Radio Test Report

Report No.: STS2307144W05

Issued for

Azores Networks LLC

2701 Custer Parkway, Suite 706 Richardson, TX 75080, USA

Product Name:	XGSPON
Brand Name:	AZ®RES B@W
Model Name:	WAGM51W6
Series Model(s):	N/A
FCC ID:	2BCE2-WAGM51W6
Test Standards:	FCC Part15.407

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

TEST REPORT

Applicant's Name:	Azores N	letworks LLC	
Address:	2701 Cus	ster Parkway, Suite 706 Richa	rdson, TX 75080, USA
Manufacturer's Name:	Azores N	letworks LLC	
Address:	2701 Cus	ster Parkway, Suite 706 Richa	rdson, TX 75080, USA
Product Description			
Product Name:	XGSPON		
Brand Name:	AZŜR	es B@W	
Model Name:	WAGM5 ²	1W6	
Series Model(s):	N/A		
Test Standards	FCC Par	t 15.407	
Test Procedure		002 UNII DFS Compliance Pro 003 UNII Clients Without Rada	
This device described above ha equipment under test (EUT) is in to the tested sample identified in This report shall not be reproduce document only be altered or rev the document.	s been tes n compliar n the repor ced excep	nce with the FCC requirement rt. ot in full, without the written ap	s. And it is applicable only proval of STS, this
Date of Test	:		
Date of receipt of test item	:	28 July 2023	
Date (s) of performance of tests	:	28 July 2023 ~ 19 Sept. 202	3
Date of Issue	:	19 Sept. 2023	
Test Result		Pass	
Testing Engine	er :	Aann 13u	
		(Aaron Bu)	515 TEST SERVICE
Technical Man	ager :	Sean She	SS SS CES C
		(Sean she)	TESTING APPROVAL
Authorized Sig	natory :	Chins cher	130.07
		(Chris Chen)	

Table of Contents

1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF THE EUT	6
2.2 TEST CONDITIONS AND CHANNEL	8
2.3 DFS MEASUREMENT INSTRUMENTATION	9
2.4 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
3. DFS PARAMETERS	11
3.1 DFS PARAMETERS	11
3.2 DFS –TEST	15

Page 4 of 90

Report No.: STS2307144W05

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	19 Sept. 2023	STS2307144W05	ALL	Initial Issue
1			15	and and a second s

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

	Part 15.407	
Paquirament	Operational Mode	RESULTS
Requirement	Master	RESULIS
Non-Occupancy Period	Yes	Pass
DFS Detection Threshold	Yes	Pass
Channel Availability Check Time	Yes	Pass
Channel Closing Transmission Time	Yes	Pass
Channel Move Time	Yes	Pass
U-NII Detection Bandwidth	Yes	Pass

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	DFS Threshold (conducted)	±1.197dB
2	Temperature	±1.028°C
3	Humidity	±4.611%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	XGSPON						
Brand Name	AZ®RES B	AZ®RES B@W					
Model Name	WAGM51W6						
Series Model(s)	N/A						
Model Difference	N/A						
	The EUT is XGSF	PON					
Product Description	Operation Frequency: Modulation Type:	5.3GWLAN: IEEE 802.11a/ n(HT20)/ac(VHT20)/ax(HE20): 5.260GHz-5.320GHz IEEE 802.11 n(HT40)/ac(VHT40)/ax(HE40): 5.270GHz-5.310GHz IEEE 802.11ac(VHT80) /ax(HE80): 5.290GHz IEEE 802.11 ac(VHT160)/ax(HE160): 5.250GH 5.6G WLAN: IEEE 802.11a/ n(HT20)/ac(VHT20)/ax(HE20): 5.500GHz-5.700GHz IEEE 802.11 n(HT40)/ac(VHT40)/ax(HE40): 5.510GHz-5.670GHz IEEE 802.11 ac(VHT80)/ax(HE80): 5.530GHz-5.610GHz IEEE 802.11 ac(VHT160)/ax(HE160): 5.570GH 802.11a(OFDM): BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM): BPSK,QPSK,16-QAM,64-QAM 802.11ax(OFDM, OFDMA): BPSK,QPSK,16-QAM,64-QAM,256-QAM 802.11ax(OFDM, OFDMA): BPSK,QPSK,16-QAM,64-QAM,256-QAM, 1024QAM					
	Channel	Please see Note 2. U-NII-2A: Antenna number: 3 Antenna 1 gain : 2.92dBi					
	Antenna Gain(Peak)	Antenna 2 gain : 3.44dBi Antenna 3 gain : 4.73dBi MIMO technology Directional gain=8.50dBi U-NII-2C: Antenna number: 3 Antenna 1 gain : 3.81dBi Antenna 2 gain : 4.33dBi					
	User's Manual, th	Antenna 3 gain : 4.64dBi MIMO technology Directional gain=9.04dBi lication, features, or specification exhibited in e EUT is considered as an ITE/Computing ails of EUT technical specification, please refer					

Channel List	Refer to below
Sub-class	H01
Adapter	Model: TPA243B-30120-US Input:AC 100-240V 50/60Hz,1A output: DC 12V, 2.5A Model: RD1202500-C55-195MG Input: AC 100-240V 50/60Hz,1.5A MAX Output:DC 12V 2.5A
Hardware version number	V1.0
Software version number	V1.0.01

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual, the antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

Channel List for 802.11a/n/ac/ax (20MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Cha nnel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	56	5280	60	5300	64	5320
100	5500	104	5520	108	5540	112	5560
116	5580	120	5600	124	5620	128	5640
132	5660	136	5680	140	5700		

Channel List for 802.11n/ac/ax (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Chan nel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	62	5310	102	5510	110	5550
134	5670						

Channel List for 802.11ac/ax (80 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Chan nel	Frequency (MHz)	Channel	Frequency (MHz)
58	5290	106	5530	122	5610		

Channel List for 802.11ax (160 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Chan nel	Frequency (MHz)	Channel	Frequency (MHz)
50	5250	114	5570	-			

3.EQUIPMENT UNDER TEST (EUT) DETAILS

The manufacturer declared values for the EUT operational characteristics that affect DFS are as follows

<u> Operating Modes (5250 – 5350 MHz, 5470 – 5725 MHz)</u>

Master Device

Client Device (no In Service Monitoring, no Ad-Hoc mode)

Client Device with In-Service Monitoring

Antenna Gains / EIRP (5250 - 5350 MHz, 5470 - 5725 MHz)

	5250 – 5350 MHz		5470 – 5725 MHz	
	ANT 1 : 2.81dBi	ANT 1: 2.92	ANT 1: 3.81	ANT 1: 3.81
Lowest Antenna	ANT 2 : 3.33dBi	ANT 2: 3.44	ANT 2: 4.33	ANT 2: 4.33
Gain (dBi)	ANT 3: 4.28dBi	ANT 3: 4.73	ANT 3: 4.64	ANT 3: 4.21
	MIMO : 8.27dBi	MIMO : 8.50dBi	MIMO : 9.04dBi	MIMO : 8.89dBi
	ANT 1 : 2.81dBi	ANT 1: 2.92	ANT 1: 3.81	ANT 1: 3.81
Highest Antenna	ANT 2 : 3.33dBi	ANT 2: 3.44	ANT 2: 4.33	ANT 2: 4.33
Gain (dBi)	ANT 3: 4.28dBi	ANT 3: 4.73	ANT 3: 4.64	ANT 3: 4.21
	MIMO : 8.27dBi	MIMO : 8.50dBi	MIMO : 9.04dBi	MIMO : 8.89dBi
DFS Detection	-62			
Threshold (dBm)	-02			

Channel Protocol

IP Based

OTHER_

The EUT did not require modifications during testing in order to comply with the requirements of the standard(s) referenced in this test report.

2.2 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	
Temperature	0°C – 40°C	
Relative Humidity	20% - 75%	
Supply Voltage	AC 120V/60Hz	

Channel List				
Test Mode	Test Channel	Test Frequency (MHz)		
802.11ax-HE20	100	5300		
802.11ax-HE40	102	5510		
802.11ax-HE80	106	5530		
802.11ax-HE160	50	5250		
802.11ax-HE160	114	5570		

2.3 DFS MEASUREMENT INSTRUMENTATION

a. RADAR GENERATION SYSTEM

An Agilent PSG is used as the radar-generating source. The integral arbitrary waveform generators are programmed using Agilent's "Pulse Building" software and Elliott custom software to produce the required waveforms, with the capability to produce both unmodulated and modulated (FM Chirp) pulses. Where there are multiple values for a specific radar parameter then the software selects a value at random and, for FCC tests, the software verifies that the resulting waveform is truly unique.

With the exception of the hopping waveforms required by the FCC's rules (see below), the radar generator is set to a single frequency within the radar detection bandwidth of the EUT.

Frequency hopping radar waveforms are simulated using a time domain model. A randomly hopping sequence algorithm (which uses each channel in the hopping radar's range once in a hopping sequence) generates a hop sequence. A segment of the first 100 elements of the hop sequence are then examined to determine if it contains one or more frequencies within the radar detection bandwidth of the EUT. If it does not then the first element of the segment is discarded and the next frequency in the sequence is added. The process repeats until a valid segment is produced. The radar system is then programmed to produce bursts at time slots coincident with the frequencies within the segment that fall

in the detection bandwidth. The frequency of the generator is stepped in 1 MHz increments across the EUT's detection range.

The radar signal level is verified during testing using a CW signal with the AGC function switched on. Correction factors to account for the fact that pulses are generated with the AGC functions switched off are measured annually and an offset is used to account for this in the software. The generator output is connected to the coupling port of the conducted set-up or to the radar-generating antenna.

b. CHANNEL MONITORING SYSTEM

Channel monitoring is achieved using a spectrum analyzer and digital storage oscilloscope. The analyzer is configured in a zero-span mode, center frequency set to the radar waveform's frequency or the center frequency of the EUT's operating channel.

The IF output of the analyzer is connected to one input of the oscilloscope and analyzer. A signal generator output is set to send either the modulating signal directly or a pulse gate with an output pulse co-incident with each radar pulse. This output is connected to a second input on the oscilloscope and the oscilloscope displays both the channel traffic (via the if input) and the radar pulses on its display.

For in service monitoring tests the analyzer sweep time is set to > 20 seconds and the oscilloscope is configured with a data record length of 10 seconds for the short duration and frequency hopping waveforms, 20 seconds for the long duration waveforms. Both instruments are set for a single acquisition sequence. The analyzer is triggered 500ms before the start of the waveform and the oscilloscope is triggered directly by the modulating pulse train. Timing measurements for aggregate channel transmission time and channel move time are made from the oscilloscope data, with the end of the waveform clearly identified by the pulse train on one trace. The analyzer trace data is used to confirm that the last transmission occurred within the 10-second record of the oscilloscope. If necessary the record length of the oscilloscope is expanded to capture the last transmission on the channel prior to the channel move.

Channel availability check time timing plots are made using the analyzer. The analyzer is triggered at start of the EUT's channel availability check and used to verify that the EUT does not transmit when radar is applied during the check time.

The analyzer detector and oscilloscope sampling mode is set to peak detect for all plots.

2.4 EQUIPMENTS LIST FOR ALL TEST ITEMS

Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until
Signal Generator	Agilent	N5182A	MY46240556	2022.09.28	2023.09.27
Signal Analyzer	Agilent	N9020A	MY51510623	2023.03.01	2024.02.28
Power Splitter	Eastsheep	PD-0.5/0.6-2S	B543	2023.03.02	2024.03.01
Power Splitter	MINI-CIRCUITS	ZN2PD-9G	SF078500430	2023.03.02	2024.03.01
Attenuator	HP	8496B	DC-18G	2023.03.02	2024.03.01
Attenuator	Agilent	8494B	DC-18G	2023.03.02	2024.03.01
Switch control box	MW	MW100-RFCB	N/A	N/A	N/A
Router	TP-LINK (ID:Q87-WRT3200ACM)	TL-WR885N	1125074010735	N.C.R	N.C.R
Temperature & Humidity	HH660	Mieo	N/A	2022.09.30	2023.09.29
Test SW	MW	MTS 8310_2.0.0.0			

3. DFS PARAMETERS

3.1 DFS PARAMETERS

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and	All BW modes must be	Not required	
Statistical Performance Check	tested		
Channel Move Time and Channel	Test using widest BW mode	Test using the widest	
Closing Transmission Time	available	BW mode available	
for the link			
All other tests	Any single BW mode	Not required	
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include			

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
$EIRP \ge 200 milliwatt$	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm	
density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 d	Bi receive antenna.	
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test		
transmission waveforms to account for variations in measurement equipment. This will ensure that the		
test signal is at or above the detection threshold level to trigger a D	FS response.	

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Γ	Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
	Туре	Width	(µsec)		Percentage of	Number
		(µsec)			Successful	of
1					Detection	Trials
	0	1	1428	18	See Note 1	See Note
						1
	1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}} \right) \right\}$	60%	30
			randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A			
	2	1-5	150-230	23-29	60%	30
	3	6-10	200-500	16-18	60%	30
	4	11-20	200-500	12-16	60%	30
	Aggregate (Radar Types	1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful
3			Detection
1	35	29	82.9%
2	30	18	60%
3	30	27	90%
4	50	44	88%
Aggregate (82.9%	6 + 60% + 90% + 88%)/4 = 8	30.2%	

Long Pulse Radar Test Waveform

Table 6 – Long Pulse Radar Test Waveform

					~			
	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
	Туре	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
6		(µsec)	(MHz)		per Burst		Successful	Trials
					-		Detection	
	5	50-100	5-20	1000-	1-3	8-20	80%	30
				2000				

Figure 1 provides a graphical representation of the Long Pulse Radar Test Waveform.

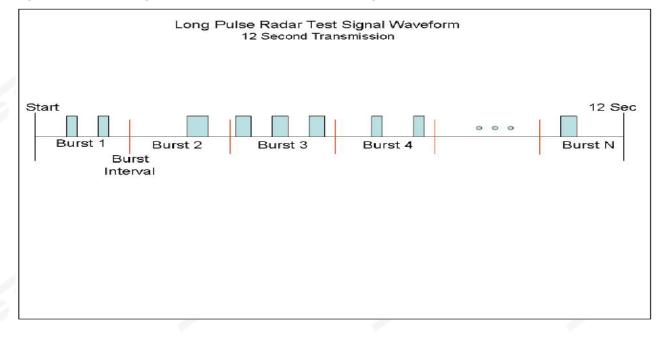


Table 7 – Frequency Hopping Radar Test Waveform

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)	-	Hop	(kHz)	Length	Successful	Trials
	-		-1		(msec)	Detection	
6	1	333	9	0.333	300	70%	30

3.2 DFS -TEST

3.2.1 DFS MEASUREMENT METHODS

a. DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

b. DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING

Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

c. CHANNEL AVAILABILITY CHECK TIME

Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

d. CONTROL (TPC)

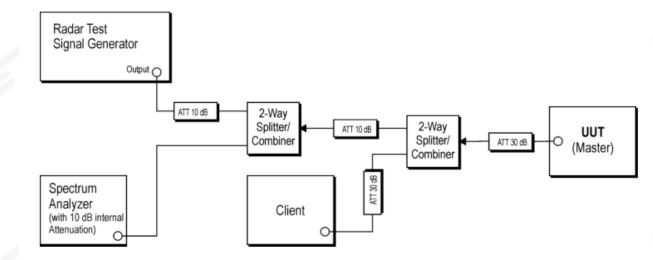
Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented.

e. DETECTION PROBABILITY / SUCCESS RATE

During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Minimum 100% of the U-NII 99% transmission power bandwidth.

f. NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring


3.2.2 DFS CONDUCTION TEST METHOD

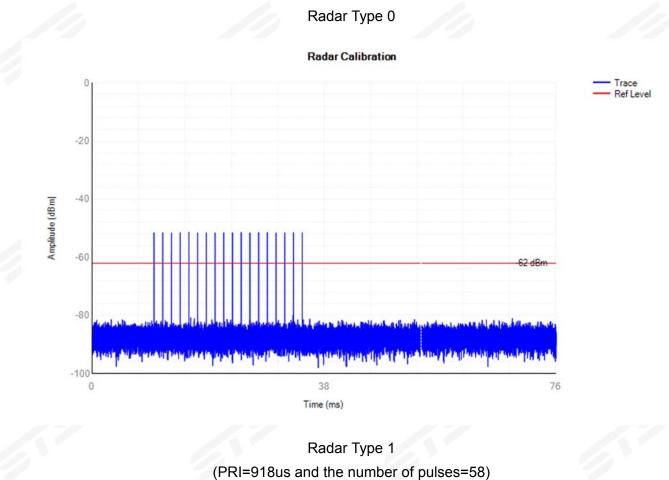
a. The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer.

The signal level is verified by measuring the CW signal level at the coupling point to the RDD antenna port. The radar signal level is calculated from the measured level, R (dBm) and the lowest gain antenna assembly intended for use with the RDD

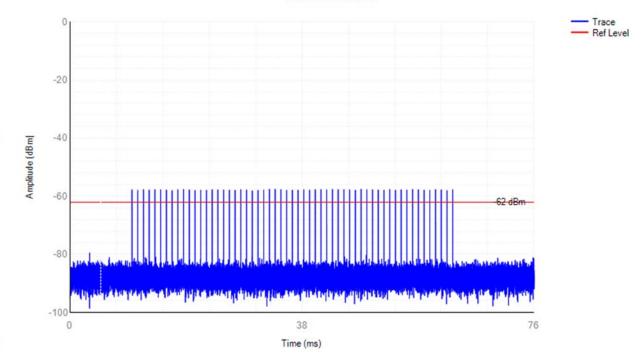
If both master and client devices have radar detection capability then the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar.

The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device.

b. Set-up *B* is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device. Figure 5 shows an example for *Set-up B*. The set-up used shall be documented in the test report.

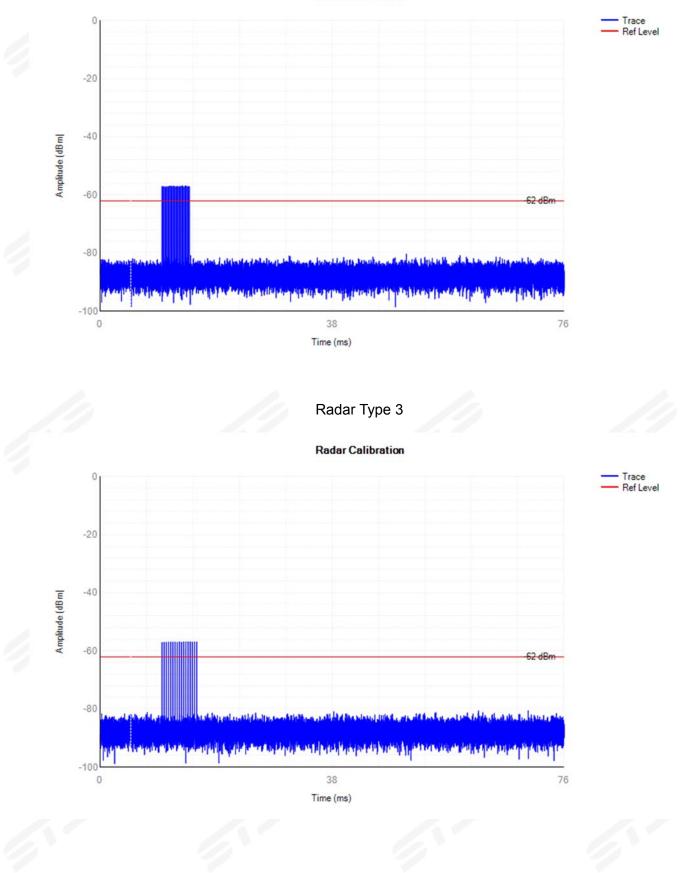

Channel loading mode:

EUT connects to the router through DFS setup, then controls and switches the EUT channel on the router background page.



3.2.3 DFS Test Data

Radar Waveform Calibration Test Result

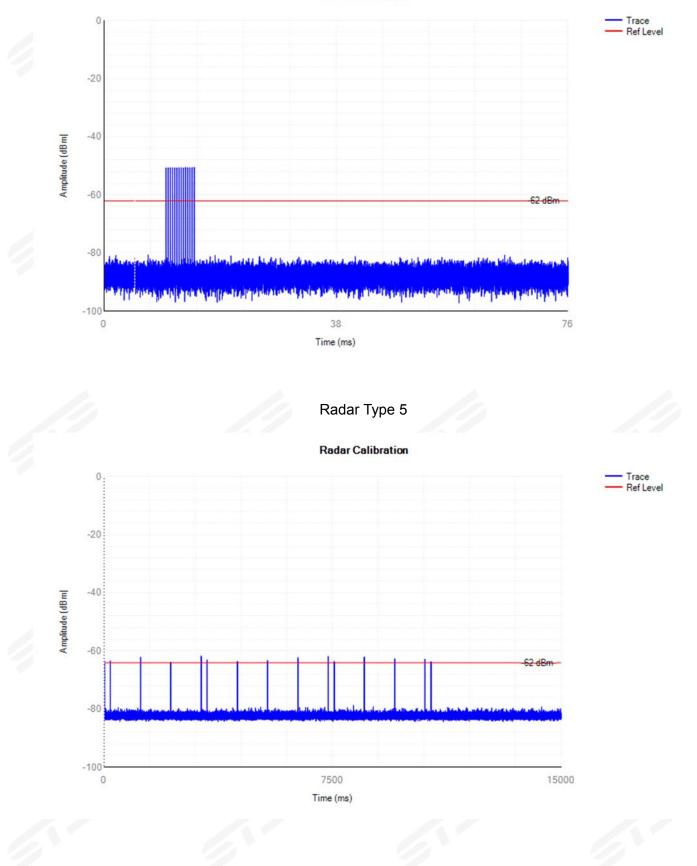


Page 18 of 90

Report No.: STS2307144W05

Radar Type 2

Radar Calibration

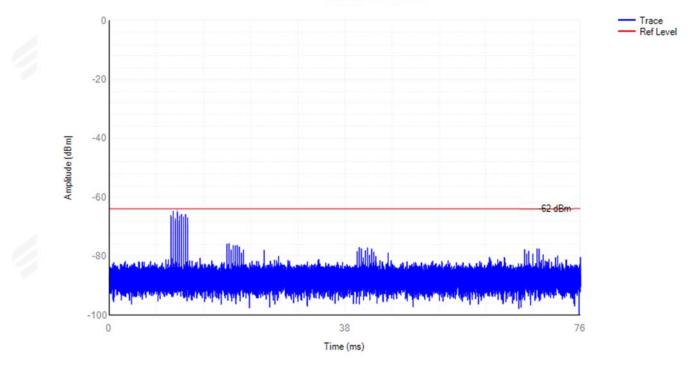


Page 19 of 90

Report No.: STS2307144W05

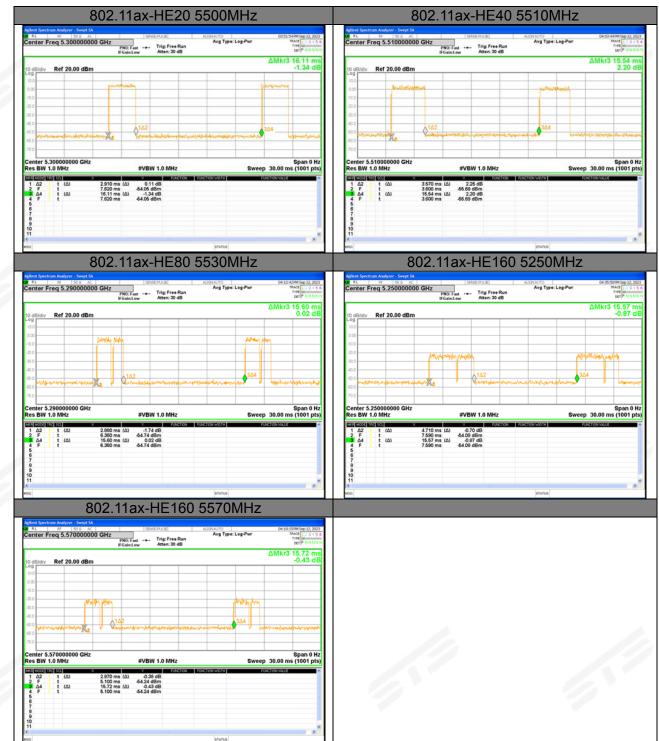
Radar Type 4

Radar Calibration



Page 20 of 90

Report No.: STS2307144W05


Radar Type 6

Radar Calibration

Chanel Loading Test Result

Page 22 of 90

Report No.: STS2307144W05

Test Mode	Test Frequency	Packet Ratio	Requirement ratio	Test Result								
802.11ax-HE20	5500 MHz	18.06%	≥17%	Pass								
802.11ax-HE40	5510 MHz	22.97%	≥17%	Pass								
802.11ax-HE80	5530 MHz	18.51%	≥17%	Pass								
802.11ax-HE160	5250 MHz	30.25%	≥17%	Pass								
802.11ax-HE160	5570 MHz	18.89%	≥17%	Pass								
Note: Packet Ratio = Time On / (Time On + Off Time)												

UNII Detection Bandwidth Test Result

	De	etec	tion	Ва	Bandwidth Test Transmission											
EUT Frequency	:						80	2.1	1ax	-HE2	0 mode - 5500 MHz					
Test Radar Type	:				Туре 0											
Detection Bandwic	th:				20MHz											
Detection Bandwidth M	in. L	.imi	t:							18.9	9933 MHz					
Test Result:											Pass					
Radar Frequency			DF	S D	S Detection Trials (1=Detection, 0 = No Detection)											
(MHz)								8	9	10	Detection Rate(%)					
5490 FL	1	1	1	1	1	1	1	1	1	1	100%					
5491	1	1	1	1	1	1	1	1	1	1	100%					
5492	1	1	1	1	1	1	1	1	1	1	100%					
5493	1	1	1	1	1	1	1	1	1	1	100%					
5494	1	1	1	1	1	1	1	1	1	1	100%					
5495	1	1	1	1	1	1	1	1	1	1	100%					
5496	1	1	1	1	1	1	1	1	1	1	100%					
5500	1	1	1	1	1	1	1	1	1	1	100%					
5501	1	1	1	1	1	1	1	1	1	1	100%					
5502	1	1	1	1	1	1	1	1	1	1	100%					
5503	1	1	1	1	1	1	1	1	1	1	100%					
5504	1	1	1	1	1	1	1	1	1	1	100%					
5505					1	1	1	1	1	1	100%					
5506	1	1	1	1	1	1	1	1	1	1	100%					
5510 FH									1	1	100%					

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz.

Note 2: Detection Bandwidth = FH - FL

Note 3: Detection Bandwidth Min. Limit = 100% of the U-NII 99% power bandwidth

	De	etec	tion	Ва	Bandwidth Test Transmission													
EUT Frequency	:						80	2.1	1ax	-HE4	0 mode - 5510 MHz							
Test Radar Type	:									-	Гуре 0							
Detection Bandwid	Detection Bandwidth:							40 MHz										
Detection Bandwidth M	in. L	.imi	t:		37.8407 MHz													
Test Result:									Pass									
Radar Frequency			DF	S D	S Detection Trials (1=Detection, 0 = No Detection)													
(MHz)	3	4	5	6	7	8	9	10	Detection Rate(%)									
5490 FL	1	1	1	1	1	1	1	1	1	1	100%							
5491	1	1	1	1	1	1	1	1	1	1	100%							
5492	1	1	1	1	1	1	1	1	1	1	100%							
5493	1	1	1	1	1	1	1	1	1	1	100%							
5500	1	1	1	1	1	1	1	1	1	1	100%							
5505	1	1	1	1	1	1	1	1	1	1	100%							
5510	1	1	1	1	1	1	1	1	1	1	100%							
5515	1	1	1	1	1	1	1	1	1	1	100%							
5520	1	1	1	1	1	1	1	1	1	1	100%							
5525	1	1	1	1	1	1	1	1	1	1	100%							
5526	1	1	1	1	1	1	1	1	1	1	100%							
5527	1	1	1	1	1	1	1	1	1	1	100%							
5528	1	1	1	1	1	1	1	1	1	1	100%							
5529	1	1	1	1	1	1	1	1	1	1	100%							
5530 FH	1	1	1	1	1	1	1	1	1	1	100%							

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz.

Note 2: Detection Bandwidth = FH - FL

Note 3: Detection Bandwidth Min. Limit = 100% of the U-NII 99% power bandwidth

	De	etec	tion	Ва	ndv	vidtł	ו Te	est T	ran	ismis	sion					
EUT Frequenc					80	2.1	1ax	-HE8	0 mode - 5530 MHz							
Test Radar Typ				Туре 0												
Detection Bandw	idth:									8	80 MHz					
Detection Bandwidth N	/lin. L	.imi	t:	77.0135MHz												
Test Result:					Pass											
Radar Frequency		DFS Detection Trials (1=Detection, 0 = No Detection)														
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate(%)					
5490 FL	1	1	1	1	1	1	1	1	1	1	100%					
5491	1	1	1	1	1	1	1	1	1	1	100%					
5492	1	1	1	1	1	1	1	1	1	1	100%					
5493	1	1	1	1	1	1	1	1	1	1	100%					
5494	1	1	1	1	1	1	1	1	1	1	100%					
5500	1	1	1	1	1	1	1	1	1	1	100%					
5510	1	1	1	1	1	1	1	1	1	1	100%					
5515	1	1	1	1	1	1	1	1	1	1	100%					
5520	1	1	1	1	1	1	1	1	1	1	100%					
5525	1	1	1	1	1	1	1	1	1	1	100%					
5530	1	1	1	1	1	1	1	1	1	1	100%					
5535	1	1	1	1	1	1	1	1	1	1	100%					
5540	1	1	1	1	1	1	1	1	1	1	100%					
5545	1	1	1	1	1	1	1	1	1	1	100%					
5550	1	1	1	1	1	1	1	1	1	1	100%					
5555	1	1	1	1	1	1	1	1	1	1	100%					
5560	1	1	1	1	1	1	1	1	1	1	100%					
5565	1	1	1	1	1	1	1	1	1	1	100%					
5566	1	1	1	1	1	1	1	1	1	1	100%					
5567	1	1	1	1	1	1	1	1	1	1	100%					
5568	1	1	1	1	1	1	1	1	1	1	100%					
5569	1	1	1	1	1	1	1	1	1	1	100%					
5570 FH	1	1	1	1	1	1	1	1	1	1	100%					

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz.

Note 2: Detection Bandwidth = FH - FL

Note 3: Detection Bandwidth Min. Limit = 100% of the U-NII 99% power bandwidth

EUT Frequency		lec	uon	Dd	nuv	viuu				smis	60 mode - 5250 MHz			
Test Radar Type				Type 0										
Detection Bandwi											60 MHz			
Detection Bandwidth M		imi	<u>+</u> .								.9338MHz			
Test Result:	111. L	_ 11 1 11	ι.					Pass						
Radar Frequency				9 D	oto	ctio	n Tr	iale	(1-	-Dota	ection, 0 = No Detection)			
(MHz)	1	2	3	4	5	6	7	8	9	-Deit	Detection Rate(%)			
5170 FL	1	2	1	4	5 1	1	1	0	9	10	100%			
5170 FL	1	1	1	1	1	1	1	1	1	1	100%			
5171	_	1	1	1	1	1	1		1	1	100%			
	1							1		1	100%			
5173	1	1	1	1	1	1	1	1	1					
5174	1	1	1	1	1	1	1	1	1	1	100%			
5175	1	1	1	1	1	1	1	1	1	1	100%			
5180	1	1	1	1	1	1	1	1	1	1	100%			
5185	1	1	1	1	1	1	1	1	1	1	100%			
5190	1	1	1	1	1	1	1	1	1	1	100%			
5195	1	1	1	1	1	1	1	1	1	1	100%			
5200	1	1	1	1	1	1	1	1	1	1	100%			
5205	1	1	1	1	1	1	1	1	1	1	100%			
5210	1	1	1	1	1	1	1	1	1	1	100%			
5215	1	1	1	1	1	1	1	1	1	1	100%			
5220	1	1	1	1	1	1	1	1	1	1	100%			
5225	1	1	1	1	1	1	1	1	1	1	100%			
5230	1	1	1	1	1	1	1	1	1	1	100%			
5235	1	1	1	1	1	1	1	1	1	1	100%			
5240	1	1	1	1	1	1	1	1	1	1	100%			
5245	1	1	1	1	1	1	1	1	1	1	100%			
5246	1	1	1	1	1	1	1	1	1	1	100%			
5247	1	1	1	1	1	1	1	1	1	1	100%			
5248	1	1	1	1	1	1	1	1	1	1	100%			
5249	1	1	1	1	1	1	1	1	1	1	100%			
5250	1	1	1	1	1	1	1	1	1	1	100%			
5251	1	1	1	1	1	1	1	1	1	1	100%			
5252	1	1	1	1	1	1		1	1	1	100%			
5253	1	1	1	1	1	1	1	1	1	1	100%			
5254	1	1	1	1	1	1	1	1	1	1	100%			
5255	1	1	1	1	1	1	1	1	1	1	100%			
5260	1	1	1	1	1	1	1	1	1	1	100%			
5265	1	1	1	1	1	1	1	1	1	1	100%			
	-				1			-	1	1	100%			
5270	1	1	1	1		1	1	1						
5275	1	1	1	1	1	1	1	1	1	1	100%			
5280	1	1	1	1	1	1	1	1	1	1	100%			
5285	1	1	1	1	1	1	1	1	1	1	100%			
5290	1	1	1	1	1	1	1	1	1	1	100%			
5295	1	1	1	1	1	1	1	1	1	1	100%			
5300	1	1	1	1	1	1	1	1	1	1	100%			
5305	1	1	1	1	1	1	1	1	1	1	100%			
5310	1	1	1	1	1	1	1	1	1	_1_	100%			
5315	1	1	1	1	1	1	1	1	1	1	100%			
5320	1	1	1	1	1	1	1	1	1	1	100%			

Page 27 of 90

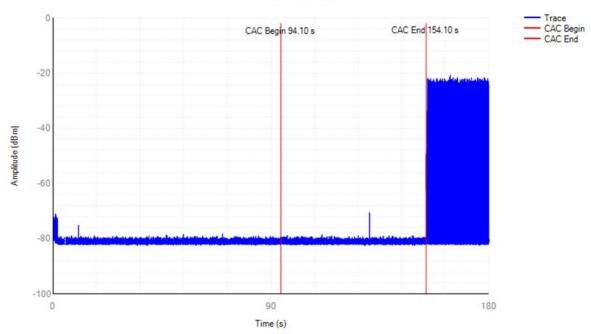
Report No.: STS2307144W05

5325	1	1	1	1	1	1	1	1	1	1	100%
5326	1	1	1	1	1	1	1	1	1	1	100%
5327	1	1	1	1	1	1	1	1	1	1	100%
5328	1	1	1	1	1	1	1	1	1	1	100%
5329	1	1	1	1	1	1	1	1	1	1	100%
5330 FH	1	1	1	1	1	1	1	1	0	1	90%

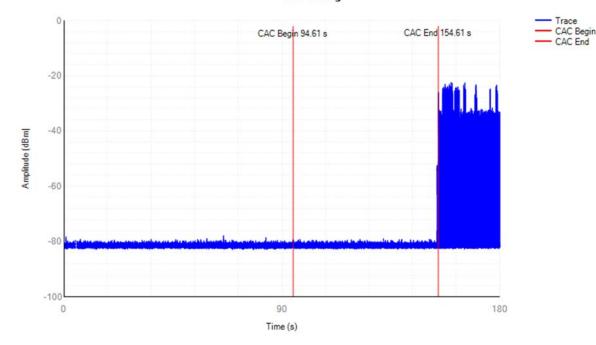
Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. Note 2: Detection Bandwidth = FH - FL Note 3: Detection Bandwidth Min. Limit = 100% of the U-NII 99% power bandwidth

EUT Frequency		lec	uon	bd	nuv	viati				smis HF16	60 mode - 5570 MHz				
Test Radar Type				Type 0											
Detection Bandwid											60 MHz				
Detection Bandwidth M		imi	t.								.2863MHz				
Test Result:	III. L		ι.							155	Pass				
Radar Frequency				ם פ ח	oto	ctio	n Tr	iale	(1=	Dota	ection, 0 = No Detection)				
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate(%)				
5490	1	2	1	4	1	1	1	0	9	10	100%				
5490	1	1	1	1	1	1	1	1	1	1	100%				
5491	1	1	1	1	1	1	1	1	1	1	100%				
5492	1	1	1	1	1	1	1	1	1	1	100%				
5493	1	1	1	1	1	1	1	1	1	1	100%				
5495	1	1	1	1	1	1	1	1	1	1	100%				
5500	1	1	1	1	1	1	1	1	1	1	100%				
5505	1	1	1	1	1	1	1	1	1	1	100%				
5510	1	1	1	1	1	1	1	1	1	1	100%				
5515	1	1	1	1	1	1	1	1	1	1	100%				
5520	1	1	1	1	1	1	1	1	1	1	100%				
5525	1	1	1	1	1	1	1	1	1	1	100%				
5530	1	1	1	1	1	1	1	1	1	1	100%				
5535	1	1	1	1	1	1	1	1	1	1	100%				
5540	1	1	1	1	1	1	1	1	1	1	100%				
5545	1	1	1	1	1	1	1	1	1	1	100%				
5550	1	1	1	1	1	1	1	1	1	1	100%				
5555	1	1	1	1	1	1	1	1	1	1	100%				
5560	1	1	1	1	1	1	1	1	1	1	100%				
5565	1	1	1	1	1	1	1	1	1	1	100%				
5570	1	1	1	1	1	1	1	1	1	1	100%				
5575	1	1	1	1	1	1	1	1	1	1	100%				
5580	1	1	1	1	1	1	1	1	1	1	100%				
5585	1	1	1	1	1	1	1	1	1	1	100%				
5590	1	1	1	1	1	1	1	1	1	1	100%				
5595	1	1	1	1	1	1	1	1	1	1	100%				
5600	1	1	1	1	1	1	1	1	1	1	100%				
5605	1	1	1	1	1	1	1	1	1	1	100%				
5610	1	1	1	1	1	1	1	1	1	1	100%				
5615	1	1	1	1	1	1	1	1	1	1	100%				
5620	1	1	1	1	1	1	1	1	1	1	100%				
5625	1	1	1		1	1		1		1	100%				
5630	1	1	1	1	1	1	1	1	1	1	100%				
5635	1	1	1	1	1	1	1	1	1	1	100%				
5640	1	1	1	1	1	1	1	1	1	1	100%				
5645	1	1	1	1	1	1	1	1	1	1	100%				
5650	1	1	1	1	1	1	1	1	1	1	100%				
5655	1	1		1	1	1	1	1	1	1	100%				
			1					-							
5660	1	1	1	1	1	1	1	1	1	1	100%				
<u>5665</u> 5666	1	1	1	1	1	1	1	1	1	1	100%				
nhhh	1	1	1	1	1	1	1	1	1	1	100%				
5667	1	1	1	1	1	1	1	1	1	1	100%				

Page 29 of 90


Report No.: STS2307144W05

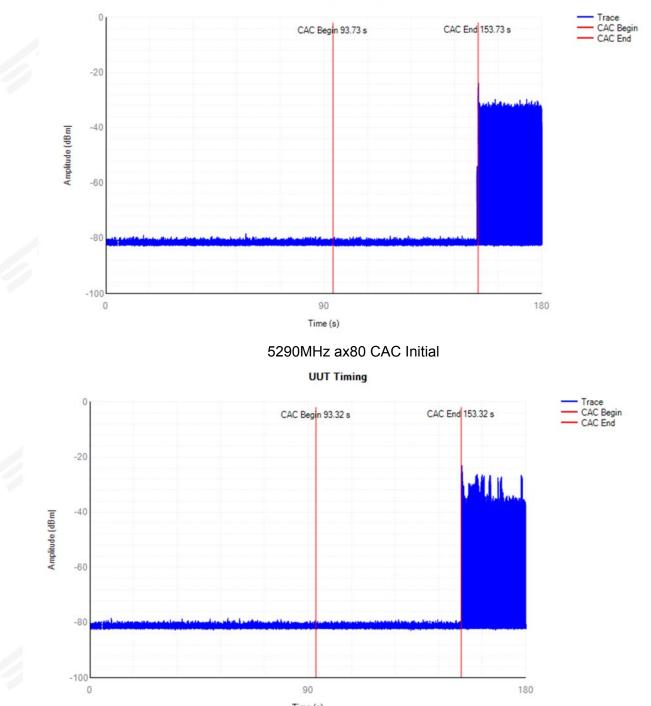
5669	1	1	1	1	1	1	1	1	1	1	100%
5670 FH	1	1	1	1	1	1	1	1	0	1	90%
Note 1: All NII channels fo DFS testing was done at Note 2: Detection Bandw	525	50M	Hz.			e id	enti	cal	Cha	anne	l bandwidths. Therefore, all
						00%	6 of	the	-U-		9% power bandwidth)/2


Initial Channel Availability Check Time Test Result

5500MHz ac20 CAC Initial

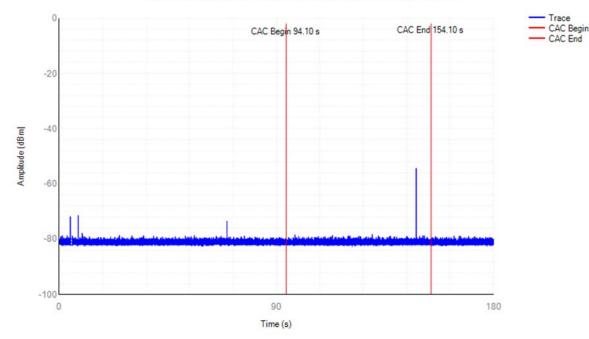
5510MHz ac40 CAC Initial

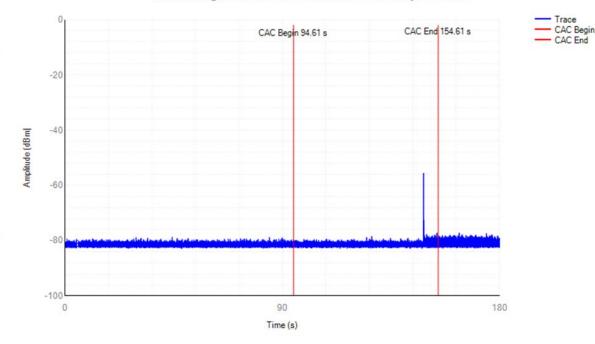
UUT Timing


UUT Timing

Page 31 of 90

5570MHz ax160 CAC Initial

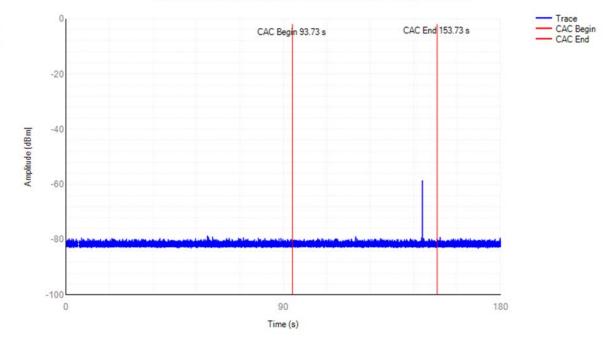

Time (s)


Radar Burst at the End of the Channel Availability Check Time Test Result 5500MHz ac20 CAC End

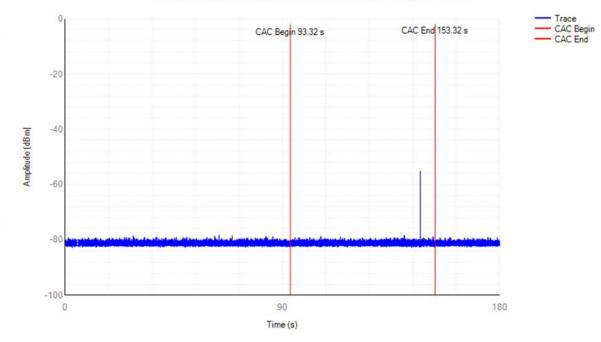
Radar testing towards the end of the Channel Availability Check Time

5510MHz ac40 CAC End

Radar testing towards the end of the Channel Availability Check Time



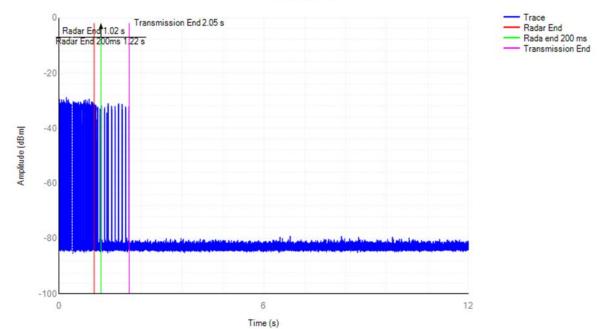
Page 33 of 90


5570MHz ax160 CAC End

Radar testing towards the end of the Channel Availability Check Time

5290MHz ax80 CAC End

Radar testing towards the end of the Channel Availability Check Time



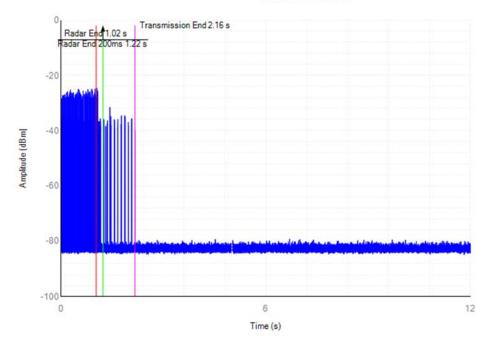
In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time Test Result

Mode	Frequency (MHz)	Channel Move Time (s)	Limit Channel Move Time (s)	Close Transmission Time (s)	Limit Close Transmission Time (s)	Verdict
ac20	5500	0.9945	<=10	0.028	<=0.26	Pass
ac40	5510	1.0249	<=10	0.0336	<=0.26	Pass
ax160	5570	1.0277	<=10	0.0372	<=0.26	Pass
ax80	5290	1.1389	<=10	0.034	<=0.26	Pass

Note: The channel closing transmission time is comprised of 200 milliseconds starting at the beginning of the channel move time plus any additional intermittent control signals required to facilitate a channel move (an aggregate of 60 milliseconds)during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

5570MHz ax160 Shutdown

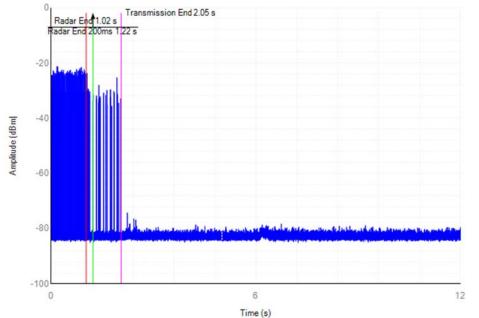
Channel Shutdown



Page 35 of 90

Report No.: STS2307144W05

5290MHz ax80 Shutdown

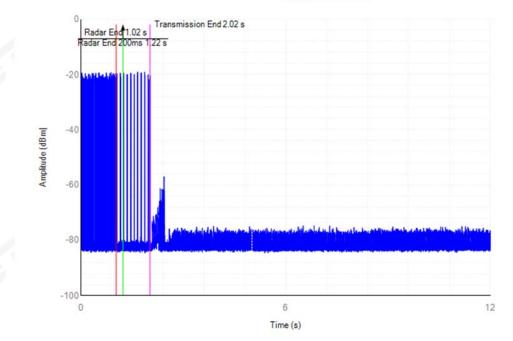

Channel Shutdown

5510MHz ac40 Shutdown

Channel Shutdown

Trace Radar End Rada end 200 ms Transmission End

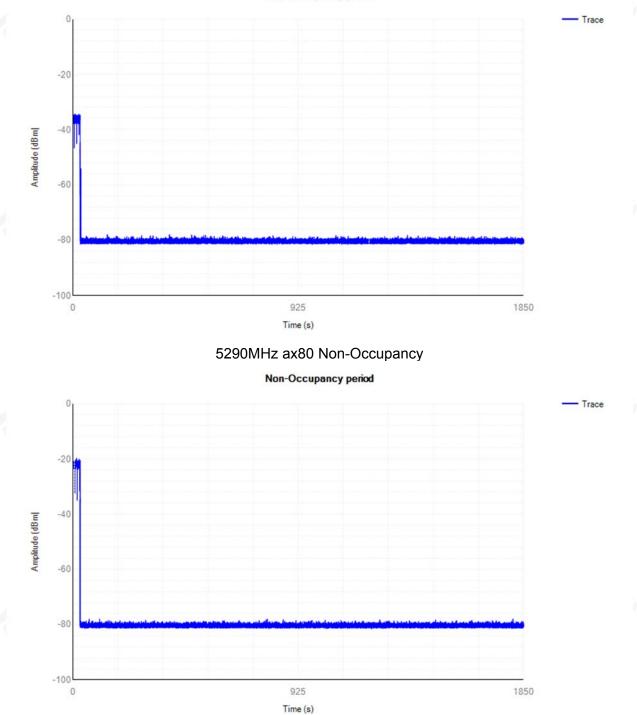
Page 36 of 90


Report No.: STS2307144W05

Trace

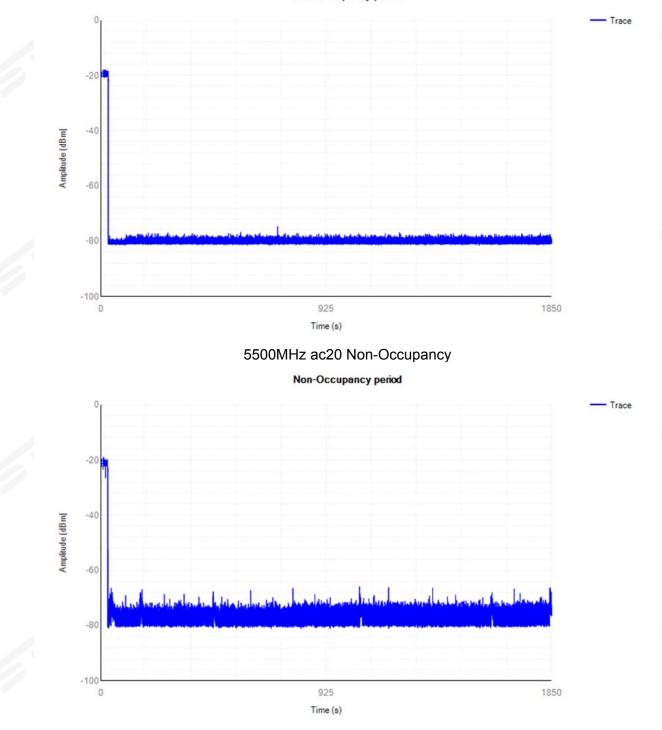
Radar End Rada end 200 ms Transmission End

5500MHz ac20 Shutdown



Non-Occupancy Period Test Result

5570MHz ax160 Non-Occupancy



Page 38 of 90

5510MHz ac40 Non-Occupancy

Non-Occupancy period

Statistical Performance Check Test Result

	Radar	Statistical Performanc	e Check		
	8	02.11ax-HE20 - 5500 N	ЛНz		
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection	Limit	Results
1	30	29	96.67%	≥60%	Pass
2	30	28	93.33%	≥60%	Pass
3	30	27	90.00%	≥60%	Pass
4	30	28	93.33%	≥60%	Pass
Aggregate	120	93.3	33%	≥80%	Pass
5	30	26	86.67%	≥80%	Pass
6	30	27	90.00%	≥70%	Pass
57	Note: Aggregate (I	Radar Types 1-4) = (Po	d1+Pd2+Pd3+Pd4)/4		

	Radar	Statistical Performance	ce Check		
	80)2.11ax-HE40 - 5510 I	MHz		
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection	Limit	Results
1	30	27	90.00%	≥60%	Pass
2	30	28	93.33%	≥60%	Pass
3	30	26	86.67%	≥60%	Pass
4	30	25	83.33%	≥60%	Pass
Aggregate	120	88.3	33%	≥80%	Pass
5	30	26	86.67%	≥80%	Pass
6	30	25	83.33%	≥70%	Pass
	Note: Aggregate (F	Radar Types 1-4) = (Pe	d1+Pd2+Pd3+Pd4)/4	•	

	Radar	Statistical Performanc	e Check		
	8	02.11ax-HE80 - 5530 N	ИНz		
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection	Limit	Results
1	30	28	93.33%	≥60%	Pass
2	30	28	93.33%	≥60%	Pass
3	30	27	90.00%	≥60%	Pass
4	30	27	90.00%	≥60%	Pass
Aggregate	120	91.6	57%	≥80%	Pass
5	30	26	86.67%	≥80%	Pass
6	30	25	83.33%	≥70%	Pass
3	Note: Aggregate (I	Radar Types 1-4) = (Po	d1+Pd2+Pd3+Pd4)/4		5

Radar Statistical Performance Check

Page 40 of 90

	80	2.11ax-HE160 - 5570	MHz		
Radar Type	Number of Trials	Number of Successful Detections	Successful Percentage of Successful		Results
1	30	25	83.33%	≥60%	Pass
2	30	28	93.33%	≥60%	Pass
3	30	26	86.67%	≥60%	Pass
4	30	26	86.67%	≥60%	Pass
Aggregate	120	87.5	60%	≥80%	Pass
5	30	26	86.67%	≥80%	Pass
6	30	24	80.00%	≥70%	Pass
	Note: Aggregate (Radar Types 1-4) = (Po	11+Pd2+Pd3+Pd4)/4		

	Radar	Statistical Performance	ce Check		
	80	02.11ax-HE160 - 5250	MHz		
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection	Limit	Results
1	30	26	86.67%	≥60%	Pass
2	30	27	90.00%	≥60%	Pass
3	30	27	90.00%	≥60%	Pass
4	30	25	83.33%	≥60%	Pass
Aggregate	120	87.5	50%	≥80%	Pass
5	30	26	86.67%	≥80%	Pass
6	30	25	83.33%	≥70%	Pass
-	30 e (Radar Types 1-4) =			270%	Pass

Radar Type 0

	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Tavefor Length (us)
Download	0	Type O	1.0	1428.0	18	25704.0
Download	1	Type O	1.0	1428.0	18	25704.0
Download	2	Type O	1.0	1428.0	18	25704.0
Download	3	Туре О	1.0	1428.0	18	25704.0
Download	4	Type O	1.0	1428.0	18	25704.0
Download	5	Type O	1.0	1428.0	18	25704.0
Download	6	Type O	1.0	1428.0	18	25704.0
Download	7	Туре О	1.0	1428.0	18	25704.0
Download	8	Type O	1.0	1428.0	18	25704.0
Download	9	Type O	1.0	1428.0	18	25704.0
Download	10	Type O	1.0	1428.0	18	25704.0
Download	11	Type O	1.0	1428.0	18	25704.0
Download	12	Type O	1.0	1428.0	18	25704.0
Download	13	Type O	1.0	1428.0	18	25704.0
Download	14	Type O	1.0	1428.0	18	25704.0
Download	15	Type O	1.0	1428.0	18	25704.0
Download	16	Type O	1.0	1428.0	18	25704.0
Download	17	Type O	1.0	1428.0	18	25704.0
Download	18	Type O	1.0	1428.0	18	25704.0
Download	19	Type O	1.0	1428.0	18	25704.0
Download	20	Type O	1.0	1428.0	18	25704.0
Download	21	Type O	1.0	1428.0	18	25704.0
Download	22	Type O	1.0	1428.0	18	25704.0
Download	23	Type O	1.0	1428.0	18	25704.0
Download	24	Type O	1.0	1428.0	18	25704.0
Download	25	Type O	1.0	1428.0	18	25704.0
Download	26	Type O	1.0	1428.0	18	25704.0
Download	27	Type O	1.0	1428.0	18	25704.0
Download	28	Type O	1.0	1428.0	18	25704.0
Download	29	Type O	1.0	1428.0	18	25704.0

Radar Type	: 1-	Radar	Waveform
------------	------	-------	----------

Trial List						
	Trial Id	Badar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Tavefor Length (us)
Download	0	Type 1	1.0	938.0	57	53466.0
Download	1	Type 1	1.0	698.0	76	53048.0
Download	2	Type 1	1.0	618.0	86	53148.0
Download	3	Type 1	1.0	538.0	99	53262.0
Download	4	Type 1	1.0	878.0	61	53558.0
Download	5	Type 1	1.0	3066.0	18	55188.0
Download	6	Type 1	1.0	638.0	83	52954.0
Download	7	Type 1	1.0	918.0	58	53244.0
Download	8	Type 1	1.0	838.0	63	52794.0
Download	9	Type 1	1.0	858.0	62	53196.0
Download	10	Type 1	1.0	798.0	67	53466.0
Download	11	Type 1	1.0	718.0	74	53132.0
Download	12	Type 1	1.0	578.0	92	53176.0
Download	13	Type 1	1.0	598.0	89	53222.0
Download	14	Type 1	1.0	558.0	95	53010.0
Download	15	Type 1	1.0	2536.0	21	53256.0
Download	16	Type 1	1.0	966.0	55	53130.0
Download	17	Type 1	1.0	827.0	64	52928.0
Download	18	Type 1	1.0	2501.0	22	55022.0
Download	19	Type 1	1.0	2595.0	21	54495.0
Download	20	Type 1	1.0	1114.0	48	53472.0
Download	21	Type 1	1.0	1302.0	41	53382.0
Download	22	Type 1	1.0	3045.0	18	54810.0
	23	Type 1	1.0	1624.0	33	53592.0
Download	24	Type 1	1.0	2878.0	19	54682.0
Download	25	Type 1	1.0	1027.0	52	53404.0
Download	26	Type 1	1.0	2485.0	22	54670.0
Download	27	Type 1	1.0	1600.0	33	52800.0
Download	28	Type 1	1.0	1172.0	46	53912.0
Download	29	Type 1	1.0	1177.0	45	52965.0

Radar	Type	2-	Radar	Waveform
-------	------	----	-------	----------

	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Tavefor Length (us)
Download	0	Type 2	3.2	179.0	26	4654.0
Download	1	Type 2	1.1	207.0	23	4761.0
Download	2	Type 2	2.1	230.0	24	5520.0
Download	3	Type 2	4.8	200.0	29	5800.0
Download	4	Type 2	3.9	214.0	28	5992.0
Download	5	Type 2	2.9	222.0	26	5772.0
Download	6	Type 2	3.2	204.0	26	5304.0
Download	7	Type 2	2.5	192.0	25	4800.0
Download	8	Type 2	3.1	164.0	26	4264.0
Download	9	Type 2	1.2	156.0	23	3588.0
Download	10	Type 2	3.9	210.0	27	5670.0
Download	11	Type 2	4.6	201.0	29	5829.0
Download	12	Type 2	3.2	162.0	26	4212.0
Download	13	Type 2	2.2	197.0	25	4925.0
Download	14	Type 2	4.5	163.0	29	4727.0
Download	15	Type 2	3.0	203.0	26	5278.0
Download	16	Type 2	5.0	168.0	29	4872.0
Download	17	Type 2	2.4	217.0	25	5425.0
Download	18	Type 2	2.9	191.0	26	4966.0
Download	19	Type 2	2.3	166.0	25	4150.0
Download	20	Type 2	3. 7	150.0	27	4050.0
Download	21	Type 2	2.2	176.0	25	4400.0
Download	22	Type 2	4.9	195.0	29	5655.0
Download	23	Type 2	2.9	202.0	26	5252.0
Download	24	Type 2	2.5	178.0	25	4450.0
Download	25	Type 2	1.1	206.0	23	4738.0
Download	26	Type 2	3.8	155.0	27	4185.0
Download	27	Type 2	4. 7	157.0	29	4553.0
Download	28	Type 2	2.4	224.0	25	5600.0
Download	29	Туре 2	4.2	159.0	28	4452.0

Radar T	ype 3-	Radar	Waveform
---------	--------	-------	----------

	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Tavefor Length (us)
Download	0	Туре З	8.2	355.0	17	6035.0
Download	1	Туре З	6.1	487.0	16	7792.0
Download	2	Туре З	7.1	344.0	16	5504.0
Download	3	Туре З	9.8	288.0	18	5184.0
Download	4	Туре З	8.9	230.0	18	4140.0
Download	5	Туре З	7.9	432.0	17	7344.0
Download	6	Туре З	8.2	207.0	17	3519.0
Download	7	Туре З	7.5	443.0	17	7531.0
Download	8	Туре З	8.1	439.0	17	7463.0
Download	9	Туре З	6.2	223.0	16	3568.0
Download	10	Туре З	8.9	208.0	18	3744.0
Download	11	Туре З	9.6	463.0	18	8334.0
Download	12	Туре З	8.2	441.0	17	7497.0
Download	13	Туре З	7.2	323.0	16	5168.0
Download	14	Туре З	9.5	297.0	18	5346.0
Download	15	Туре З	8.0	412.0	17	7004.0
Download	16	Туре З	10.0	324.0	18	5832.0
Download	17	Туре З	7.4	271.0	17	4607.0
Download	18	Туре З	7.9	349.0	17	5933.0
Download	19	Туре З	7.3	409.0	16	6544.0
Download	20	Туре З	8. 7	373.0	18	6714.0
Download	21	Туре З	7.2	254.0	16	4064.0
Download	22	Туре З	9.9	274.0	18	4932.0
Download	23	Туре З	7.9	278.0	17	4726.0
Download	24	Туре З	7.5	317.0	17	5389.0
Download	25	Туре З	6.1	260.0	16	4160.0
Download	26	Туре З	8.8	211.0	18	3798.0
Download	27	Туре З	9.7	272.0	18	4896.0
Download	28	Туре З	7.4	264.0	17	4488.0
Download	29	Туре З	9.2	284.0	18	5112.0

Radar	Type 4-	Radar	Waveform
i taaan	1900	i taaai	11010101111

Trial List		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Trial Id	Badar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Tavefor Length (us)
Download	0	Type 4	16.0	355.0	14	4970.0
Download	1	Type 4	11.3	487.0	12	5844.0
Download	2	Type 4	13.5	344.0	13	4472.0
Download	3	Type 4	19.4	288.0	16	4608.0
Download	4	Type 4	17.5	230.0	15	3450.0
Download	5	Type 4	15.3	432.0	14	6048.0
Download	6	Type 4	15.9	207.0	14	2898.0
Download	7	Type 4	14.3	443.0	13	5759.0
Download	8	Type 4	15.8	439.0	14	6146.0
Download	9	Type 4	11.5	223.0	12	2676.0
Download	10	Type 4	17.4	208.0	15	3120.0
Download	11	Type 4	19.0	463.0	16	7408.0
Download	12	Type 4	16.0	441.0	14	6174.0
Download	13	Type 4	13.8	323.0	13	4199.0
Download	14	Type 4	18.9	297.0	16	4752.0
Download	15	Type 4	15.5	412.0	14	5768.0
Download	16	Type 4	19.9	324.0	16	5184.0
Download	17	Type 4	14.1	271.0	13	3523.0
Download	18	Type 4	15.2	349.0	14	4886.0
Download	19	Type 4	13.8	409.0	13	5317.0
Download	20	Type 4	17.1	373.0	15	5595.0
Download	21	Type 4	13.8	254.0	13	3302.0
Download	22	Type 4	19.8	274.0	16	4384.0
Download	23	Type 4	15.3	278.0	14	3892.0
Download	24	Type 4	14.5	317.0	13	4121.0
Download	25	Type 4	11.3	260.0	12	3120.0
Download	26	Type 4	17.3	211.0	15	3165.0
Download	27	Type 4	19.2	272.0	16	4352.0
Download	28	Type 4	14.2	264.0	13	3432.0
Download	29	Type 4	18.2	284.0	15	4260.0

Radar Type	e 5- Radar	Waveform-0
------------	------------	------------

	Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	0	Type 5	15	0.8000000	12.0000000			1	
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	636185.0	77.8	13	2	1665.0	1477.0	-
		1	32674.0	51.9	5	1	1074.0	-	-
		2	226294.0	63.8	9	1	1584.0		-
		3	417976.0	96.6	19	3	1682.0	1786.0	1843.0
		4	611152.0	85.9	16	3	1795.0	1215.0	1729.0
		5	8789.0	73. 7	12	2	1198.0	1549.0	-
		6	201917.0	77.2	13	2	1837.0	1819.0	-
		7	395530.0	68.4	10	2	1587.0	1114.0	-
		8	588564.0	76. 7	13	2	2000.0	1155.0	-
		9	783794.0	53.2	6	1	1147.0	-	-
		10	177933.0	85. 7	16	3	1433.0	1695.0	1394.0
		11	370624.0	94.3	19	3	1670.0	1426.0	1935.0
		12	564893.0	77.6	13	2	1294.0	1671.0	
		13	759583.0	65.7	10	1	1512.0		_
		14	154262.0	93.5	18	3	1444.0	1130.0	1468.0

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
3	Download	1	Type 5	8	1.5000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	653020.0	75.0	12	2	1880.0	1527.0	
			1	1015643.0	99.4	20	3	1401.0	1262.0	1257.0
			2	1379398.0	67.4	10	2	1531.0	1403.0	-
			3	245489.0	73.6	12	2	1449.0	1041.0	-
			4	609113.0	65.9	10	1	1432.0	-	-
			5	970852.0	83.8	15	3	1356.0	1292.0	1419.0
			6	1335913.0	65.5	9	1	1543.0	-	-
			7	200406.0	98.6	20	3	1548.0	1796.0	1728.0

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Ξ	Download	2	Type 5	11	1.0909091	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	409565.0	73.8	12	2	1806.0	1538.0	-
			1	673692.0	69.5	11	2	1117.0	1649.0	-
			2	938562.0	51.9	5	1	1651.0		-
			3	113209.0	84.6	16	3	1976.0	1032.0	1271.0
			4	376726.0	95.4	19	3	1060.0	1903.0	1388.0
			5	641212.0	68.0	10	2	1368.0	1351.0	-
			6	903714.0	89.6	17	3	1338.0	1514.0	1573.0
			7	80863.0	81.9	15	2	1022.0	1689.0	-
			8	344067.0	88.3	17	3	1810.0	1330.0	1838.0
			9	609331.0	53. 7	6	1	1597.0		-
			10	871542.0	91.3	18	3	1961.0	1106.0	1001.0

	Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	3	Type 5	20	0.6000000	12.0000000			1	
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	26541.0	68.1	10	2	1339.0	1355.0	-
		1	171821.0	58.7	7	1	1251.0	-	T .:
		2	316229.0	75.3	13	2	1136.0	1640.0	
		3	461864.0	56.4	7	1	1753.0	-	-
		4	8677.0	99. 7	20	3	1196.0	1708.0	1159.0
		5	153995.0	57.7	7	1	1013.0	-	-
		6	299238.0	59.5	8	1	1072.0	-	T
		7	443177.0	80.0	14	2	1482.0	1369.0	-
		8	587671.0	82.0	15	2	1993.0	1197.0	-
		9	135674.0	82.8	15	2	1883.0	1005.0	-
		10	279928.0	88.0	17	3	1061.0	1928.0	1101.0
		11	424279.0	93.2	18	3	1207.0	1907.0	1223.0
		12	570132.0	70.4	11	2	1526.0	1360.0	-
		13	117439.0	95.3	19	3	1171.0	1955.0	1775.0
		14	262502.0	81.9	15	2	1690.0	1545.0	-
		15	406573.0	98.5	20	3	1975.0	1169.0	1062.0
		16	553328.0	65.0	9	1	1767.0	-0	-
		17	99799.0	85.4	16	3	1011.0	1637.0	1425.0
		18	244095.0	91.6	18	3	1878.0	1445.0	1325.0
		19	390012.0	67.3	10	2	1091.0	1218.0	-

	Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	4	Type 5	17	0.7058824	12.0000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	629614.0	67.9	10	2	1320.0	1133.0	-
		1	96856.0	62.3	8	1	1957.0		-
		2	267719.0	53.3	6	1	1592.0	-1	-
		3	436784.0	90.0	17	3	1900.0	1153.0	1346.0
		4	608289.0	77.1	13	2	1166.0	1646.0	-
		5	75610.0	83.9	15	3	1278.0	1232.0	1459.0
		6	245638.0	89.1	17	3	1240.0	1384.0	1939.0
		7	416355.0	81.8	15	2	1833.0	1676.0	-
		8	588736.0	50.3	5	1	1075.0	<u></u>	-
		9	54571.0	87.1	16	3	1116.0	1996.0	1756.0
		10	225175.0	71.3	11	2	1225.0	1815.0	-
		11	394825.0	97.5	20	3	1884.0	1465.0	1132.0
		12	565361.0	90.6	17	3	1561.0	1040.0	1354.0
		13	33643.0	86.3	16	3	1596.0	1183.0	1792.0
		14	203957.0	97.6	20	3	1365.0	1073.0	1361.0
		15	373812.0	84.7	16	3	1021.0	1718.0	1854.0

Radar Type	5- Radar	Waveform-5
------------	----------	------------

	Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	5	Type 5	14	0.8571429	12.0000000				
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (IIHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	15438.0	92.9	18	3	1085.0	1564.0	1407.0
	200	1	222486.0	67.7	10	2	1744.0	1747.0	-
		2	430731.0	65.8	10	1	1092.0	-	-
		3	637784.0	56.3	7	1	1851.0	-	-
		4	845342.0	53.7	6	1	1727.0	-	-
		5	196720.0	83.5	15	3	1679.0	1930.0	1025.0
		6	404955.0	65.8	10	1	1519.0	-	-
		7	610711.0	85.9	16	3	1134.0	1034.0	1808.0
		8	818057.0	76.3	13	2	1606.0	1926.0	-
		9	171459.0	81.5	15	2	1891.0	1714.0	-
		10	377969.0	89.4	17	3	1310.0	1594.0	1827.0
		11	586875.0	63.4	9	1	1568.0	-	-
		12	792834.0	69.6	11	2	1307.0	1925.0	-
		13	146044.0	74.5	12	2	1264.0	1846.0	-

		Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
3	Download	6	Type 5	15	0.8000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (IIHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	329022.0	96.6	19	3	1182.0	1609.0	1581.0
			1	521718.0	96.7	19	3	1829.0	1799.0	1154.0
			2	714222.0	86.5	16	3	1923.0	1396.0	1865.0
			3	112450.0	73.3	12	2	1908.0	1318.0	-
			4	306283.0	55.8	6	1	1688.0	- 1	-
			5	500239.0	55.4	6	1	1145.0	7. S	-
			6	690932.0	85.3	16	3	1336.0	1504.0	1820.0
			7	88645.0	79.4	14	2	1344.0	1893.0	-
			8	282508.0	65.7	10	1	1476.0	-	-
			9	475842.0	68.6	10	2	1008.0	1028.0	-
			10	667887.0	77.7	13	2	1972.0	1835.0	-
			11	64845.0	79.6	14	2	1882.0	1331.0	-
1			12	257755.0	94.9	19	3	1830.0	1070.0	1349.0
Ì			13	452335.0	61.4	8	1	1451.0	51	-
1			14	643395.0	90.6	17	3	1233.0	1562.0	1887.0

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
3	Download	7	Type 5	12	1.0000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	51446.0	52.6	5	1	1210.0	-	-
			1	292696.0	84.1	15	3	1314.0	1725.0	1529.0
			2	533989.0	97.7	20	3	1139.0	1868.0	1805.0
			3	775564.0	97.3	20	3	1341.0	1446.0	1755.0
			4	21542.0	98.8	20	3	1544.0	1386.0	1302.0
			5	263385.0	72.2	12	2	1771.0	1184.0	-
			6	505581.0	67.6	10	2	1175.0	1027.0	-
			7	747058.0	75. 7	13	2	1026.0	1871.0	-
			8	989976.0	60.9	8	1	1798.0	-	-
			9	234024.0	64.2	9	1	1138.0	-	-
			10	475207.0	78.8	14	2	1784.0	1604.0	-
			11	715825.0	87.5	16	3	1511.0	1712.0	1683.0

Radar Type 5- Radar Waveform-8

	Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	8	Type 5	14	0.8571429	12.0000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	823112.0	54.1	6	1	1415.0	20	-
	200	1	174965.0	50.7	5	1	1221.0	-	<u> </u>
		2	382216.0	52.3	5	1	1974.0	-	
		3	587395.0	99.8	20	3	1558.0	1696.0	1949.0
		4	796897.0	68.4	10	2	1014.0	1099.0	-
		5	149042.0	80.8	14	2	1736.0	1505.0	-
		6	356750.0	62.5	9	1	1778.0	-	-
		7	563824.0	74.8	12	2	1149.0	1204.0	-
		8	772314.0	50.8	5	1	1049.0	-	-
		9	123796.0	54.0	6	1	1417.0	-	-
		10	331215.0	63.0	9	1	1730.0	-	-
		11	537402.0	91.8	18	3	1143.0	1270.0	1347.0
		12	744805.0	79.3	14	2	1274.0	1992.0	-
		13	98172.0	64.3	9	1	1937.0	-	-

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
1	Download	9	Type 5	8	1.5000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	535615.0	63.4	9	1	1043.0	-	-
			1	898668.0	52.0	5	1	1863.0	-	-
			2	1259235.0	97.2	20	3	1973.0	1605.0	1583.0
			3	127106.0	78.7	14	2	1466.0	1743.0	-
			4	490358.0	74.2	12	2	1280.0	1219.0	-
			5	852409.0	88. 7	17	3	1293.0	1934.0	1273.0
			6	1217152.0	54.3	6	1	1991.0	-	-
Ĩ			7	82296.0	95.4	19	3	1580.0	1555.0	1791.0

	Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	10	Type 5	17	0.7058824	12.0000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	209249.0	73. 7	12	2	1208.0	1497.0	-
		1	378386.0	97.4	20	3	1942.0	1754.0	1613.0
		2	548411.0	91.7	18	3	1999.0	1702.0	1462.0
		3	17733.0	66.2	10	1	1393.0	-	
		4	187952.0	70.8	11	2	1968.0	1821.0	-
		5	359277.0	52.3	5	1	1740.0	- :	-
		6	528886.0	78.9	14	2	1308.0	1984.0	-
		7	700166.0	70.9	11	2	1050.0	1358.0	-
		8	167197.0	75.6	13	2	1437.0	1430.0	-
		9	338262.0	59.1	7	1	1697.0	- 1	-
		10	508324.0	77.0	13	2	1397.0	1304.0	-
		11	678689.0	67.9	10	2	1803.0	1083.0	-
		12	146031.0	81.2	14	2	1720.0	1932.0	-
		13	316923.0	78.7	14	2	1247.0	1121.0	-
		14	488056.0	63.3	9	1	1634.0	-	-
		15	657326.0	68.9	11	2	1849.0	1423.0	<u> </u>
		16	125509.0	59.3	7	1	1093.0	-	-

Download 1	11	Type 5 Burst ID O	19 Burst Offset (us)	0.6315789 Pulse Vidth (us)	12.0000000 Chirp				
		0	Offset (us)	Pulse	Chirp				
				alden (as)	Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			263736.0	98.9	20	3	1381.0	1680.0	1488.0
		1	416459.0	82.3	15	2	1716.0	1855.0	-
		2	567902.0	86.7	16	3	1211.0	1400.0	1919.0
		3	92979.0	89. 7	17	3	1861.0	1068.0	1282.0
		4	245155.0	98.6	20	3	1507.0	1194.0	1461.0
		5	397609.0	71.1	11	2	1921.0	1789.0	-
	1	6	551431.0	55.9	6	1	1947.0	- :	-
	(7	74413.0	67.9	10	2	1350.0	1372.0	-
		8	226559.0	84.4	16	3	1203.0	1107.0	1443.0
		9	380056.0	58.8	7	1	1715.0	7	-
		10	533408.0	65.6	9	1	1017.0	2	-
		11	55547.0	78.5	14	2	1911.0	1704.0	-
	(12	207876.0	82.3	15	2	1845.0	1686.0	-
		13	359771.0	90.1	17	3	1938.0	1071.0	1266.0
		14	511297.0	90.2	17	3	1989.0	1089.0	1950.0
		15	36803.0	83.1	15	2	1943.0	1406.0	-
		16	189652.0	58.8	7	1	1742.0	-	-
		17	341809.0	77.0	13	2	1187.0	1657.0	-

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
	Download	12	Type 5	15	0.8000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	22911.0	58.1	7	1	1929.0	-	-
1			1	216473.0	52.1	5	1	1910.0	- '	-
			2	410004.0	59.9	8	1	1971.0	-	-
			3	603671.0	60.2	8	1	1812.0	-	-
			4	794160.0	95.9	19	3	1399.0	1906.0	1608.0
			5	192251.0	79.9	14	2	1626.0	1859.0	-
			6	385590.0	78.5	14	2	1238.0	1917.0	
			7	579862.0	53.8	6	1	1763.0	-	-
			8	773423.0	64. 7	9	1	1800.0	-	
			9	168898.0	61.4	8	1	1390.0	-	-
			10	361606.0	83.2	15	2	1692.0	1858.0	-
1			11	553866.0	84. 7	16	3	1533.0	1677.0	1638.0
			12	747241.0	88. 7	17	3	1703.0	1528.0	1058.0
			13	144710.0	78.3	14	2	1258.0	1951.0	
Ĩ			14	337856.0	69.3	11	2	1731.0	1717.0	-

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
	Download	13	Type 5	12	1.0000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	664275.0	75.3	13	2	1994.0	1612.0	
			1	907886.0	56.3	7	1	1456.0	-	<u>-</u> :
1			2	151316.0	67.7	10	2	1617.0	1185.0	-
			3	393746.0	55.6	6	1	1337.0	-	-
			4	635093.0	75.2	13	2	1421.0	1267.0	-
			5	876993.0	76.3	13	2	1359.0	1305.0	-
			6	121278.0	85.7	16	3	1547.0	1362.0	1924.0
			7	362696.0	98.4	20	3	1873.0	1550.0	1249.0
			8	604342.0	86.4	16	3	1779.0	1439.0	1046.0
			9	846453.0	93.6	18	3	1059.0	1031.0	1452.0
			10	91871.0	63.3	9	1	1328.0	-	-
			11	333050.0	92.4	18	3	1412.0	1673.0	1322.0
			1	6 N 1	•		6.8			6.5

	Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
Download	14	Type 5	19	0.6315789	12.0000000				
		Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	361323.0	93.3	18	3	1983.0	1912.0	1535.0
		1	515261.0	69.1	11	2	1102.0	1794.0	-
		2	39025.0	86.9	16	3	1044.0	1152.0	1148.0
		3	190900.0	84.9	16	3	1894.0	1948.0	1118.0
		4	343941.0	72.3	12	2	1094.0	1916.0	
		5	497624.0	51.7	5	1	1447.0	-	-
		6	20319.0	58.3	7	1	1429.0		-
		7	172999.0	60.8	8	1	1979.0	-	-
		8	325872.0	57.1	7	1	1641.0	-	
		9	475841.0	88.9	17	3	1886.0	1964.0	1489.0
		10	1489.0	72.0	12	2	1909.0	1297.0	-
		11	153647.0	90.9	18	3	1261.0	1566.0	1370.0
		12	307096.0	59.8	8	1	1552.0	-	-
		13	458804.0	70.0	11	2	1759.0	1291.0	-
		14	610798.0	67.2	10	2	1625.0	1881.0	-
		15	134759.0	91.2	18	3	1382.0	1832.0	1661.0
		16	288306.0	56.5	7	1	1483.0	-	-
		17	441296.0	51.2	5	1	1237.0		-
	-	18	592780.0	74.1	12	2	1471.0	1245.0	-

		Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Waveform Length (s)					
1	Download	15	Type 5	14	0.8571429	12.0000000					
			Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
			0	158286.0	76.9	13	2	1110.0	1140.0	-	
			1	366024.0	50.2	5	1	1316.0	-	-	
			2	573452.0	62.9	9	1	1520.0		-	
			3	780619.0	64.7	9	1	1902.0		-	
			4	132455.0	83.8	15	3	1410.0	1097.0	1621.0	
			5	340207.0	65.4	9	1	1944.0	-	-	
			6	548208.0	53.2	6	1	1024.0	-	-	
			7	755333.0	51.7	5	1	1603.0	-	-	
			8	107117.0	78. 7	14	2	1804.0	1168.0	-	
			9	314500.0	72.4	12	2	1030.0	1343.0	-	
			10	522447.0	53.8	6	1	1327.0	-	-	
			11	728517.0	73.6	12	2	1524.0	1553.0	-	
			12	81611.0	66. 7	10	2	1722.0	1122.0	-	
			13	288948.0	82.5	15	2	1404.0	1019.0	-	

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
ĺ	Download	16	Type 5	20	0.6000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (IIHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	345766.0	87.6	17	3	1565.0	1055.0	1840.0
			1	490019.0	85.2	16	3	1735.0	1541.0	1408.0
			2	39073.0	84.8	16	3	1534.0	1889.0	1463.0
			3	183923.0	77.9	13	2	1749.0	1460.0	-
			4	328777.0	76.5	13	2	1518.0	1485.0	
			5	474728.0	60.9	8	1	1540.0	-	-
			6	21394.0	83.0	15	2	1080.0	1010.0	-
			7	165992.0	80.4	14	2	1824.0	1752.0	-
			8	310973.0	67.5	10	2	1764.0	1181.0	-
			9	456884.0	62.1	8	1	1495.0	T	-
			10	3515.0	86.4	16	3	1773.0	1966.0	1263.0
			11	147928.0	84.3	15	3	1593.0	1188.0	1788.0
			12	293225.0	76.9	13	2	1226.0	1537.0	-
			13	436922.0	95.8	19	3	1192.0	1298.0	1844.0
		-	14	584015.0	55.2	6	1	1644.0	70.	.
			15	130832.0	59.0	7	1	1402.0	-	-
			16	274684.0	94.5	19	3	1296.0	1700.0	1283.0
			17	418579.0	91.9	18	3	1970.0	1978.0	1165.0
			18	563464.0	85.2	16	3	1732.0	1551.0	1189.0
			19	112787.0	69.5	11	2	1038.0	1224.0	-

		Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
B	Download	17	Type 5	12	1.0000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	429224.0	86.4	16	3	1259.0	1918.0	1455.0
			1	670241.0	92.2	18	3	1598.0	1719.0	1895.0
			2	912880.0	80.4	14	2	1816.0	1899.0	-
			3	158603.0	54.3	6	1	1335.0	-	-
			4	400824.0	53.1	5	1	1303.0	-	-
			5	641915.0	69.4	11	2	1503.0	1546.0	-
			6	883823.0	69.1	11	2	1279.0	1639.0	-
			7	128373.0	100.0	20	3	1375.0	1438.0	1595.0
			8	370379.0	79.6	14	2	1239.0	1705.0	-
			9	611194.0	88.4	17	3	1374.0	1579.0	1623.0
			10	855665.0	53.3	6	1	1016.0	-	-
			11	98897.0	65.3	9	1	1709.0	-	-

		Trial Id	Radar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
F	Download	18	Type 5	14	0.8571429	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	-		0	292143.0	55.3	6	1	1920.0	<u>e</u> r	
			1	499633.0	58.3	7	1	1797.0	-	<u>-</u>
			2	706377.0	72.3	12	2	1610.0	1039.0	-
			3	58989.0	84.8	16	3	1131.0	1761.0	1721.0
			4	266161.0	82.5	15	2	1875.0	1431.0	-
			5	474469.0	63.3	9	1	1095.0	-	-
			6	680544.0	80.0	14	2	1119.0	1913.0	-
			7	33519.0	90.3	17	3	1660.0	1853.0	1123.0
			8	240319.0	91.1	18	3	1539.0	1783.0	1172.0
			9	447400.0	96.6	19	3	1525.0	1036.0	1385.0
			10	654516.0	82.7	15	2	1710.0	1990.0	-
			11	8083.0	50. 7	5	1	1234.0	-	-
			12	215435.0	78.4	14	2	1047.0	1109.0	-
			13	421325.0	99.5	20	3	1299.0	1965.0	1869.0

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
	Download	19	Type 5	12	1.0000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	733725.0	88.6	17	3	1501.0	1067.0	1927.0
			1	977882.0	57.4	7	1	1723.0	-	-
			2	221197.0	96.6	19	3	1086.0	1658.0	1324.0
			3	462915.0	69.7	11	2	1751.0	1945.0	-
			4	705071.0	77.9	13	2	1642.0	1317.0	-
			5	947923.0	62.0	8	1	1866.0	-	-
			6	191373.0	88.4	17	3	1997.0	1077.0	1366.0
			7	432561.0	97.3	20	3	1790.0	1896.0	1367.0
_			8	674004.0	96.2	19	3	1391.0	1787.0	1672.0
_			9	915842.0	95.4	19	3	1020.0	1892.0	1414.0
_			10	162176.0	54.8	6	1	1084.0	-	-
-			11	403553.0	80.4	14	2	1850.0	1436.0	-
				5			1			1

		Trial Id	Badar Type	Number of Bursts	Burst Period (s)	Taveform Length (s)				
	Download	20	Type 5	16	0.7500000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	483470.0	74.7	12	2	1619.0	1611.0	-
Г			1	666072.0	57.1	7	1	1560.0		-
			2	98810.0	91.9	18	3	1392.0	1475.0	1276.0
Γ			3	279914.0	83.1	15	2	1809.0	1772.0	-
			4	462536.0	50. 7	5	1	1003.0	-	-
[5	642324.0	79.2	14	2	1574.0	1600.0	-
Γ			6	76831.0	58.7	7	1	1186.0	-	-
Γ			7	257785.0	71.0	11	2	1521.0	1567.0	-
Γ			8	438554.0	79.0	14	2	1777.0	1960.0	
			9	620397.0	68.5	10	2	1284.0	1428.0	-
ſ			10	54310.0	73.5	12	2	1904.0	1352.0	-
			11	235506.0	70.5	11	2	1864.0	1115.0	-
			12	417036.0	76.6	13	2	1045.0	1300.0	-
[13	597974.0	81.2	14	2	1160.0	1675.0	-
1			14	32086.0	61.8	8	1	1277.0		-
			15	212751.0	94.9	19	3	1450.0	1206.0	1860.0

		Trial Id	Badar Type	Humber of Bursts	Burst Period (s)	Taveform Length (s)				
	Download	21	Type 5	12	1.0000000	12.0000000				
			Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
			0	526149.0	78.5	14	2	1653.0	1698.0	
			1	767135.0	89.8	17	3	1174.0	1962.0	1167.0
1			2	12955.0	59.4	8	1	1982.0	-	-
			3	254612.0	79.6	14	2	1633.0	1890.0	-
			4	496588.0	76.0	13	2	1112.0	1811.0	-
			5	739728.0	53.6	6	1	1144.0	-	-
			6	980872.0	80.9	14	2	1220.0	1053.0	-
			7	225249.0	61.6	8	1	1724.0	-	-
			8	467279.0	53.4	6	1	1901.0	-	-
			9	709720.0	59.9	8	1	1379.0	-	-
			10	951847.0	60.4	8	1	1453.0	-	-
			11	194839.0	91.4	18	3	1768.0	1726.0	1227.0
		-	1	- N	•		6.8			6.