

FCC RF EXPOSURE REPORT

FCC ID: 2BCGS-P1411

Product description : PrismXR Puppis S1

Model No. : P1411

Trade Mark : --

Product No. : POC230711014-S001; POC230711014-S002

Applicant : PRISMXR PTE LTD

Address : 60 PAYA LEBAR ROAD #12-03 PAYA LEBAR SQUARE

SINGAPORE, 409051

Receipt date : 2023.07.15

Test date : 2023.07.15~2023.09.23

Issued Date : 2023.10.08

Prepared By:	Checked By:	Approved By:	Standard
Black ding	Tim zhang	Misue Su	H : CAN
Black Ding	7 in. zhong	Misul Su	HAIYUN APPORT Seal

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Haiyun Standard Technical Co., Ltd. This document may be altered or revised by Shenzhen Haiyun Standard Technical Co., Ltd. Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

Page 1 of 7 Report No.: RF230711014-01-003

History of this test report

Original Report Issue Date: 2023.10.08

No additional attachment

O Additional attachments were issued following record

Attachment No.	Issue Date	Description

Page 2 of 7 Report No.: RF230711014-01-003

1. TEST LOCATION

Company:	Shenzhen Haiyun Standard Technical CO., Ltd.
Address:	No. 110-113, 115, 116, Block B, Jinyuan Business Building, Bao'an District, Shenzhen, China
CNAS Registration Number:	CNAS L18252
CAB identifier	CN0145
A2LA Certificate Number	6823.01
Telephone:	0755-26024411

2. GENERAL INFORMATION

2.1 APPLICANT

PRISMXR PTE LTD

60 PAYA LEBAR ROAD #12-03 PAYA LEBAR SQUARE SINGAPORE, 409051

2.2 MANUFACTURER

PRISMXR PTE LTD

60 PAYA LEBAR ROAD #12-03 PAYA LEBAR SQUARE SINGAPORE, 409051

2.3 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment Name	PrismXR Puppis S1	
Test Model No.	P1411	
Trademark	N/A	
Power Supply	DC 5V From USB	
Hardware Version		
Software Version		
Operating Temperature	0℃-40℃	
EUT Stage	Product Unit	●Final-Sample
Operating Band	2400MHz ~ 2483.5MHz 5150MHz ~5250MHz 5250MHz ~5350MHz 5470MHz ~5725MHz 5725MHz ~5850MHz	
Product Type	2.4GHz: IEEE 802.11b: WLAN (2T IEEE 802.11b: WLAN (2T IEEE 802.11g: WLAN (2T IEEE 802.11n: WLAN (2T IEEE 802.11ax: WLAN (2T IEEE 802.11a: WLAN (2T IEEE 802.11a: WLAN (2T IEEE 802.11a: WLAN (2T IEEE 802.11ac: WLAN (2T IEEE 802.11ac: WLAN (2T IEEE 802.11ax: WLAN (2T	TX, 2RX)
Nominal Bandwidth	20MHz / 40MHz / 80MHz	

Page 3 of 7 Report No.: RF230711014-01-003

10101	
	IEEE 802.11b: DSSS (DBPSK/DQPSK/CCK)
	IEEE 802.11g: OFDM (BPSK/QPSK/16QAM/64QAM)
	IEEE 802.11a: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Modulation	IEEE 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
	IEEE 802.11ax: OFDMA
	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)

Page 4 of 7 Report No.: RF230711014-01-003

3. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna

For 2.4GWiFi

Ant.	Antenna Type	Connector	Gain (dBi)
1	Internal	N/A	1.88
2	Internal	N/A	2.56

T ''O '' M I		Directional Gain (dBi)		
Transmit Operating Mod	9	Power spectral density	Power	
802.11b	2TX With Beamforming	5.56	5.56	
802.11g	2TX With Beamforming	5.56	5.56	
802.11n(HT20MHz)	2TX With Beamforming	5.56	5.56	
802.11n(HT40MHz)	2TX With Beamforming	5.56	5.56	
802.11ax(HE20MHz)	2TX With Beamforming	5.56	5.56	
802.11ax(HE40MHz)	2TX With Beamforming	5.56	5.56	

Note: If antenna gains are not equal and each transmit antenna can be driven by more than one spatial stream, directional gain may be calculated by either of the following formulas:

 \square Directional gain = $G_{ANT MAX}$ + 10 $log(N_{ANT}/N_{SS})$ dBi, where NSS = the number of independent spatial

streams of data and $G_{ANT\ MAX}$ is the gain of the antenna having the highest gain (in dBi). \square Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20}) 2/N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.] If all antennas have the same gain, GANT:

 \square Directional gain = G_{ANT} + 10 $\log(N_{ANT}/N_{SS})$ dBi, where NSS = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi. (This formula can also be applied when antennas have different gains if the highest antenna gain is substituted for G_{ANT}.)

Ant gain provided by the manufacturer.

Page 5 of 7 Report No.: RF230711014-01-003

For 5GWiFi

	Frequency (MHz)	5150~5350	5470~5725	5725~5850
Antenna gain(dBi)	ANT1	2.33	3.72	3.71
	ANT2	2.94	3.90	3.01

			Directional Gain (dBi)	
Transmit Operating Mode		Frequency (MHz)	Power spectral	Power
		(IVII IZ)		1 OWEI
802.11a/802.11n(HT20MHz)/				
802.11n(HT40MHz)/		5150~5350	5.94	5.94
802.11n(HT40MHz)				
802.11ac(VHT20MHz)/				
802.11ac(VHT40MHz)/	2TX With	5470~5725	6.90	6.90
802.11ac(VHT80MHz)/				
802.11ac(VHT160MHz)/	Beamforming			
802.11ax(HE20MHz)/				
802.11ax(HE40MHz)/				
802.11ax(HE80MHz)/		5725~5850	6.71	6.71
802.11ax(HE160MHz)				
Note: If antenna gains are not equal	and each transmit	antenna can be driv	en by more than one st	natial stream

Note: If antenna gains are not equal and each transmit antenna can be driven by more than one spatial stream, directional gain may be calculated by either of the following formulas:

 \boxtimes Directional gain = $G_{ANT\ MAX}$ + 10 log(N_{ANT}/N_{SS}) dBi, where NSS = the number of independent spatial streams of data and $G_{ANT\ MAX}$ is the gain of the antenna having the highest gain (in dBi). \square Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})²/ N_{ANT}] dBi [Note the "20"s in the denominator of

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.] If all antennas have the same gain, GANT:

Directional gain = G_{ANT} + 10 log(N_{ANT}/N_{SS}) dBi, where N_{SS} = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi. (This formula can also be applied when antennas have different gains if the highest antenna gain is substituted for G_{ANT} .)

Ant gain provided by the manufacturer.

Page 6 of 7 Report No.: RF230711014-01-003

1. TEST RESULTS

Worst case as below:

For 2.4GHz: IEEE 802.11n(HT20)_2437MHz

-			\\ <u></u>					
	ANT No.	Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Tune up Power (dBm)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
	1	5.56	3.87	21.37	22.50	0.1273	1	Complies

	Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Tune up Power (dBm)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
2	5.56	3.87	22.08	22.50	0.1273	1	Complies

For 5GHz: IEEE 802.11ax(HE20) 5745MHz

-			1 2 1 1 1 1 2 1					
	ANT No.	Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Tune up Power (dBm)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
	1	6.71	4.69	23.77	24.00	0.1659	1	Complies

	ANT No.	Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Tune up Power (dBm)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
	2	6.71	4.69	23.76	24.00	0.1659	1	Complies

For BLE

ANT No.	Ant Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Tune up Power (dBm)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
1	0	1	0.70	0.70	0.0002	1	Complies

Note: 1. The calculated distance is 20 cm.

- 2. The 2.4G Wifi function can transmit at the same time with the 5G Wifi function.
- 3. Max. Tune up Power is declared by the manufacturer.
- 4. BLE power information is obtained from the RF related report in FCC ID:2AW30-BC204.

Simultaneous transmitting consideration

The ratio= MPE2.4GHz Wifi/limit+MPE5GHz Wifi/limit+ MPE 2.4GHz BLE/limit = (0.1273/1+0.1273/1)+(0.1659/1+0.1659/1)+0.0002/1=0.5866<1.0

Result: Complies	
	(END OF REPORT)

Page 7 of 7 Report No.: RF230711014-01-003