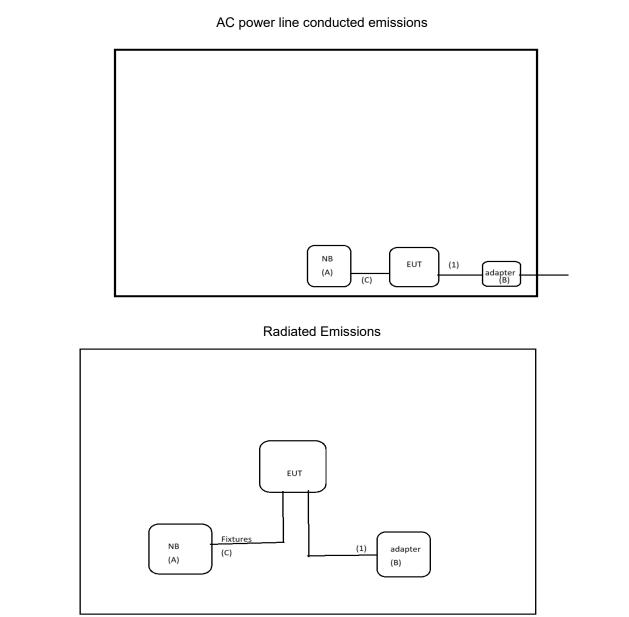
(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	01	-
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions (above 1GHz)	TX Mode_IEEE 802.11g	01/11	Bandedge
	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions (above 1GHz)	TX Mode_IEEE 802.11g	01/06/11	Harmonic
	TX Mode_IEEE 802.11n (HT20)		
Transmitter Radiated Emissions (above 18GHz)	TX Mode_IEEE 802.11b	01	-
Bandwidth &	TX Mode_IEEE 802.11b		
Output Power & Power Spectral Density &	TX Mode_IEEE 802.11g	01/06/11	-
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT20)		

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.


(2) For radiated spurious emissions(below 1GHz& above 18GHz), only tested the worst case(TX Mode_IEEE 802.11b Channel 01) and recorded.

(3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab.
В	adapter	N/A	N/A	N/A	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	Yes	No	1m	USB to USB Cable	Supplied by test requester.
С	No	No	1m	Fixture Cable	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	Π	41.67

Measurement Value (dBµV)		Limit Value (dBµV)		Margin Level (dB)
41.67	-	60	=	-18.33

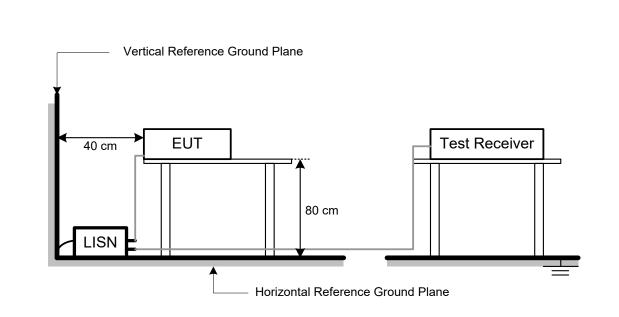
The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Peak Average ` '	Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance (meters)
Above 1000 74 54 3		Peak	Average	(meters)
	Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
19.11	+	2.11	Ш	21.22

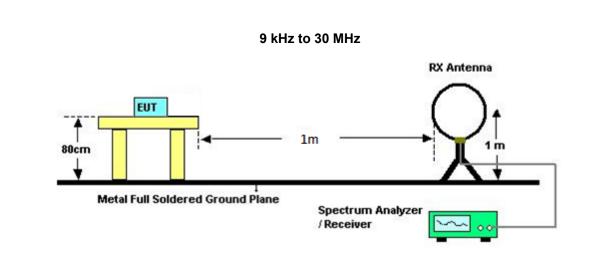
Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1MHz / 3MHz for Peak,	
(Emission in restricted band)	1MHz / 1/T for Average	

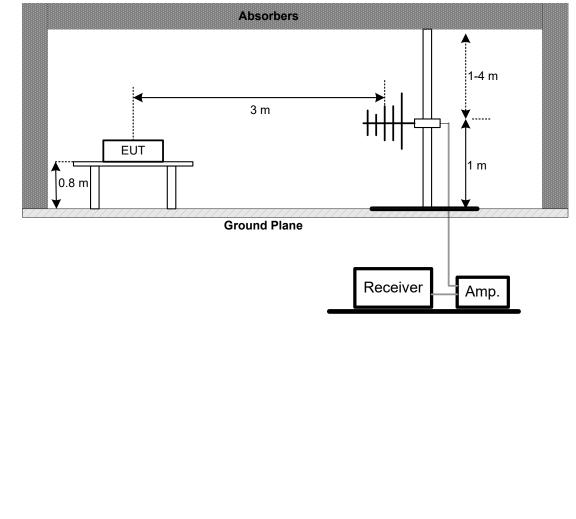
Mode	VBW(Hz)	
IEEE 802.11b	1.8k	
IEEE 802.11g	750	
IEEE 802.11n (HT20)	300	
IEEE 802.11n (HT40)	300	
IEEE 802.11ax (HE20)	300	
IEEE 802.11ax (HE40)	300	

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2 TEST PROCEDURE

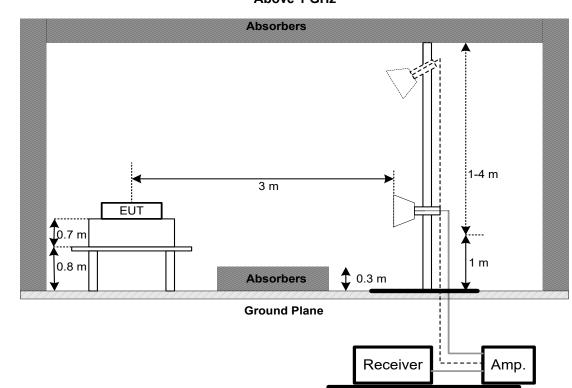

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

<u>3TL</u>

4.4 TEST SETUP



30 MHz to 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – 9kHz TO 30 MHz

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

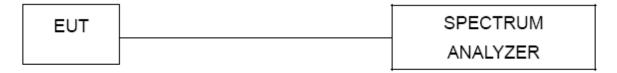
NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 LIMIT

Section	Test Item	Limit
15.247(a)	6 dB Bandwidth	500 kHz


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

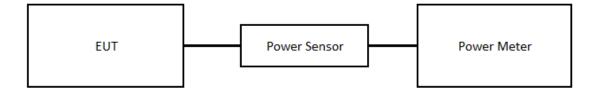
5.6 TEST RESULT

Please refer to the APPENDIX E.

6 OUTPUT POWER TEST

6.1 LIMIT

Section	Test Item	Limit
15.247(b)	Maximum Output Power	1 Watt or 30dBm


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX F.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX G.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX H.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Two-Line V-Network	R&S	ENV216	101051	2024/6/26	2025/6/25		
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10		
3	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26		
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A		

Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Loop Ant.	Electro-Metrics	EMCI-LPA600	274	2024/7/5	2025/7/4		
2	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26		
3	Pre-Amplifler	EMCI	EMC001340	980555	2023/12/1	2024/11/30		
4	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01207	2023/12/18	2024/12/17		
5	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26		
6	Pre-Amplifier	EMCI	EMC001330-2020 1222	980807	2023/12/11	2024/12/10		
7	Test Cable	EMCI	EMC-8D-NM-NM- 5000	150106	2023/12/11	2024/12/10		
8	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2023/12/11	2024/12/10		
9	Broad-Band Horn Antenna	RFSPIN	DRH18-E	210109A18E	2024/1/10	2025/1/9		
10	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10		
11	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10		
12	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10		
13	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2023/12/11	2024/12/10		
14	EXA Spectrum Analyzer	keysight	N9020B	MY59050137	2023/11/24	2024/11/23		
15	Pre-Amplifier	EMCI	EMC184045SE	980512	2023/12/11	2024/12/10		
16	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	340	2024/6/27	2025/6/26		
17	Test Cable	EMCI	EMC102-KM-KM- 1000	220328	2023/12/11	2024/12/10		
18	Test Cable	EMCI	EMC101G-KM-KM -3000	220330	2023/12/11	2024/12/10		
19	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A		

	Bandwidth							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyze	- R&S	FSP 30	100854	2024/6/27	2025/6/26		
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A		
3	BTL-Conducred Tes	st BTL	1247788684	N/A	N/A	N/A		
			Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	USB Peak Power Sensor	Anritsu	MA24408A	12589	2023/10/25	2024/10/24		
2	20dbAttenuator	INMET	AHC-20dB	1	N/A	N/A		
3	Measurement Software	Anritsu	MA2440A Peak Powe analyzer(Ver1.1.0.0)	NI/Δ	N/A	N/A		
	Power Spectral Density							

	Power Spectral Density					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A
3	BTL-Conducred Test	BTL	1247788684	N/A	N/A	N/A

	Antenna conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26		
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A		
3	BTL-Conducred Test	BTL	1247788684	N/A	N/A	N/A		

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

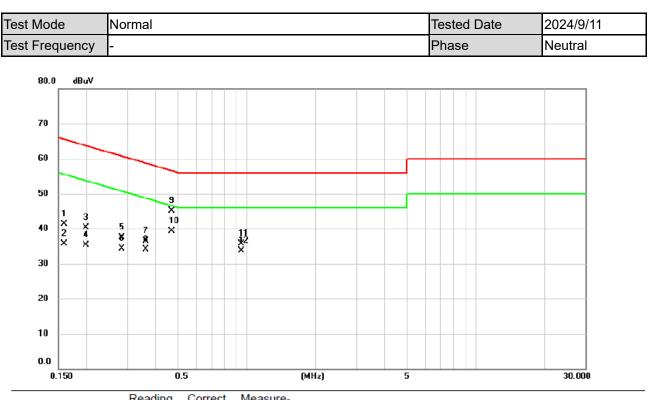
10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2312G166B-1 (APPENDIX-TEST PHOTOS).


11 EUT PHOTOS

Please refer to document Appendix No.: EP-2312G166B-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS


	No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		
_			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
_	1		0.1668	30.70	9.65	40.35	65.12	-24.77	QP	
_	2		0.1668	25.74	9.65	35.39	55.12	-19.73	AVG	
_	3		0.1825	29.44	9.64	39.08	64.37	-25.29	QP	
_	4		0.1825	25.47	9.64	35.11	54.37	-19.26	AVG	
_	5		0.2476	28.36	9.64	38.00	61.84	-23.84	QP	
_	6		0.2476	24.96	9.64	34.60	51.84	-17.24	AVG	
_	7		0.2881	24.76	9.65	34.41	60.58	-26.17	QP	
_	8		0.2881	24.71	9.65	34.36	50.58	-16.22	AVG	
_	9		0.4724	36.83	9.66	46.49	56.47	-9.98	QP	
_	10	*	0.4724	28.85	9.66	38.51	46.47	-7.96	AVG	
_	11		0.9455	25.44	9.70	35.14	56.00	-20.86	QP	
_	12		0.9455	24.28	9.70	33.98	46.00	-12.02	AVG	
_										

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	31.58	9.63	41.21	65.52	-24.31	QP	
2		0.1590	26.03	9.63	35.66	55.52	-19.86	AVG	
3		0.1986	30.60	9.63	40.23	63.67	-23.44	QP	
4		0.1986	25.76	9.63	35.39	53.67	-18.28	AVG	
5		0.2844	27.93	9.64	37.57	60.69	-23.12	QP	
6		0.2844	24.71	9.64	34.35	50.69	-16.34	AVG	
7		0.3621	26.83	9.63	36.46	58.68	-22.22	QP	
8		0.3621	24.45	9.63	34.08	48.68	-14.60	AVG	
9		0.4685	35.54	9.64	45.18	56.54	-11.36	QP	
10	*	0.4685	29.71	9.64	39.35	46.54	-7.19	AVG	
11		0.9455	25.99	9.69	35.68	56.00	-20.32	QP	
12		0.9455	24.09	9.69	33.78	46.00	-12.22	AVG	


EMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

REMARKS:

*

10.9857

6

(1) Measurement Value = Reading Level + Correct Factor.

-4.21

46.15

69.54

-23.39

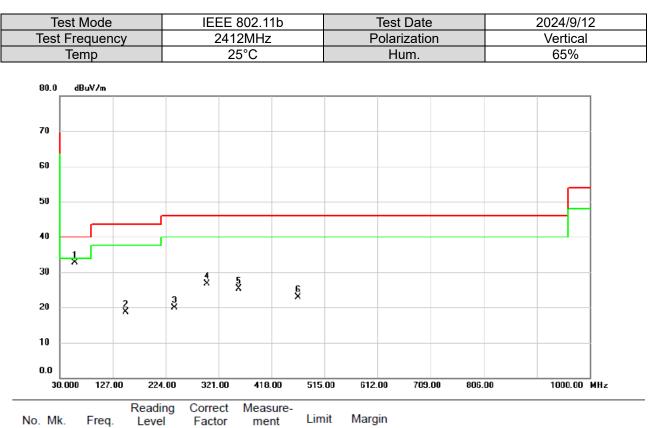
QP

(2) Margin Level = Measurement Value - Limit Value.

50.36

Test Mode			IEEE 802.11b				st Date		2024/9/	
Te	est Freque	ncy	2412MHz			Polarization			Horizontal	
	Temp			25°C		ŀ	lum.		65%	
20.0) dBu¥/m									_
10										
00										
0										_
0										-
0										-
0										-
0										
0		2 X		5 ×						
0	1 X		3 x X	6 ×						
0										
0										
	009 3.01	6.01	9.01	12.01	15.00	18.00	21.00	24.00	30.00	MHz
M	k. Freq.	Reading Level	Correct Factor		Limit	Margin				

NO.	IVIK.	⊢req.	Level	Factor	ment	LIITIIL	wargin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1.6585	27.46	-2.68	24.78	63.21	-38.43	QP	
2		6.0071	40.36	-4.15	36.21	69.54	-33.33	QP	
3		8.1965	30.11	-3.85	26.26	69.54	-43.28	QP	
4		9.0063	33.52	-4.11	29.41	69.54	-40.13	QP	
5	*	9.9960	42.14	-4.13	38.01	69.54	-31.53	QP	
6		12.0054	28.16	-4.11	24.05	69.54	-45.49	QP	


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	57.1600	44.47	-11.70	32.77	40.00	-7.23	peak	
2		151.2500	29.85	-11.11	18.74	43.50	-24.76	peak	
3		240.4900	32.25	-12.25	20.00	46.00	-26.00	peak	
4		299.6600	36.96	-10.25	26.71	46.00	-19.29	peak	
5		357.8600	33.95	-8.70	25.25	46.00	-20.75	peak	
6		466.5000	28.65	-5.75	22.90	46.00	-23.10	peak	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Test Mode			EE 802.11k	o		est Date		2024/9/12	
Te	st Frequen	су	2412MHz			Polarization			Horizontal	
	Temp			25°C			Hum.		65%	
80.0	dBuV/m									
70										
60										
50										
40										
30			3 4 X X		6 X					
20	×	2 X			^					
10										
0.0								000.00	1000.00	
30	.000 127.00			0 418.00	515.00) 612.00) 709.0	0 806.00	1000.00	MHZ
No. M		Reading Level	Facto	r ment	Limit		1			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	93.0500	35.81	-16.95	18.86	43.50	-24.64	peak			
2	176.4700	33.56	-12.33	21.23	43.50	-22.27	peak			
3	244.3700	39.38	-12.15	27.23	46.00	-18.77	peak			
4	299.6600	36.31	-10.25	26.06	46.00	-19.94	peak			
5 *	379.2000	37.93	-8.07	29.86	46.00	-16.14	peak			

46.00 -22.88

peak

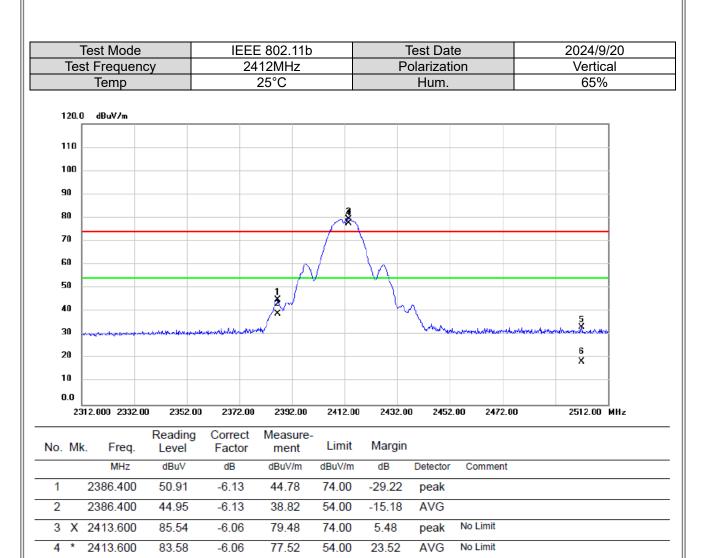
REMARKS:

6

508.2100

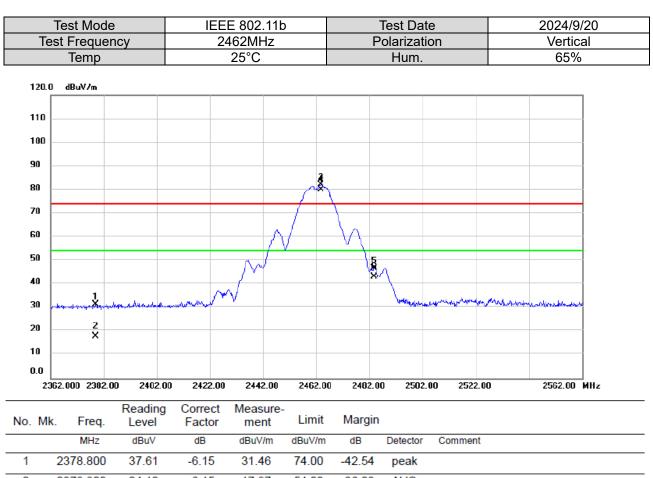
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

-5.07


23.12

28.19

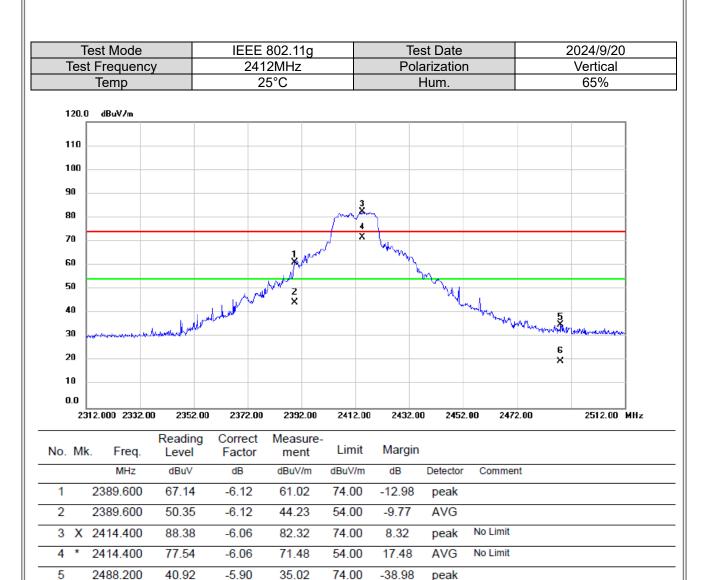
APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ


5	2502.000	38.97	-5.87	33.10	74.00	-40.90	peak
6	2502.000	24.32	-5.87	18.45	54.00	-35.55	AVG

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.


1	2378.800	37.61	-6.15	31.46	74.00	-42.54	peak	
2	2378.800	24.12	-6.15	17.97	54.00	-36.03	AVG	
3)	X 2463.800	87.89	-5.95	81.94	74.00	7.94	peak	No Limit
4 *	2463.800	85.98	-5.95	80.03	54.00	26.03	AVG	No Limit
5	2483.800	52.48	-5.92	46.56	74.00	-27.44	peak	
6	2483.800	48.85	-5.92	42.93	54.00	-11.07	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

6

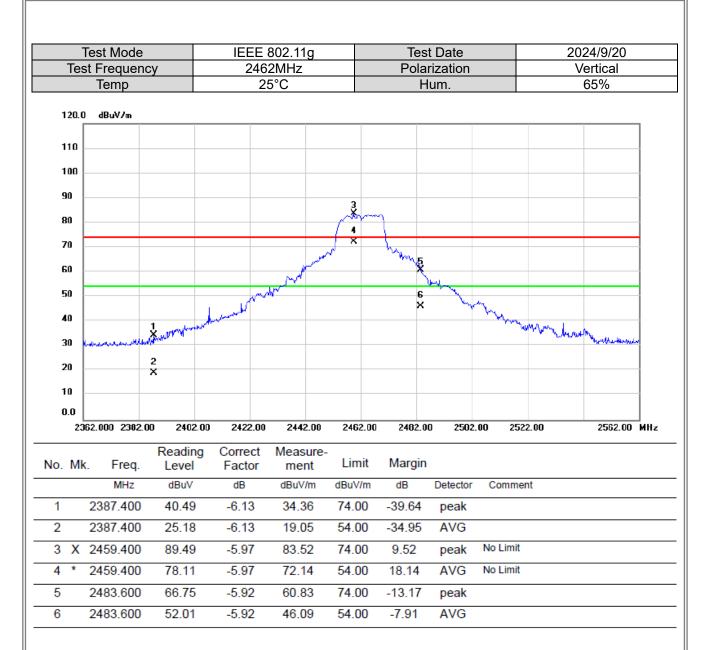
2488.200

(1) Measurement Value = Reading Level + Correct Factor.

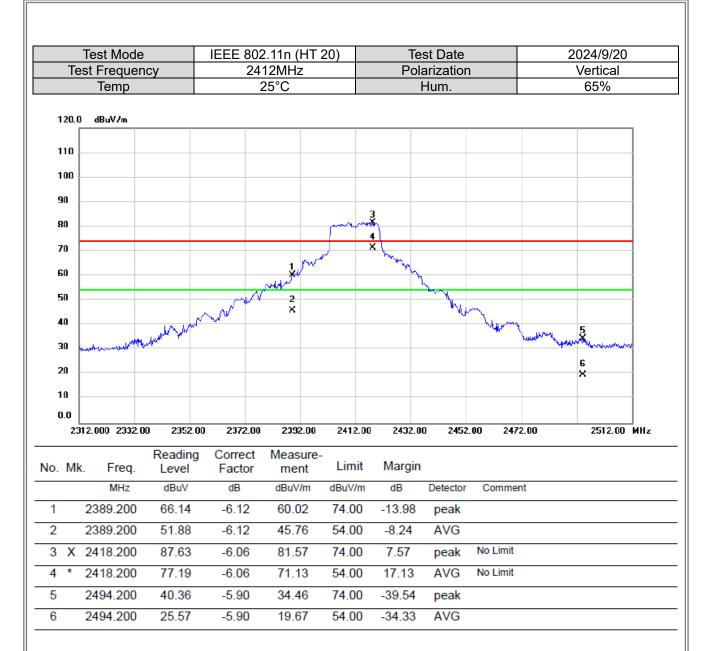
-5.90

19.51

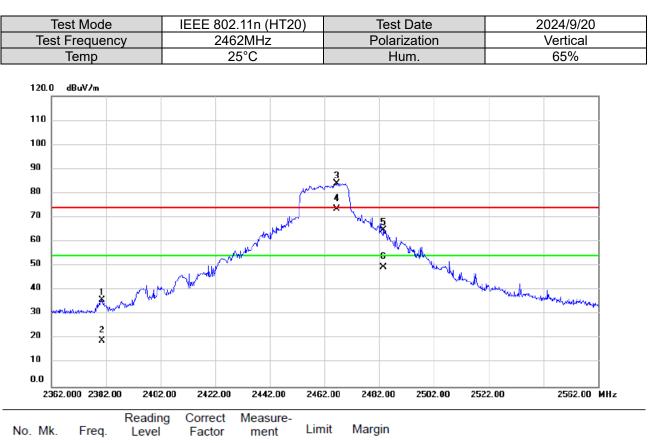
54.00


-34.49

AVG

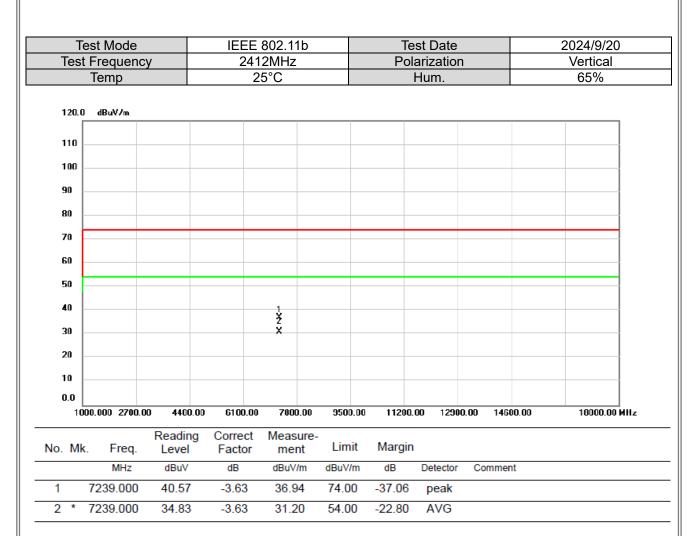

(2) Margin Level = Measurement Value - Limit Value.

25.41


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.



No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2380.400	41.92	-6.13	35.79	74.00	-38.21	peak	
2		2380.400	25.09	-6.13	18.96	54.00	-35.04	AVG	
3	Х	2466.400	89.94	-5.95	83.99	74.00	9.99	peak	No Limit
4	*	2466.400	79.16	-5.95	73.21	54.00	19.21	AVG	No Limit
5		2483.600	70.50	-5.92	64.58	74.00	-9.42	peak	
6		2483.600	55.35	-5.92	49.43	54.00	-4.57	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mode			802.11g			Date		2024/9/20		
le	est Frequen	су		12MHz 25°C		Polarization Hum.			<u>Horizontal</u> 65%		
	Temp		2	50		HU	Im.		05%		
120.0	0 dBuV/m										
110											
100											
90											
80											
70											
60											
50											
40				1							
				1 X 2							
30				x							
20											
10											
0.0											
10	000.000 2700.00		6100.00	7800.00	9500.00	11200.00	12900.00	14600.00	18000.00 MHz		
o. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB D	etector Cor	mment			
1	7236.000	42.12	-3.64	38.48	74.00	-35.52	peak				
2 *	7236.000	32.20	-3.64	28.56	54.00	-25.44	AVG				

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

2 *

7311.000

(1) Measurement Value = Reading Level + Correct Factor.

-3.50

31.05

54.00

-22.95

AVG

(2) Margin Level = Measurement Value - Limit Value.

34.55

	Test Mod			EE 802.1			est Date		2024/9/20
les	st Freque	ncy		2462MHz	2	Po	larization		Vertical
	Temp			25°C			Hum.		65%
120.0	dBuV/m								
Г									
110									
100									
90									
80									
70									
60									
50				1 X					
40				2					
30				×					
20									
10									
0.0									
100	0.000 2700	.00 4400	.00 6100).00 7800	.00 9500.0	0 11200	.00 12900.	00 14600.00	18000.00 MHz
		Readir	g Corre						
lo. Mk									
	MHz	dBuV	dB	dBuV/			Detector	Comment	
1	7386.000					-31.31	peak		
2 *	7386.000	35.85	-3.36	32.4	9 54.00	-21.51	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode			2.11n (HT	20)		est Date		2024/9/20
Te	st Frequer	псу		12MHz		Po	olarizatio	n	Vertical
	Temp			25°C			Hum.		65%
120.0	dBuV∕m								
110									
100									
90 -									
80									
70									
60 -									
50				1					
40				1 X Z					
30				×					
20									
10 0.0									
	0.000 2700.0	0 4400.00	6100.00	7800.00	9500.00	11200.0	0 12900.	.00 14600.00	18000.00 MHz
o. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	7236.000	45.74	-3.64	42.10	74.00	-31.90	peak		
2 *	7236.000	34.71	-3.64	31.07	54.00	-22.93	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Mode		IEEE	802.11n	(HT20)		Test	t Date		2024/9/20
	equency	y		2412MH	Z		Polarization			Horizonta
Te	emp			25°C			H	um.		65%
120.0 d	BuV/m									
110										
100										
90										
80										
70										
60										
50										
40				1 X						
30				2						
				^						
20										
10										
0.0	00 2700.00) 4400	.00 610	D.00 780).00 9500.	0 110	0.00	12900.00	14600.00	18000.00 MH;
1000.0	00 2700.00					JU 1120	JU. UU	12300.00	14600.00	18000.00 MH
o. Mk.	Freq.	Readin Level				Marg	in			
	MHz	dBuV	dB	dBuV	/m dBuV/n	dB	De	tector Co	omment	
1 72	36.000	43.75	-3.6	4 40.1	1 74.00	-33.8	9 p	eak		

54.00 -23.22 AVG

REMARKS:

2 * 7236.000

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

-3.64

30.78

34.42

	Test Mode				2.11n (HT2	20)	То	st Date		2024/9/20		
1		Frequen			37MHz			arization		Vertical		
		Temp	-)		25°C			Hum.		65%		
10												
12	0.0	dBuV/m										
11	o											
10	o											
90												
80												
70												
60												
50												
40	'				1 2							
30					×							
20	-											
10												
0.0												
	1000	.000 2700.0	00 4400.00	0 6100.00	7800.00	9500.00	11200.0	12900.00	14600.00	18000.00 MHz		
No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector (Comment			
1		311.000	40.32	-3.50	36.82	74.00	-37.18	peak				
2	* 7	311.000	32.91	-3.50	29.41	54.00	-24.59	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode		IEEE 802.11n (HT20)			Test Date			2024/9/20		
Te	est Frequen	cv			.0)		ization		Horizontal		
	Temp	-)		5°C		Hu		65%			
120.0	0 dBuV/m							·			
110											
100											
90											
80											
70											
60											
50											
40				X							
30				2 X							
20											
10											
0.0											
10	000.000 2700.00	0 4400.00	6100.00	7800.00	9500.00	11200.00	12900.00	14600.00	18000.00 MHz		
lo. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB D	etector Co	mment			
1	7311.000	41.36	-3.50	37.86	74.00	-36.14	peak				
2 *	7311.000	32.36	-3.50	28.86	54.00	-25.14	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

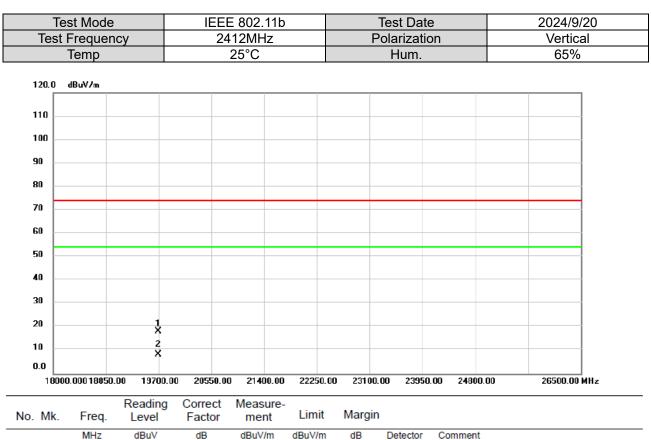
	Test Mode			2.11n (HT:	20)		est Date		2024/9/20
Tes	st Frequer	псу		62MHz		Po	larizatior	۱	Vertical
	Temp			25°C			Hum.		65%
120.0	0 dBuV/m								
110									
100									
90									
80									
70									
60									
50									
40				1 X 2					
30				2 X					
20									
10									
0.0									
10	000.000 2700	.00 4400.0	0 6100.00	7800.00	9500.00	11200.0	0 12900.	00 14600.00	18000.00 MHz
N	ь Г	Reading		Measure-	Limit	Margin			
No. M			Factor	ment		Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	7386.000		-3.36	37.05	74.00	-36.95	peak		
2 *	7386.000	33.27	-3.36	29.91	54.00	-24.09	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo		1	EEE 802.		T20)			est Da				2024/9/20			
Test Freq				2MHz		Polarization				Horizontal		al			
Tem	0		25	5°C				Hum						65%	
120.0 dBu	V/m														_
110															
100															
90															
80															_
70															
60															_
50															
40				1 × 2											-
30				2 X		_									
20															
10															_
0.0	2700.00	4400.00	6100.00	7800	00 9	500.00	1120	0 00	1290	0.00	1460	0.00		18000	 00 MHz
		Reading	Correct	Meas											
No. Mk. I	Freq.	Level	Factor	mer		imit	Marg	in							
	MHz	dBuV	dB	dBuV/	m dB	uV/m	dB	De	tector	Co	ommer	ıt			

2 * 7386.000

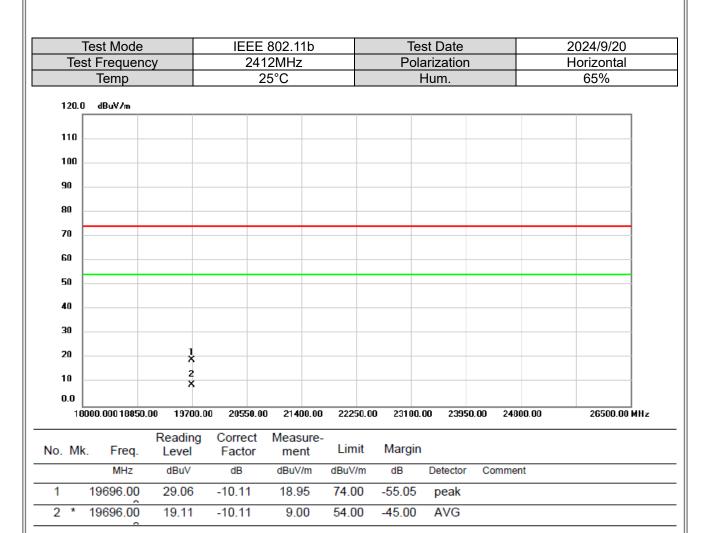
Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.


-3.36

30.22

54.00 -23.78 AVG

33.58



28.40 -10.11 18.29 74.00 19696.00 -55.71 1 peak 2 * 19696.00 18.31 -10.11 8.20 54.00 -45.80 AVG

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E BANDWIDTH

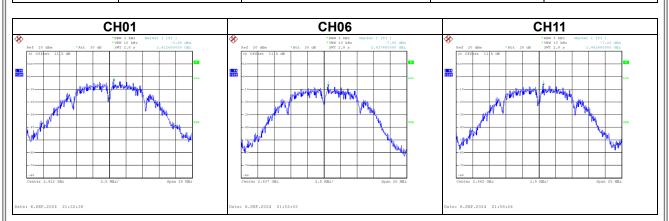
Fest Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	9.900	14.080	≥ 500	Pass
2437	9.839	13.600	≥ 500	Pass
2462	9.880	13.680	≥ 500	Pass
2412 MF	17	2437 MHz	2462 N	/Hz
		6 dB Bandwidth *## 100 MB _ 0010 + 1111 *000 000 MB _ 0112 + 101 *000 000 MB _ 0112 + 010 _ 0110012 dB		
559-2024 21:31:36	10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 MEX/ 25EP-2024 21:31:45	-	0 of the t. 1, 1, 8 of the t. 1, 1, 8 of the t. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	H	Temp: 1 (17 cm) 1

est Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	16.370	18.080	≥ 500	Pass Pass
2437	16.319	16.640	≥ 500	
2462	16.340	16.800	≥ 500	Pass
2412 M	Hz	2437 MHz	2462 N	ИНz
		6 dB Bandwidth		
01 3.244 dBm	Hortwell 1 (7) (3) (7) (3)<	20 dm *Ax 20 dm 00 20 MZ 5,14 M 10 dm *Ax 20 dm 00 24 Am 1,1101000 MZ 10 dm *Ax 20 dm 00 24 Am 1,110100 MZ 10 dm 10 dm 10 24 Am 1,110100 MZ 11 dm 10 dm 10 dm 10 dm 11 dm 10 dm 10 dm 11	And E 20 Other And E 20 Other Part E 10	0 Mar Collect J (T) J 0 Mar
xe 2.412 OEx 4 YEx/	200 100 100 100 100 100 100 100 100 100	141 Carlos Carlo	EEE	Spen 40 Mizz

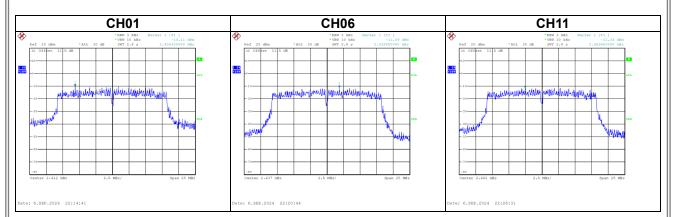
Fest Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	16.580	18.240	≥ 500	Pass
2437	16.888	17.600	≥ 500	Pass
2462	16.830	17.680	≥ 500	Pass
2412 M	Hz	2437 MHz	2462 N	1Hz
2112 1	12	6 dB Bandwidth	21021	
20 dm *AX 30 dm arr 20 dm			**************************************	Kar Celas I (r.) 2012 - 100 -
SEP.2024 22:33:46	Date: 6	.8EP-2024 22:40:43	Date: 6.SEP.2024 22:49:35	
		99 % Occupied Bandwidth	* 234/ 300 * 200/ 300	
Officet 115 dB	Image: 10, 2000 00 00 00 00 00 00 00 00 00 00 00 0	f. 20 dBm *ACL 20 dBm OTI-VC 1115 dB	**** 2 4000 ***** 3 400 ***** 3 10 40 *********************************	Mar. Bookers 1 (T). mb -44340000 (Mr). mb -44340000 (Mr). mb -41340000 (Mr). mb -413400000 (Mr). mb -413400000 (Mr). mb -413400000 (Mr). mb -4134000000 (Mr). mb -4134000000 (Mr). mb -4134000000 (Mr). mb -4134000000 (Mr). mb -413400000000000000000000000000000000000
SEP.2024 22:33:55	Date: 0	5.SEP.2024 22:40:52	Date: 6.SEP.2024 22:49:44	

APPENDIX F OUTPUT POWER

Test Mode IEEE 802.11b			Tested Date 2024/9/6		9/6		
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	22.61	0.00	22.61	30.00	1.0000	Complies
06	2437	22.46	0.00	22.46	30.00	1.0000	Complies
11	2462	22.35	0.00	22.35	30.00	1.0000	Complies
Test Mode IEEE 802.11g Tested Date 2024/9/6					9/6		
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.23	0.00	21.23	30.00	1.0000	Complies
06	2437	21.15	0.00	21.15	30.00	1.0000	Complies
11	2462	21.04	0.00	21.04	30.00	1.0000	Complies
Test Mode IEEE 802.11n (HT20) Tested Date 2024/9/6						9/6	
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	18.98	0.00	18.98	30.00	1.0000	Complies
06	2437	21.08	0.00	21.08	30.00	1.0000	Complies
11	2462	20.91	0.00	20.91	30.00	1.0000	Complies

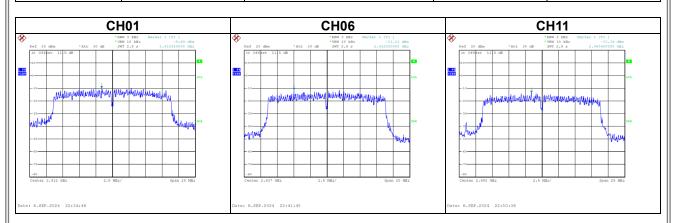


APPENDIX G POWER SPECTRAL DENSITY

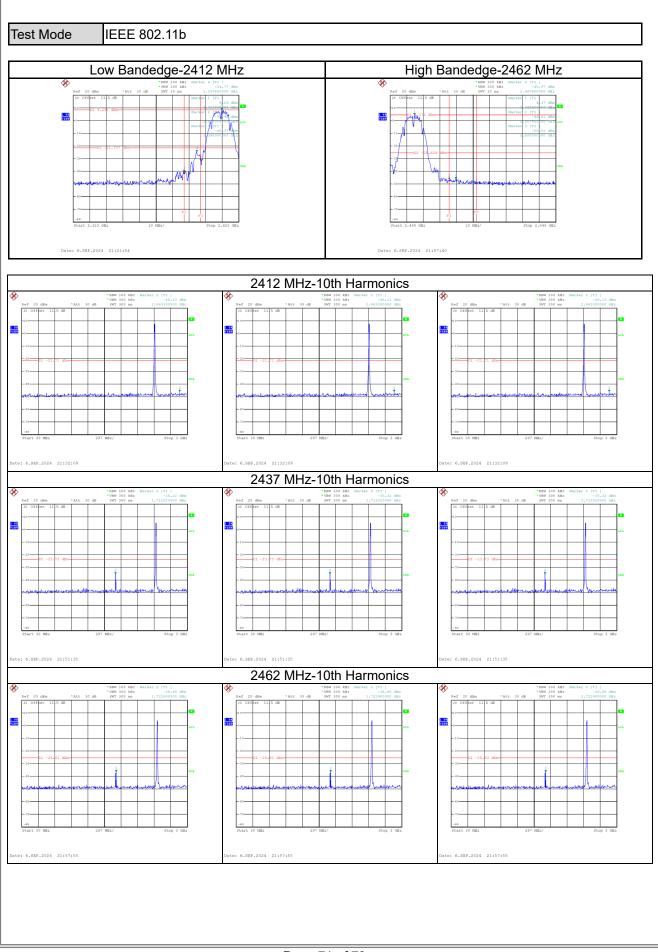

Test Mode IEEE 802.11b

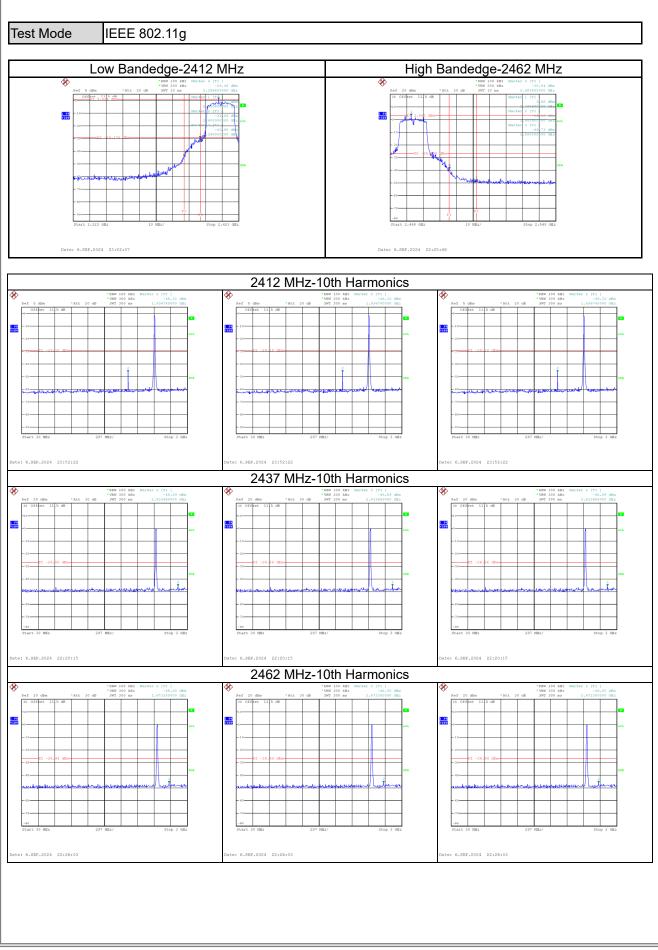
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-3.65	8.00	Complies
06	2437	-7.80	8.00	Complies
11	2462	-7.22	8.00	Complies

Test Mode IEEE 802.11g


Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-10.11	8.00	Complies
06	2437	-11.09	8.00	Complies
11	2462	-11.34	8.00	Complies

Test Mode IEEE 802.11n (HT20)


Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-9.69	8.00	Complies
06	2437	-11.23	8.00	Complies
11	2462	-13.39	8.00	Complies



APPENDIX H ANTENNA CONDUCTED SPURIOUS EMISSIONS

