FCC Radio Test Report

FCC ID: 2BCGWBP2200

This report concerns: Original Grant

Project No.
Equipment
Brand Name
Test Model
Series Model
Applicant
Address
Manufacturer
Address
Date of Receipt
Date of Test
Issued Date
Report Version
Test Sample
: 2403G096
: Smart Wi-Fi Outlet
: tp-link
: BP2200
: N/A
: TP-LINK CORPORATION PTE. LTD.
: 7 Temasek Boulevard \#29-03 Suntec Tower One, Singapore 038987
: TP-LINK CORPORATION PTE. LTD.
: 7 Temasek Boulevard \#29-03 Suntec Tower One, Singapore 038987
: Mar. 15, 2024
: Mar. 18, 2024 ~ Apr. 09, 2024
: May 06, 2024
: R00
: Engineering Sample No.: SSL20240315121 for conducted, SSL20240315123 for AC power line conducted emissions and radiated emissions.
Standard(s) : FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong,
People's Republic of China
Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).
BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.
This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.
BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.
BTL is not responsible for the sampling stage, so the results only apply to the sample as received.
The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.
Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.
Table of Contents Page
REPORT ISSUED HISTORY 6

1. APPLICABLE STANDARDS 7
2.SUMMARY OF TEST RESULTS 7
2.1 TEST FACILITY 8
2.2 MEASUREMENT UNCERTAINTY 8
2.3 TEST ENVIRONMENT CONDITIONS 9
2. GENERAL INFORMATION 10
3.1 GENERAL DESCRIPTION OF EUT 10
3.2 DESCRIPTION OF TEST MODES 11
3.3 PARAMETERS OF TEST SOFTWARE 12
3.4 DUTY CYCLE 13
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 15
3.6 SUPPORT UNITS 15
3.7 CUSTOMER INFORMATION DESCRIPTION 15
4 . AC POWER LINE CONDUCTED EMISSIONS 16
4.1 LIMIT 16
4.2 TEST PROCEDURE 16
4.3 DEVIATION FROM TEST STANDARD 16
4.4 TEST SETUP 17
4.5 EUT OPERATION CONDITIONS 17
4.6 TEST RESULTS 17
3. RADIATED EMISSIONS 18
5.1 LIMIT 18
5.2 TEST PROCEDURE 19
5.3 DEVIATION FROM TEST STANDARD 20
5.4 TEST SETUP 20
5.5 EUT OPERATION CONDITIONS 22
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ 22
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ 22
5.8 TEST RESULTS - ABOVE 1000 MHZ 22
6.BANDWIDTH 23
6.1 LIMIT 23
6.2 TEST PROCEDURE 23
Table of Contents Page
6.3 DEVIATION FROM STANDARD 23
6.4 TEST SETUP 23
6.5 EUT OPERATION CONDITIONS 23
6.6 TEST RESULTS 23
4. MAXIMUM AVERAGE OUTPUT POWER 24
7.1 LIMIT 24
7.2 TEST PROCEDURE 24
7.3 DEVIATION FROM STANDARD 24
7.4 TEST SETUP 24
7.5 EUT OPERATION CONDITIONS 24
7.6 TEST RESULTS 24
5. CONDUCTED SPURIOUS EMISSIONS 25
8.1 LIMIT 25
8.2 TEST PROCEDURE 25
8.3 DEVIATION FROM STANDARD 25
8.4 TEST SETUP 25
8.5 EUT OPERATION CONDITIONS 25
8.6 TEST RESULTS 25
6. POWER SPECTRAL DENSITY 26
9.1 LIMIT 26
9.2 TEST PROCEDURE 26
9.3 DEVIATION FROM STANDARD 26
9.4 TEST SETUP 26
9.5 EUT OPERATION CONDITIONS 26
9.6 TEST RESULTS 26
7. MEASUREMENT INSTRUMENTS LIST 27
8. EUT TEST PHOTO 29
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS 35
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ 38
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ 43
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ 46
APPENDIX E - BANDWIDTH 79
APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER 83

Table of Contents

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS 85
APPENDIX H - POWER SPECTRAL DENSITY 92

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2403G096	R00	Original Report.	May 06, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:
ANSI C63.10-2013
The following reference test guidance is not within the scope of accreditation of A2LA:
KDB 558074 D01 15.247 Meas Guidance v05r02

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):
FCC CFR Title 47, Part 15, Subpart C

Standard(s) Section	Test Item	Test Result	Judgment	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS	------
$15.247(\mathrm{~d})$	Radiated Emissions	APPENDIX B		
$15.205(\mathrm{a})$		APPENDIX C	PASS	------
$15.209(\mathrm{a})$	APPENDIX D			
$15.247(\mathrm{a})(2)$	Bandwidth	APPENDIX E	PASS	------
$15.247(\mathrm{~b})(3)$	Maximum Average Output Power	APPENDIX F	PASS	------
$15.247(\mathrm{~d})$	Conducted Spurious Emissions	APPENDIX G	PASS	------
$15.247(\mathrm{e})$	Power Spectral Density	APPENDIX H	PASS	------
15.203	Antenna Requirement	-----	PASS	Note(2)

Note:
(1) "N/A" denotes test is not applicable in this test report.
(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan City, Guangdong People's Republic of China.
BTL's Registration Number for FCC: 747969
BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor ($k=2$))
The BTL measurement uncertainty as below table:
A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	$U,(\mathrm{~dB})$
DG-C02	CISPR	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	$U,(\mathrm{~dB})$
DG-CB01	CISPR	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	$U,(\mathrm{~dB})$
DG-CB03 $(3 \mathrm{~m})$	CISPR	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	V	4.40
		$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	H	3.62
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	V	4.58
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	H	3.98

Test Site	Method	Measurement Frequency Range	$U,(\mathrm{~dB})$
DG-CB03 $(3 \mathrm{~m})$	CISPR	$1 \mathrm{GHz} \sim 6 \mathrm{GHz}$	4.08
		$6 \mathrm{GHz} \sim 18 \mathrm{GHz}$	4.62

Test Site	Method	Measurement Frequency Range	$U,(\mathrm{~dB})$
DG-CB03 $(1 \mathrm{~m})$	CISPR	$18 \sim 26.5 \mathrm{GHz}$	3.36

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	0.90%
Maximum Average Output Power	1.3 dB
Conducted Spurious Emission	1.9 dB
Power Spectral Density	1.4 dB
Temperature	$0.8^{\circ} \mathrm{C}$
Humidity	2.2%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
AC Power Line Conducted Emissions	$22^{\circ} \mathrm{C}$	58%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Hayden Chen	Mar. 20, 2024
Radiated Emissions -9 kHz to 30 MHz	$26^{\circ} \mathrm{C}$	54%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Hayden Chen	Apr. 10, 2024
Radiated Emissions -30 MHz to 1000 MHz	$23^{\circ} \mathrm{C}$	44%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Allen Tong	Mar. 25, 2024
Radiated Emissions - Above 1000 MHz	$23^{\circ} \mathrm{C}$	$44-48 \%$	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Jensen Zhou Allen Tong	Mar. 27, 2024
Bandwidth	$24^{\circ} \mathrm{C}$	56%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Steve Zhou	Mar. 30, 2024
Maximum Average Output Power	$23^{\circ} \mathrm{C}$	48%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Oliver Wang	Mar. 26, 2024
Conducted Spurious Emissions	$24^{\circ} \mathrm{C}$	56%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Steve Zhou	Mar. 30, 2024
Power Spectral Density	$24^{\circ} \mathrm{C}$	56%	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Steve Zhou	Mar. 30, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Wi-Fi Outlet
Brand Name	tp-link
Test Model	BP2200
Series Model	N / A
Model Difference(s)	$1 . \mathrm{X}$
Software Version	1.0
Hardware Version	AC Mains.
Power Source	$100-125 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$
Power Rating	$2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$
Operation Frequency	IEEE $802.11 \mathrm{~b}: ~ \mathrm{DSSS}$
IEEE 802.11g: OFDM	
Modulation Type	IEEE 802.11n: OFDM
Bit Rate of Transmitter	IEEE $802.11 \mathrm{~b}: 11 / 5.5 / 2 / 1 \mathrm{Mbps}$ IEEE 802.11g: $54 / 48 / 36 / 24 / 18 / 12 / 9 / 6 \mathrm{Mbps}$ IEEE 802.11n: up to 72.2 Mbps

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. Channel List:

CH01-CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)							
Channel	Frequency (MHz)						
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	tp-link	BP2200	IFA	N/A	2.19

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX N(HT20) Mode Channel 11
Mode 5	TX B Mode Channel 01/02/06/10/11
Mode 6	TX G Mode Channel 01/02/06/10/11
Mode 7	TX N(HT20) Mode Channel 01/02/06/10/11

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test	
Final Test Mode	Description
Mode 4	TX N(HT20) Mode Channel 11

Radiated emissions test - Below 1GHz	
Final Test Mode	Description
Mode 4	TX N(HT20) Mode Channel 11

Radiated emissions test- Above 1GHz	
Final Test Mode	Description
Mode 5	TX B Mode Channel 01/02/06/10/11
Mode 6	TX G Mode Channel 01/02/06/10/11
Mode 7	TX N(HT20) Mode Channel 01/02/06/10/11

Conducted test

Final Test Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11

NOTE:

(1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
(2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT20) Mode Channel 11 is found to be the worst case and recorded.
(3) For radiated emission above 1 GHz test, the spurious points of $1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$ have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20 dB .
(4) For radiated emission Harmonic $18-26.5 \mathrm{GHz}$ test, only tested the worst case and recorded.
(5) For radiated emission above 1 GHz test, the polarization of Vertical and Horizontal are evaluated, the worst case is Vertical and recorded.

3.3 PARAMETERS OF TEST SOFTWARE

Test Software Version	Realtek Bluetooth MP Kit Setup Package-RTLBTAPP		
Frequency (MHz)	2412	2437	2462
IEEE 802.11b	92	92	92
IEEE 802.11 g	105	105	105
IEEE 802.11n(HT20)	107	107	107

3.4 DUTY CYCLE

If duty cycle is $\geq 98 \%$, duty factor is not required.
If duty cycle is $<98 \%$, duty factor shall be considered.
The output power = measured power + duty factor.

IEEE 802.11b

Date: 30. MARR. 2024 13:24:10
Duty cycle $=12.426 \mathrm{~ms} / 12.578 \mathrm{~ms}=98.79 \%$
Duty Factor $=10 \log (1 /$ Duty cycle $)=0.00$
IEEE 802.11n(HT20)

Date: 30.MAR. 2024 13:25:16

Duty cycle $=1.928 \mathrm{~ms} / 2.056 \mathrm{~ms}=93.77 \%$
Duty Factor $=10 \log (1 /$ Duty cycle $)=0.28$

IEEE 802.11g

Date: 30.MAR.2024 13:24:47
Duty cycle $=2.072 \mathrm{~ms} / 2.200 \mathrm{~ms}=94.18 \%$
Duty Factor $=10 \log (1 /$ Duty cycle $)=0.26$

NOTE:

For IEEE 802.11b:
For radiated emissions frequency above 1 GHz , the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz .

For IEEE 802.11g:
For radiated emissions frequency above 1 GHz , the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 483 Hz .

For IEEE 802.11n(HT20):
For radiated emissions frequency above 1 GHz , the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 519 Hz .
(Remark: The video bandwidth of the spectrum analyzer was set to 1 kHz during the test.)

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.2 m

3.7 CUSTOMER INFORMATION DESCRIPTION

1) The antenna gain is provided by the manufacturer.
2) Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. Part of the cable losses $(0.5 \mathrm{~dB})$ are provided by the manufacturer, while the other parts of the cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency of Emission (MHz)	Limit $(\mathrm{dB} \mu \mathrm{V})$	
	Quasi-peak	Average
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5.0$	56	46
$5.0-30.0$	60	50

NOTE:

(1) The tighter limit applies at the band edges.
(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.2 TEST PROCEDURE

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide $50 \mathrm{Ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m .
d. LISN at least 80 cm from nearest part of EUT chassis.
e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.
4.6 TEST RESULTS

Please refer to the APPENDIXA.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength $($ microvolts/meter)	Measurement Distance $($ meters $)$
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Band edge/ Harmonic at $3 \mathrm{~m}(\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$		Harmonic at $1 \mathrm{~m}(\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$	
	Peak	Average	Peak	Average
Above 1000	74	54	83.5 (Note 4)	63.5 (Note 4)

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
(2) The tighter limit applies at the band edges.
(3) Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(u \mathrm{~V} / \mathrm{m})$.
(4)
$F S_{\text {limit }}=F S_{\max }-20 \log \left(\frac{d_{\text {limit }}}{d_{\text {measure }}}\right)$
$20 \log \left(\mathrm{~d}_{\text {limit }} / \mathrm{d}_{\text {measure }}\right)=20 \log (3 / 1)=9.5 \mathrm{~dB}$.

5.2 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
b. The measuring distance of 3 m or 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m ; the height of the test antenna shall vary between 1 m to 4 m . Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz .
f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak \& AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	$9 \mathrm{kHz} \sim 150 \mathrm{kHz}$ for RBW 200 Hz
Start \sim Stop Frequency	$0.15 \mathrm{MHz} \sim 30 \mathrm{MHz}$ for RBW 9 kHz
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$ for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	$1 \mathrm{MHz} / 3 \mathrm{MHz}$ for PK value
(Emission in restricted band)	$1 \mathrm{MHz} / 1 / \mathrm{T} \mathrm{Hz}$ for AVG value

Receiver Parameters	Setting
Start ~ Stop Frequency	$9 \mathrm{kHz} \sim 90 \mathrm{kHz}$ for PK/AVG detector
Start ~ Stop Frequency	$90 \mathrm{kHz} \sim 110 \mathrm{kHz}$ for QP detector
Start ~ Stop Frequency	$110 \mathrm{kHz} \sim 490 \mathrm{kHz}$ for PK/AVG detector
Start \sim Stop Frequency	$490 \mathrm{kHz} \sim 30 \mathrm{MHz}$ for QP detector
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$ for QP detector
Start \sim Stop Frequency	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$ for PK/AVG detector

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

9 kHz to 30 MHz

30 MHz to 1 GHz

Harmonic(1 GHz to 18 GHz)

Harmonic(18 GHz to 26.5 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.
Remark:
(1) Distance extrapolation factor $=40 \log$ (specific distance / test distance) (dB).
(2) Limit line $=$ specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit
FCC $15.247(\mathrm{a})(2)$	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

6.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting
Span Frequency	$>$ Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99\% Emission Bandwidth:

Spectrum Parameters	Setting
Span Frequency	Between 1.5 times and 5.0 times the OBW
RBW	$300 \mathrm{kHz} \mathrm{For} \mathrm{20MHz}$
VBW	$1 \mathrm{MHz} \mathrm{For} \mathrm{40MHz}$
Detector	$1 \mathrm{MHz} \mathrm{For} \mathrm{20MHz}$
Trace	3 MHz For 40MHz
Sweep Time	Peak
	Max Hold

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.
7. MAXIMUM AVERAGE OUTPUT POWER

7.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Average Output Power	1.0000 Watt or 30.00 dBm

7.2 TEST PROCEDURE

a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 of ANSI C63.10-2013.
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. CONDUCTED SPURIOUS EMISSIONS

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
b. The following table is the setting of the spectrum analyzer:

For Reference Level:

Spectrum Parameters	Setting
Span Frequency	≥ 1.5 times the bandwidth.
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For Emission Level:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. POWER SPECTRAL DENSITY

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm
(in any 3 kHz)		

9.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	$25 \mathrm{MHz}(20 \mathrm{MHz})$
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MEASUREMENT INSTRUMENTS LIST

AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R\&S	ESR3	103027	Jun. 16, 2024	
2	TWO-LINE V-NETWORK	R\&S	ENV216	101447	Dec. 22, 2024	
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
4	Cable	N/A	SFT205-NMNM-9M -001	$9 M$	Nov. 27,2024	
5	643 Shield Room	ETS	$6 * 4 * 3$	N/A	N/A	

Radiated Emissions -9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60	25	Mar. 30, 2025	
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024	
3	Cable	N/A	RW2350-3.8A-NMB M-1.5M	N/A	Jun. 10, 2024	
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
5	966 Chamber room	ETS	$9 * 6 * 6$	N/A	Jul. 11, 2024	

Radiated Emissions - $\mathbf{3 0} \mathbf{~ M H z}$ to $\mathbf{1 ~ G H z}$

Radiated Emissions $-\mathbf{3 0}$ MHz to $\mathbf{1 G H z}$					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024
3	Preamplifier	EMC INSTRUMENT	EMC001330	980998	Nov. 17, 2024
4	Cable	RegalWay	LMR400-NMNM-12 $.5 m$	N/A	Jul. 04, 2024
5	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jul. 04, 2024
6	Cable	RegalWay	LMR400-NMNM-0. $5 m$	N/A	Jul. 04, 2024
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024
8	Positioning Controller	MF	MF-7802	N/A	N/A
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
10	966 Chamber room	CM	9*6*6	N/A	May 17, 2024

Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Nov. 17, 2024
3	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Jun. 16, 2024
4	Double Ridged Guide Antenna	ETS	3115	75789	May 31, 2024
5	Cable	RegalWay	RWLP50-4.0A-SMS M-12.5M	N/A	Feb. 19, 2025
6	Cable	RegalWay	RWLP50-4.0A-NM RASM-2.5M	N/A	Aug. 08, 2024
7	Cable	RegalWay	RWLP50-4.0A-NM RASMRA-0.8M	N/A	Aug. 08, 2024
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 $-K$	619413	Jul. 06, 2024
9	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-1.1M	N/A	Jul. 26, 2024
10	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 26, 2024
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 20, 2024
12	966 Chamber room	CM	9*6*6	N/A	May 17, 2024
13	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A
14	Filter	STI	STI15-9912	N/A	Jun. 16, 2024
15	Positioning Controller	MF	MF-7802	N/A	N/A
16	Measurement Software	Farad-EMC Ver.NB-03A1-01	N/A	N/A	

 Conducted Spurious Emissions \& Power Spectral Density					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A
2	DC Block	N/A	N/A	N/A	N/A
3	Measurement Software	BTL	BTL Conducted Test	N/A	N/A
4	Spectrum Analyzer	R\&S	FSP38	100852	Jun. 16, 2024

Maximum Average Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Peak Power Analyzer	Keysight	8990 B	MY51000506	Jun. 17, 2024	
2	Wideband power sensor	Keysight	N1923A	MY58310004	Jun. 17, 2024	
3	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A	

Remark: "N/A" denotes no model name, serial no. or calibration specified.
All calibration period of equipment list is one year.
11. EUT TEST PHOTO

AC Power Line Conducted Emissions Test Photos

Radiated Emissions Test Photos

9 kHz to 30 MHz

Radiated Emissions Test Photos

30 MHz to 1000 MHz

Radiated Emissions Test Photos

Band edge \& Harmonic 1 GHz - 18GHz

Radiated Emissions Test Photos

Harmonic Above 18GHz

Conducted Test Photos

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

Test Mode	TX N(HT20) Mode Channel 11	Phase	Line

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1793	35.53	9.74	45.27	64.52	-19.25	QP	
2	0.1793	26.70	9.74	36.44	54.52	-18.08	AVG	
3	0.2558	34.76	9.76	44.52	61.57	-17.05	QP	
4	0.2558	25.60	9.76	35.36	51.57	-16.21	AVG	
5	1.2773	36.21	9.83	46.04	56.00	-9.96	QP	
6	1.2773	27.10	9.83	36.93	46.00	-9.07	AVG	
7	2.3010	37.82	9.87	47.69	56.00	-8.31	QP	
$8 *$	2.3010	28.91	9.87	38.78	46.00	-7.22	AVG	
9	3.9413	37.52	9.95	47.47	56.00	-8.53	QP	
10	3.9413	28.30	9.95	38.25	46.00	-7.75	AVG	
11	5.4420	37.20	10.02	47.22	60.00	-12.78	QP	
12	5.4420	28.40	10.02	38.42	50.00	-11.58	AVG	

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 11	Phase	Neutral

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1748	34.52	9.59	44.11	64.73	-20.62	QP	
2	0.1748	25.60	9.59	35.19	54.73	-19.54	AVG	
3	1.3154	39.07	9.69	48.76	56.00	-7.24	QP	
4	1.3154	30.90	9.69	40.59	46.00	-5.41	AVG	
5	2.3393	40.70	9.72	50.42	56.00	-5.58	QP	
$6 *$	2.3393	31.71	9.72	41.43	46.00	-4.57	AVG	
7	3.9098	40.42	9.80	50.22	56.00	-5.78	QP	
8	3.9098	31.50	9.80	41.30	46.00	-4.70	AVG	
9	5.4083	40.20	9.88	50.08	60.00	-9.92	QP	
10	5.4083	31.20	9.88	41.08	50.00	-8.92	AVG	
11	6.9675	39.97	9.97	49.94	60.00	-10.06	QP	
12	6.9675	30.40	9.97	40.37	50.00	-9.63	AVG	

REMARKS:

(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Ant 0°

160.0 dBuV/m								
150								
130								
120								
110								
100								
80								
70 20,								
50								
40								
30								
20								
$\begin{aligned} & 10 \\ & 0.0 \end{aligned}$								
0.009				(MHz)				0.150
No. Mk.	Freq.Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz dBuV	dB	dBuV/m	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment	
1	$0.0564 \quad 46.79$	21.30	68.09	112.58	-44.49	AVG		
2	$0.0728 \quad 44.29$	21.30	65.59	110.36	-44.77	AVG		
3 *	$0.0851 \quad 43.61$	21.30	64.91	109.01	-44.10	AVG		

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Ant 0°

160.0 dBuv/m										
150										
	140									
130										
120										
110										
100										
80										
70										
60										
50 -										
40 为										
30 a \square a										
20										
$\begin{aligned} & 10 \\ & 0.0 \end{aligned}$							5		30.000	
0.0		0.5		[MHz]						
No. Mk	Freq.	Reading Level	Correct Factor	Measurement	Limit	Margin				
	MHz	dBuV	dB	$\mathrm{dBuV} / \mathrm{m}$	dBuV/m	dB	Detector	Comm	ment	
1 *	2.2096	25.91	21.21	47.12	69.54	-22.42	QP			
2	3.1947	17.58	21.28	38.86	69.54	-30.68	QP			
3	10.5527	15.95	21.59	37.54	69.54	-32.00	QP			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Ant 90°

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Ant 90°

REMARKS:

(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level $=$ Measurement Value - Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Vertical

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 11	Polarization	Horizontal

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

Test Mode	TX B Mode 2412 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2412 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2417 MHz	Polarization	Vertical

$120 \mathrm{dBuV} / \mathrm{n}$

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	42.81	6.00	48.81	74.00	-25.19	Peak	
2	2390.0000	34.30	6.00	40.30	54.00	-13.70	AVG	
$3 *$	2416.2500	96.35	6.00	102.35	54.00	48.35	AVG	No Limit
4	2417.2500	98.74	6.00	104.74	74.00	30.74	Peak	No Limit

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2417 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2462 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX B Mode 2462 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2412 MHz	Polarization	Vertical

120 dBuV /n

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	53.96	6.00	59.96	74.00	-14.04	Peak	
2	2390.0000	39.19	6.00	45.19	54.00	-8.81	AVG	
$3 *$	2410.9500	91.14	6.00	97.14	54.00	43.14	AVG	No Limit
4	2415.8500	98.91	6.00	104.91	74.00	30.91	Peak	No Limit

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2412 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2417 MHz	Polarization	Vertical

120 dBuV hn

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	45.17	6.00	51.17	74.00	-22.83	Peak	
2	2390.0000	35.68	6.00	41.68	54.00	-12.32	AVG	
$3 *$	2413.7500	90.95	6.00	96.95	54.00	42.95	AVG	No Limit
4	2415.4500	99.80	6.00	105.80	74.00	31.80	Peak	No Limit

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2417 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2462 MHz	Polarization	Vertical

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX G Mode 2462 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2412 MHz	Polarization	Vertical

120 dBuV m

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	57.83	6.00	63.83	74.00	-10.17	Peak	
2	2390.0000	42.43	6.00	48.43	54.00	-5.57	AVG	
$3 *$	2408.5000	91.86	6.00	97.86	54.00	43.86	AVG	No Limit
4	2409.7500	100.40	6.00	106.40	74.00	32.40	Peak	No Limit

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2412 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2417 MHz	Polarization	Vertical

120 dBuV /n

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	48.09	6.00	54.09	74.00	-19.91	Peak	
2	2390.0000	37.89	6.00	43.89	54.00	-10.11	AVG	
$3 *$	2414.0500	91.87	6.00	97.87	54.00	43.87	AVG	No Limit
4	2415.4000	100.06	6.00	106.06	74.00	32.06	Peak	No Limit

REMARKS:

(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2417 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value $=$ Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2437 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2457 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2462 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2462 MHz	Polarization	Vertical

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2462 MHz	Polarization	Vertical

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	26232.250	53.32	10.37	63.69	83.50	-19.81	peak	
2^{*}	26232.250	43.21	10.37	53.58	63.50	-9.92	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode 2462 MHz	Polarization	Horizontal

REMARKS:
(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX E - BANDWIDTH

Test Mode	TX B Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	9.110	14.160	0.5	Complies
06	2437	9.060	14.160	0.5	Complies
11	2462	9.660	14.160	0.5	Complies

\qquad

\qquad

CH06
6 dB Bandwidth

Date: 30, M28. $2024 \quad 10: 18,39$

99 \% Occupied Bandwidth

CH11

Date: 30. Mas. 2024 10:19:81

\section*{| Test Mode | TX G Mode |
| :--- | :--- |}

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 \% Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.470	17.280	0.5	Complies
06	2437	16.420	17.200	0.5	Complies
11	2462	16.380	17.040	0.5	Complies

\qquad

\qquad

CH06
6 dB Bandwidth

Date: 30.1208. 2024 10:23:07

99 \% Occupied Bandwidth

CH11

Date: 30.MAR.2024 10:23:35

\qquad
R. 2024 10:23:14

Date: 30.MAR.2024 10:23:43

Test Mode	TX N(HT20) Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 \% Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	17.620	18.320	0.5	Complies
06	2437	17.660	18.240	0.5	Complies
11	2462	17.620	18.240	0.5	Complies

\qquad

\qquad

CH06
6 dB Bandwidth

Date: 30.mar. $2024 \quad$ 10:25:32

99 \% Occupied Bandwidth

CH11

Date: 30.MAR.2024 10:26:25

\qquad Date: 30.MRR.2024 10:26:33

APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER

Test Mode \quad TX B Mode

Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	18.41	0.00	18.41	30.00	1.0000	Complies
06	2437	18.44	0.00	18.44	30.00	1.0000	Complies
11	2462	18.02	0.00	18.02	30.00	1.0000	Complies

\section*{| Test Mode | TX G Mode |
| :--- | :--- |}

Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power (Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	18.11	0.26	18.37	30.00	1.0000	Complies
06	2437	18.05	0.26	18.31	30.00	1.0000	Complies
11	2462	18.31	0.26	18.57	30.00	1.0000	Complies

\section*{| Test Mode | TX N(HT20) Mode |
| :--- | :--- |}

Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	18.28	0.28	18.56	30.00	1.0000	Complies
06	2437	18.33	0.28	18.61	30.00	1.0000	Complies
11	2462	18.35	0.28	18.63	30.00	1.0000	Complies

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS

Test Mode	TX B Mode

Reference Level-CH01

Date: 30.MAR.2024 10:55:38
Bandedge-CH01

Date: 30.MAR.2024 11:30:00

Reference Level-CH06

Date: 30.MAR.2024 10:56:50

Reference Level-CH11
*

Date: 30.1MRR.2024 10:56:14
CH01 - 10th Harmonic of the fundamental frequency

Date: 30.MPR.2024 11:28:16

\qquad

CHO6 -

\qquad
,

,

Date: 30.MRR.2024 11:36:45
CH1

Date: 30.MAR.2024 11:36:38
sum
\qquad

\qquad

\qquad

Test Mode	TX G Mode

Date: 30.MaR.2024 10:58:54
Bandedge-CH01

Date: 30.MAR. 2024 11:43:09

Reference Level-CH06

Date: 30.MRR.2024 11:00:11

dedge-CH11
Date: 30.mar.2024 11:54:49
\&
Reference Level-CH11

Date: 30.MAR.2024 11:01:08
CHO1 - 10th Harmonic of the fundamental frequency

CH06 - 10th Harmonic of the fundamental frequency

\qquad

Date: 30.MAR. 2024 11:50:16

Date: 30.MRR.2024 11:50:23
CH11 - 10th Harmonic of the fundamental frequency

\qquad
\qquad

Test Mode	TX N(HT20) Mode

Reference Level-CH01

Date: 30.MAR.2024 11:01:37
Bandedge-CH01

Date: 30.MRR. 2024 13:05:05

Reference Level-CH06

Date: 30.Mar.2024 11:02:50

Date: 30.MAR.2024 13:16:43

Reference Level-CH11

Date: 30.MAR. 2024 11:06:01

CH06 - 10th Harmonic of the fundamental frequency
,

te: 30.MAR.2024 13:09:48

Date: 30.Mar.2024 13:09:56
\&

\qquad
CH11-10th

\qquad

,
\qquad

APPENDIX H - POWER SPECTRAL DENSITY

Test Mode TX B Mode

Channel	Frequency (MHz)	Power Spectral Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
01	2412	-3.43	8.00	Complies
06	2437	-4.39	8.00	Complies
11	2462	-2.94	8.00	Complies

CHO1

\section*{| Test Mode | TX G Mode |
| :--- | :--- |}

Channel	Frequency (MHz)	Power Spectral Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
01	2412	-7.74	8.00	Complies
06	2437	-7.56	8.00	Complies
11	2462	-5.33	8.00	Complies

\qquad
\qquad

```
\begin{tabular}{l|l}
\hline Test Mode & TX N(HT20) Mode
\end{tabular}
```

Channel	Frequency (MHz)	Power Spectral Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
01	2412	-7.23	8.00	Complies
06	2437	-6.74	8.00	Complies
11	2462	-6.34	8.00	Complies

Date: 30.MAR.2024 11:22:32

Date: 30.12RR.2024 11:22:49

