FCC TEST REPORT					
FCC ID:2BCEO-PP005					
Report No. :	SSP24060068-2E				
Applicant :	Shenzhen Chongyuan Pet Products Co., Ltd.				
Product Name :	SMART Wifi control automatic pet feeder				
Model Name :	PP005				
Test Standard :	FCC Part 15 Subpart E				
Date of Issue :	2024-06-15				
	CCUT				
Shenzhen CCUT Quality Technology Co., Ltd.					
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)					
This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.					

Test Report Basic Information

Applicant: Address of Applicant	Shenzhen Chongyuan Pet Products Co., Ltd. C2202, Hongdehui Industrial Zone, No.128, Kangqiao Road, Danzhutou Community, Nanwan Street, Longgang District, Shenzhen, China			
Manufacturer: Address of Manufacturer:	Shenzhen Chongyuan Pet Products Co., Ltd. C2202, Hongdehui Industrial Zone, No.128, Kangqiao Road, Danzhutou Community, Nanwan Street, Longgang District, Shenzhen, China			
Product Name:	SMART Wifi control automatic pet feeder			
Brand Name:	-			
Main Model:	PP005			
Series Models	PP003, F07 Pro, F07 Eye, PF-15, PF-17, PF-19, DF-03, DF-04, DF-05			
	FCC Part 15 Subpart E			
	KDB 789033 D02 v02r01			
Test Standard	ANSI C63.4-2014 ANSI C63.10-2013			
Date of Test	2024-06-08 to 2024-06-15			
Test Result	Passed			
Tested By	Coke Huang (Coke Huang) 51 Quality Tech			
Reviewed By	Lieber Ougang (Lieber Ouyang)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
-	to the above client company and the product model only. It may not be ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in e to presented test sample.			

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	
4.3 Test Data and Results	13
5. Radiated Emissions(Below 1GHz)	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	17
6. Spurious Emissions(Above 1GHz)	20
6.1 Standard and Limit	20
6.2 Test Procedure	20
6.3 Test Data and Results	21
7. Band-edge Emissions(Radiated)	23
7.1 Standard and Limit	23
7.2 Test Procedure	23
7.3 Test Data and Results	23
8. Maximum Conducted Output Power	25
8.1 Standard and Limit	25
8.2 Test Procedure	25
8.3 Test Data and Results	25
9. Occupied Bandwidth	26
9.1 Standard and Limit	26
9.2 Test Procedure	26
9.3 Test Data and Results	26
10. Maximum Power Spectral Density	27
10.1 Standard and Limit	27
10.2 Test Procedure	
10.3 Test Data and Results	
11. Frequency Stability	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	28

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-06-15	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	SMART Wifi control automatic pet feeder			
Trade Name:	-			
Main Model:	PP005			
Series Models:	PP003, F07 Pro, F07 Eye, PF-15, PF-17, PF-19, DF-03, DF-04, DF-05			
Rated Voltage:	DC 4.5V by battery, USB 5V power supply			
Power Adapter:	INPUT: 100-240V~50/60Hz, OUTPUT:5V=1000mA			
Hardware Version:	V1.1			
Software Version:	V2.33.1			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The color of appearance and model name of series models listed are different from the main model,				
but the circuit and the electronic construction are the same, declared by the manufacturer.				

Wireless Specification				
	802.11a(HT20)			
Wireless Standard:	802.11n(HT20/HT40)			
	802.11ac(VHT20/VHT40/VHT80)			
	802.11a/n/ac(HT/VHT):			
	U-NII Band 1: 5180MHz to 5240MHz			
Operating Frequency:	802.11n/ac(HT/VHT):			
Operating Frequency.	U-NII Band 1: 5190MHz to 5230MHz			
	802.11ac(HT/VHT):			
	U-NII Band 1: 5210MHz			
	802.11a/n/ac(HT/VHT): 4 for Band 1			
Number of Channel:	802.11n/ac(HT/VHT): 2 for Band 1			
	802.11ac(HT/VHT): 1 for Band 1			
Modulation:	OFDM(BPSK, QPSK, BPSK, 16QAM, 64QAM, 256QAM)			
Antenna Gain:	2.6dBi			
Type of Antenna:	PCB Antenna			
Type of Device:	Portable Device Mobile Device Modular Device			

Channel List	Channel List for UNII Band 1 (5150-5250MHz)						
	802.11a/n/ac(20MHz) 802.11n/ac(40MHz) 802.11ac(80MHz)					(80MHz)	
Channel	Channel Frequency (MHz) Channel Frequency (MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)	
36	<u>5180</u>	44	5220	38	<u>5190</u>	42	<u>5210</u>
40	<u>5200</u>	48	<u>5240</u>	46	<u>5230</u>		

1.2 Test Setup Information

List of Test Modes						
Test Mode		Description	Remark			
TM1	UNII B	and 1_802.11a(HT20)	5180MHz/5200	5180MHz/5200MHz/5240MHz		
TM2	UNII B	and 1_802.11n(HT20)	5180MHz/5200	5180MHz/5200MHz/5240MHz		
TM3	UNII B	and 1_802.11n(HT40)	5190MHz,	/5230MHz		
TM4	UNII Ba	nd 1_802.11ac(VHT20)	5180MHz/5200)MHz/5240MHz		
TM5	UNII Ba	nd 1_802.11ac(VHT40)	5190MHz/5230MHz			
TM6	UNII Band 1_802.11ac(VHT80)		5210MHz			
List and Deta	ils of Auxiliary	7 Cable				
Descri	Description Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-			-	-		
-					-	-
List and Details of Auxiliary Equipment						
Description Manufacturer		Model	Serial Number			

1.3 Compliance Standards

Compliance Standards				
ECC Dout 15 Subport E	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart E	Unlicensed National Information Infrastructure Devices			
All measurements contained in this	report were conducted with all above standards			
According to standards for test	methodology			
ECC Dout 15 Submout E	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart E	Unlicensed National Information Infrastructure Devices			
	GUIDELINES FOR COMPLIANCE TESTING OF			
KDB 789033 D02 v02r01	UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES			
	PART 15, SUBPART E			
	American National Standard for Methods of Measurement of Radio-Noise Emissions			
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40			
	GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed			
ANSI C03.10-2015	Wireless Devices			
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which				
result is lowering the emission, should be checked to ensure compliance has been maintained.				

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06		
Conducted RF Testing							
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30		

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Radiated Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result								
FCC Part 15.203	Antenna Requirement	Passed								
FCC Part 15.247(f)	RF Exposure(see the RF exposure report)	Passed								
FCC Part 15.207, 15.407(b)(9)	Conducted Emissions	Passed								
FCC Part 15.209, 15.407(b)(9), (10)	Radiated Emissions	Passed								
FCC Part 15.407(b)(10)	Band-edge Emissions(Radiated)	Passed								
FCC Part 15.407(a)(1), (2), (3)	Maximum Peak Conducted Output Power	Passed								
FCC Part 15.407(a)(2), (e)	Occupied Bandwidth	Passed								
FCC Part 15.407(a)(1), (2), (3)	Maximum Power Spectral Density	Passed								
FCC Part 15.407 (g)	Frequency Stability	Passed								
FCC Part 15.407 (h)	Transmit Power Control (TPC)	N/A								
FCC Part 15.407 (h)	Dynamic Frequency Selection (DFS)	N/A								
Passed: The EUT complies with the essential requirements in the standard Failed: The EUT does not comply with the essential requirements in the standard N/A: Not applicable										

3. Antenna Requirement

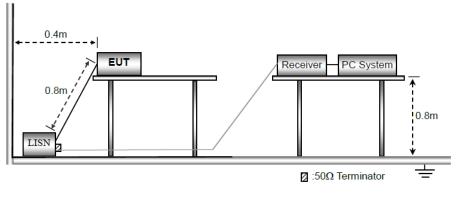
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB antenna, and the maximum antenna gain is 2.6dBi, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emi	ssions (dBuV)							
(MHz)	Quasi-peak	Average							
0.15-0.5	66 to 56	56 to 46							
0.5-5	56	46							
5-30	60	50							
Note 1: Decreases with the log	arithm of the frequency in the range 0.15	MHz to 0.5 MHz							
Note 2: The lower limit applies at the band edges									

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Both band1 all of the 802.11a, 802.11n, 802.11ac modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case 802.11a_5180MHz as below: Remark: Level = Reading + Factor, Margin = Level - Limit

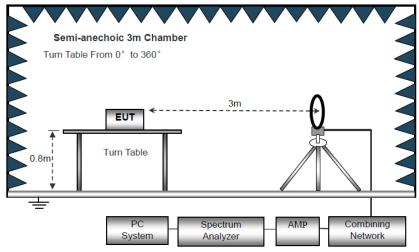
Test F	Plots and Data	of Conduct	ed Emissi	ons						
Teste	d Mode:	TM1								
Test V	oltage:	AC 12	20V/60Hz	1						
Test F	ower Line:	Neut	ral							
Rema	rk:									
90.0	dBuV									
80										
70										
60									FCC Part15 CE-Class B_QP	
50									FCC Part15 CE-Class B_AVe	
40	1	3		5 X	×					
30	Mary	mont	produt hope 44	more valle and the		at cataland				
20 10	- milerary	my	han see we we we			wergen s		Manif		eak
o						· чт · тъ	VV¥Ą	rthing	when we want the want of a	VG
-10 0.1	150	0.50	DO		(MHz)		5.0	00	30.000	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2220	22.76	9.20	31.96	62.74	-30.78	QP	Р		
2	0.2220	9.73	9.20	18.93	52.74	-33.81	AVG	Р		
3 *	0.4920	28.42	9.93	38.35	56.13	-17.78	QP	P		
4	0.4920	13.63	9.93	23.56	46.13	-22.57	AVG	P		
5	1.1983	26.50	10.02	36.52	56.00	-19.48	QP	P		
6	1.1983	8.76	10.02	18.78	46.00	-27.22	AVG	P		-
7	1.9860	25.50	10.05	35.55 13.10	56.00 46.00	-20.45 -32.90	QP AVG	P P		_
9	1.9860 4.7040	3.05 19.19	10.05 10.20	29.39	46.00 56.00	-32.90	QP	P		
9 10	4.7040	-3.52	10.20	6.68	46.00	-39.32	AVG	P		-
11	16.2060	-3.52 19.97	10.20	30.29	60.00	-39.32	QP	P		-
12	16.2060	0.07	10.32	10.39	50.00	-39.61	AVG	P		

Test F	lots a	and Data	of Co	ndu	cted	En	niss	ions	;																			
Teste	d Moc	le:		ТМ	1																							
Test V	/oltag	e:		AC	120	V/e	50H	Z																				
Test F	ower	Line:		Live	е																							
Rema	rk:																											
90.0	dBu	N		1																								
80						+															+	+						
70						_	_									_	_				_	_			_		_	
60																				FC	C Pa	arti	15 CE-CI	ass B_	_QP			
																	_			FC		ant 1	15 CE-CI	ass B	AV	P		
50				-																								
40				-1		_	_		3				7	ıl.			9				+	+			ų.		-	
30	$\overline{\gamma}_{n}$		Km-2	A	L.	M.N	M		M			مرالا	M	M,			u hu	L	h. (r.					HI Y	Å	MARI		
	~~~	VVw	1 4 	1	L.Anh	n Mu	A	Minte	4		la l	<b>N</b> N	8 1 8 1	ייי ^\	i i	Ţ.		T.	WY	ohan	Mylls	MI	ANY WAN		12	194	M _P	eak
20	The second	m	بالمستهير	whe	tw			ni patona di		100	V	W	ľ	ΥY	V	۲ĥ	(A)	Ŵ	M	λN	YAL.	٨.	NAL MAY	M. M.	J.			VG
10						+	_		_							+	Ť	· [	-		-	194	landah		+			
0																					_							
-10																												
0.	150	· ·		0.	.500				_			()	Hz)				5.	000								30.	000	I
No.		equency	Rea	ding		act			ev			Lin			rgin	Dete	ector	P	/F	F	Rem	าลเ	rk					
	_	(MHz)		BuV)	_	(dB			Bu			(dBu		<u> </u>	B)													
1	_	).4964 ).4964		.16 .10	_	9.9 9.9			7.0 8.0		_	56.0 46.0			.97 .03		ΩP √G	_	> >									
3 *		1.1940		.80		10.0			9.8		-	56.0			5.18		۷C P		5									
4	_	.1940	12	.73		10.0			2.7			46.0			.25		٧G	F	-									
5	1	.4190	27	.39	-	10.0	)3	3	7.4	2		56.0	00	-18	.58	G	۱P	F	2									
6	_	.4190		74	_	10.0			8.7		_	46.			.23		٧G	F	2									
7	_	2.0445		.29		10.0			9.3			56.0			6.65		١P		2									
8	2	2.0445		.66	ŕ	10.0	)6		2.7		_	46.0			.28		/G	F	2									
9	4	1.6275	26	.58		10.1	9	3	6.7	'7		56.0	00	-19	.23	G	۱P	F	<b>&gt;</b>									
10	4	1.6275	7.	18		10.1	9	1	7.3	37		46.0	00	-28	.63	A١	٧G	F	>									
11	_	9.3110		.82		10.5			6.3		_	60.			.68	G	۱P	F	2									
12	19	9.3110	12	.12	-	10.5	50	2	2.6	52		50.0	00	-27	.38	A١	٧G	I	>									

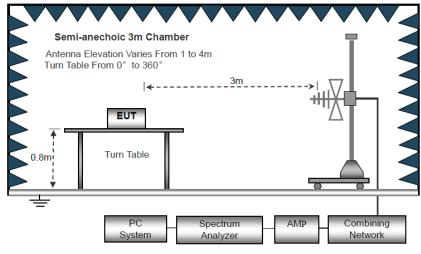
# 5. Radiated Emissions(Below 1GHz)

#### 5.1 Standard and Limit

According to FCC Part 15.407(b)(9), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in FCC Part 15.209.


Frequency of Emission	Field Strength	Measurement Distance								
(MHz)	(micorvolts/meter)	(meters)								
0.009~0.490	2400/F(kHz)	300								
0.490~1.705	24000/F(kHz)	30								
1.705~30.0	30	30								
30~88	100	3								
88~216	150	3								
216~960	200	3								
Above 960 500 3										
Note: The more stringent limit applies at transition frequencies.										

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


*Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.* 

#### **5.2 Test Procedure**

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.



Block Diagram of Radiated Emission Below 30MHz



Block Diagram of Radiated Emission From 30MHz to 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz

 $VBW \ge RBW$ , Sweep = auto

Detector function = peak

Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.e) For the actual test configuration, please refer to the related item - EUT test photos.

#### 5.3 Test Data and Results

Both band1 all of the 802.11a, 802.11n, 802.11ac modes have been tested, the EUT complied with the FCC Part 15.209 standard limit for a wireless device, and with the worst case 802.11a_5180MHz as below: Remark: Level = Reading + Factor, Margin = Level - Limit

Radia	ted Emis	ssion T	'est Da	ita (3	30MHz	to 1GHz)								
Testec	l Mode:				TM1									
Гest V	oltage:				AC 120	V/60Hz								
Гest А	ntenna	Polariz	zation:		Horizo	ntal								
Rema	rk:													
80.0	dBuV/n	n			I									
Γ														
70														
60									FC	C Part15 R	E-Class R	30.11	000447	
50										rgin -6 dB		_30 11	UUUMIT2	
								<u> </u>				_		-1
40														
30													6 Januar Martin	ale
		-							4	e warden	5	word	with a way with the	
20	www.www.hull.hu	- AN PROVING	Marialiation .	A.418	2	man an white the work	3		and the West	the state of the s	enter and a second and			
					Her Honger Star	www.man.holphuman	and a market	Monthewar	antis .					
10														
0.0	000						(MHz)							000.000
30.	000		60	.00			(MHZ)		300	).00				000.000
No.	Frequ (MF		Read (dBu		Facto (dB/m		Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	(
1	48.1		29.8		-8.92	20.94	40.00	-19.06	QP	100	324	P		
2	86.5	027	29.9	0	-13.37	7 16.53	40.00	-23.47	QP	100	65	Р		
3	153.2		28.0		-8.75	19.34	43.50	-24.16	QP	100	48	P		
4	313.2		30.4		- <mark>8</mark> .18	22.25	46.00	-23.75	QP	100	159	P		
5	513.6		29.0		-3.32	25.75	46.00	-20.25	QP	100	54	P		
6 *	649.6	6594	29.5	8	-0.52	29.06	46.00	-16.94	QP	100	154	P		

Radia	ted Emi	ssion T	ſest D	ata (	30MHz	to 1GHz)								
Teste	d Mode:				TM1									
Test V	/oltage:				AC 120	W/60Hz								
Test A	Antenna	Polariz	zation	ı:	Vertica	ıl								
Rema	rk:													
80.0	dBuV∕r	n	1	1				1						_
70														
60									FCC	: Part15 R	E-Class B_	30-10	00MHz	
50									Mar	gin -6 d8				
40														
30		MMarch	Star water by the start	2			3			<u>ب</u>		Europau	6 h-m-ton-ton-ton-ton-ton-ton-ton-ton-ton-ton	dhe
20	Wedneydd		γ	LINA IL	want when	when the strate day when the state of the	And the state of t	er-realitablestaria	where where where the	Childhambarana	MANA MARKA			
10														_
0.0 30	).000		6	0.00			(MHz)		300	00			10	D0.000
			0	0.00			(,		500	.00				
No.	Frequ (Mł		Read (dBu		Facto (dB/m		Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1 *			40.		-8.83		40.00	-8.67	QP	100	289	Р		
2	63.0		31.		-10.19		40.00	-19.12	QP	100	48	P		
3	138.8 319.9		29. 30.		-9.36 -8.12		43.50 46.00	-23.05 -23.52	QP QP	100 100	67 49	P P		
4	549.0		28.		-0.12		46.00	-23.52	QP QP	100	197	P		
6	734.4		28.		0.71	28.80	46.00	-17.20	QP	100	352	P		

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported. Note 2: Testing is carried out with frequency rang 9kHz to 1GHz. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

# 6. Spurious Emissions(Above 1GHz)

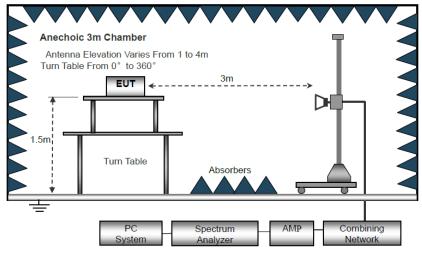
### 6.1 Standard and Limit

According to FCC Part 15.407(b), Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


(4) For transmitters operating solely in the 5.725–5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

(5) The provisions of § 15.205 apply to intentional radiators operating under this section.

(6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

### 6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.



Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for  $f \ge 1$ GHz VBW  $\ge$  RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) For the actual test configuration, please refer to the related item - EUT test photos.

#### 6.3 Test Data and Results

Both band1 all of the 802.11a, 802.11n, 802.11ac modes have been tested, the EUT complied with the FCC Part 15.407 standard limit, and with the worst case 802.11a_HT20, 802.11n_HT20 and 802.11ac_HT20 as below: Remark: Level = Reading + Factor, Margin = Level - Limit UNII Band 1

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
		802.11a	_20MHz_Lowe	st Channel (51	.80MHz)		
10360	61.32	-6.22	55.1	68.2	-13.1	Н	Peak
15540	53.87	-5.4	48.47	74	-25.53	Н	Peak
10360	66.77	-6.22	60.55	68.2	-7.65	V	Peak
15540	53.31	-5.4	47.91	74	-26.09	V	Peak
		802.11a	_20MHz_Highe	est Channel (52	240MHz)		
10480	63.64	-5.99	57.65	68.2	-10.55	Н	Peak
15720	53.02	-5.53	47.49	74	-26.51	Н	Peak
10480	61.93	-5.99	55.94	68.2	-12.26	V	Peak
15720	57.31	-5.53	51.78	74	-22.22	V	Peak
		802.11n	_20MHz_Lowe	st Channel (51	l80MHz)		
10360	60.11	-6.22	53.89	68.2	-14.31	Н	Peak
15540	55.02	-5.4	49.62	74	-24.38	Н	Peak
10360	63.23	-6.22	57.01	68.2	-11.19	V	Peak
15540	56.32	-5.4	50.92	74	-23.08	V	Peak
		802.11n	_20MHz_Highe	est Channel (52	240MHz)		
10480	62.84	-5.99	56.85	68.2	-11.35	Н	Peak
15720	55.54	-5.53	50.01	74	-23.99	Н	Peak
10480	62.78	-5.99	56.79	68.2	-11.41	V	Peak
15720	57.21	-5.53	51.68	74	-22.32	V	Peak
		802.11ac	20MHz_Lowe	est Channel (5	180MHz)		
10360	61.53	-6.22	55.31	68.2	-12.89	Н	Peak
15540	51.7	-5.4	46.3	74	-27.7	Н	Peak
10360	58.68	-6.22	52.46	68.2	-15.74	V	Peak
15540	58.2	-5.4	52.8	74	-21.2	V	Peak
		802.11ac	20MHz_High	est Channel (5	240MHz)		
10480	63.3	-5.99	57.31	68.2	-10.89	Н	Peak
15720	53.3	-5.53	47.77	74	-26.23	Н	Peak
10480	61.76	-5.99	55.77	68.2	-12.43	V	Peak
15720	55.54	-5.53	50.01	74	-23.99	V	Peak

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported. Note 2: Testing is carried out with frequency rang 1GHz to the tenth harmonics, If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit, so there is no record. Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, above 18GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

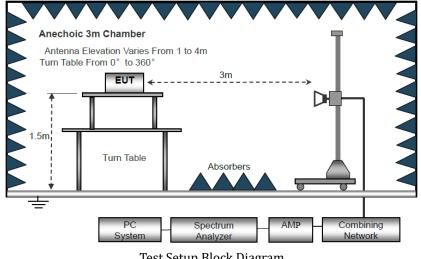
# 7. Band-edge Emissions(Radiated)

### 7.1 Standard and Limit

According to §15.407(b), Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall

not exceed an e.i.r.p. of -27 dBm/MHz.


(2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

#### 7.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.



**Test Setup Block Diagram** 

#### 7.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.407 standard limit, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

#### UNII Band 1_802.11a_20MHz_Lowest Channel (5180MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5150	63.45	-13.96	49.49	74	-24.51	Н	Peak
5150	59.35	-13.96	45.39	74	-28.61	V	Peak

#### UNII Band 1_802.11a_20MHz_Highest Channel (5240MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5350	59.71	-13.26	46.45	74	-27.55	Н	Peak
5460	51.8	-12.88	38.92	74	-35.08	Н	Peak
5350	58.22	-13.26	44.96	74	-29.04	V	Peak
5460	55.74	-12.88	42.86	74	-31.14	V	Peak

#### UNII Band 1_802.11n_40MHz_Lowest Channel (5190MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5150	67.03	-13.96	53.07	74	-20.93	Н	Peak
5150	65.1	-13.96	51.14	74	-22.86	V	Peak

#### UNII Band 1_802.11n_40MHz_Highest Channel (5230MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5350	57.62	-13.26	44.36	74	-29.64	Н	Peak
5460	51.3	-12.88	38.42	74	-35.58	Н	Peak
5350	57.54	-13.26	44.28	74	-29.72	V	Peak
5460	50.16	-12.88	37.28	74	-36.72	V	Peak

#### UNII Band 1_802.11ac_80MHz_5210MHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5150	65.41	-13.96	51.45	74	-22.55	Н	Peak
5350	54.85	-13.26	41.59	74	-32.41	Н	Peak
5460	52.99	-12.88	40.11	74	-33.89	Н	Peak
5150	60.99	-13.96	47.03	74	-26.97	V	Peak
5350	52.05	-13.26	38.79	74	-35.21	V	Peak
5460	52.37	-12.88	39.49	74	-34.51	V	Peak

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit, so there is no record.

# 8. Maximum Conducted Output Power

#### 8.1 Standard and Limit

According to 15.407(a): (1) For the band 5.15–5.25 GHz.

For an outdoor or indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725–5.895 GHz: the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500–kHz band.

#### 8.2 Test Procedure

A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

1) A measurement instrument with an integrated channel bandwidth function may be used to automate the test process.

2) Set center of frequency = operating frequency.

3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable

4) Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS, Sweep = Auto.

5) Set the SPAN to 40MHz/80MHz/160MHz for 20MHz/40MHz/80MHz emission bandwidth mode.

6) Measure the highest amplitude appearing on spectral display and mark the value.

7) Repeat the above procedures until all frequency measured was complete.



#### 8.3 Test Data and Results

Please refer to the appendix for details.

# 9. Occupied Bandwidth

### 9.1 Standard and Limit

According to 15.407(a), Within the 5.250–5.350 GHz and 5.470–5.725 GHz bands the 26 dB bandwidth shall be tested.

According to 15.407(e), Within the 5.725–5.850 GHz and 5.850–5.895 GHz bands, the minimum 6 dB bandwidth of U–NII devices shall be at least 500 kHz.

#### 9.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW to  $1\% \sim 5\%$  of bandwidth, VBW = RBW, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB or 26dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

#### 9.3 Test Data and Results

Please refer to the appendix for details.

# 10. Maximum Power Spectral Density

### **10.1 Standard and Limit**

According to 15.407(a):

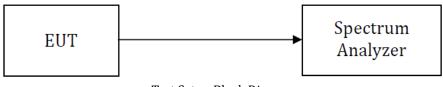
(1) For the band 5.15–5.25 GHz.

For an outdoor or indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725–5.895 GHz: the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500–kHz band.


### 10.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 1MHz, VBW = 3MHz, Sweep = Auto, Detector = RMS.

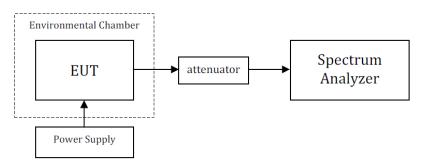
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram

### 10.3 Test Data and Results

Please refer to the appendix for details.


## **11. Frequency Stability**

### **11.1 Standard and Limit**

According to 15.407(g), Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

### **11.2 Test Procedure**

Test is conducting under the description of ANSI C63.10-2013 section 6.8.





#### **11.3 Test Data and Results**

	Frequency	Temperature	Voltage Measured Frequency		Limit	
Mode	(MHz)	(°C)	(VDC)	(MHz)	(MHz)	Verdict
Carrier Wave	5180	20	4.05	5179.958	5150 to 5250	Pass
			4.5	5179.97	5150 to 5250	Pass
			4.95	5179.958	5150 to 5250	Pass
		-30	4.5	5179.957	5150 to 5250	Pass
		-20	4.5	5179.958	5150 to 5250	Pass
		-10	4.5	5179.958	5150 to 5250	Pass
		0	4.5	5179.957	5150 to 5250	Pass
		10	4.5	5179.957	5150 to 5250	Pass
		30	4.5	5179.959	5150 to 5250	Pass
		40	4.5	5179.956	5150 to 5250	Pass
		50	4.5	5179.957	5150 to 5250	Pass
	5200	20	4.05	5199.977	5150 to 5250	Pass
			4.5	5199.96	5150 to 5250	Pass
			4.95	5199.979	5150 to 5250	Pass
		-30	4.5	5199.978	5150 to 5250	Pass
		-20	4.5	5199.978	5150 to 5250	Pass
		-10	4.5	5199.977	5150 to 5250	Pass

	0	4.5	5199.977	5150 to 5250	Pass
	10	4.5	5199.979	5150 to 5250	Pass
	30	4.5	5199.978	5150 to 5250	Pass
	40	4.5	5199.977	5150 to 5250	Pass
	50	4.5	5199.976	5150 to 5250	Pass
5240		4.05	5239.979	5150 to 5250	Pass
	20	4.5	5239.977	5150 to 5250	Pass
		4.95	5239.976	5150 to 5250	Pass
	-30	4.5	5239.978	5150 to 5250	Pass
	-20	4.5	5239.977	5150 to 5250	Pass
	-10	4.5	5239.978	5150 to 5250	Pass
	0	4.5	5239.979	5150 to 5250	Pass
	10	4.5	5239.979	5150 to 5250	Pass
	30	4.5	5239.978	5150 to 5250	Pass
	40	4.5	5239.979	5150 to 5250	Pass
	50	4.5	5239.978	5150 to 5250	Pass

#### ***** END OF REPORT *****