黹 BCTC

TEST REPORT

Report No.: BCTC2403853163E

Applicant:

Product Name: Three whale nipple vibrators

Test Model: 3834972

Tested Date:
2024-03-14 to 2024-03-19

Issued Date: 2024-03-25

FCC ID: 2BCDZ-3834972

Product Name:	Three whale nipple vibrators
Trademark:	UTIMI
Model/Type Reference:	$\begin{aligned} & 3834972 \\ & 3838002,3838004,3838006,3838008,3838009 \end{aligned}$
Prepared For:	Shenzhen Unistyle Technology Co., Ltd.
Address:	1-5C Lijinguoji, Baoan Qu Shenzhen Guangdong, China
Manufacturer:	Shenzhen Vincent Technology Co., Ltd
Address:	100 Qixin Road, Longgang District, Shenzhen, Guangdong Province
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-03-14
Sample Tested Date:	2024-03-14 to 2024-03-19
Issue Date:	2024-03-25
Report No.:	BCTC2403853163E
Test Standards:	FCC Part15.231 ANSI C63.10-2013
Test Results:	PASS

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test Report Declaration Page

1. Version 4
2. Test Summary 5
3. Measurement Uncertainty 6
4. Product Information And Test Setup 7
4.1 Product Information 7
4.2 Test Setup Configuration 7
4.3 Support Equipment 8
4.4 Channel List 8
4.5 Test Mode 8
5. Test Facility And Test Instrument Used. 9
5.1 Test Facility 9
5.2 Test Instrument Used 9
6. Conducted Emissions 10
6.1 Block Diagram Of Test Setup 10
6.2 Limit 10
6.3 Test Procedure 10
6.4 EUT Operating Conditions 10
6.5 Test Result 10
7. Radiated Emissions 11
7.1 Block Diagram Of Test Setup 11
7.2 Limit 12
7.3 Test Procedure 13
7.4 EUT Operating Conditions 14
7.5 Test Result 15
8. Bandwidth Test 19
8.1 Block Diagram Of Test Setup 19
8.2 Limit 19
8.3 Test Procedure 19
8.4 EUT Operating Conditions 19
8.5 Test Result 20
9. Calculation Of Average Factor 21
10. Dwell Time 23
10.1 Block Diagram Of Test Setup 23
10.2 Limit 23
10.3 Test Procedure 23
10.4 Test Result 24
11. Antenna Requirement 25
11.1 Standard Requirement 25
11.2 EUT Antenna 25
12. EUT Photographs 26
13. EUT Test Setup Photographs 27
14. Version

Report No.	Issue Date	Description	Approved
BCTC2403853163E	$2024-03-25$	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	$\S 15.207$	N/A*
2	Fundamental \&Radiated Spurious Emission Measurement	$15.209,15.231 \mathrm{~b}$	PASS
3	Occupy Bandwidth	15.231 c	PASS
4	Dwell time	15.231 a	PASS
5	Antenna Requirement	15.203	PASS

Note*: The EUT is powered by the DC only, the test item is not applicable.

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission($9 \mathrm{kHz}-30 \mathrm{MHz}$)	$\mathrm{U}=3.7 \mathrm{~dB}$
2	3m chamber Radiated spurious emission(30MHz-1GHz)	$\mathrm{U}=4.3 \mathrm{~dB}$
3	3m chamber Radiated spurious emission($1 \mathrm{GHz}-18 \mathrm{GHz}$)	$\mathrm{U}=4.5 \mathrm{~dB}$
4	3 m chamber Radiated spurious emission(18GHz-40GHz)	$\mathrm{U}=3.34 \mathrm{~dB}$
5	Conducted Emission(150kHz-30MHz)	$\mathrm{U}=3.20 \mathrm{~dB}$
6	Conducted Adjacent channel power	$\mathrm{U}=1.38 \mathrm{~dB}$
7	Conducted output power uncertainty Above 1G	$\mathrm{U}=1.576 \mathrm{~dB}$
8	Conducted output power uncertainty below 1G	$\mathrm{U}=1.28 \mathrm{~dB}$
9	humidity uncertainty	$\mathrm{U}=5.3 \%$
10	Temperature uncertainty	$\mathrm{U}=0.59^{\circ} \mathrm{C}$

4. Product Information And Test Setup

4.1 Product Information

Model/Type Reference: 3834972

3838002, 3838004, 3838006, 3838008, 3838009
Model Differences: All the model are the same circuit and RF module, except model names and appearance of the color.
Operation Frequency: $\quad 433.92 \mathrm{MHz}$
Type of Modulation: ASK
Number Of Channel 1CH
Antenna installation: Internal antenna
Antenna Gain: SRD: 0 dBi
Ratings: DC 3V from battery
Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

Radiated Spurious Emission:
E-1
EUT

4.3 Support Equipment

Item	Shielded Type	Ferrite Core	Length	Note

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

$\mathbf{C H}$	Frequency (MHz)
1	433.92

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Final Test Mode	Description
Mode 1	TX

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.
(2) Fully-charged battery is used during the test

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.
FCC Test Firm Registration Number: 712850
A2LA certificate registration number is: CN1212
ISED Registered No.: 23583
ISED CAB identifier: CN0017

5.2 Test Instrument Used

RF Conducted Test						
Equipment	Manufacturer	Model\#	Serial\#	Last Cal.	Next Cal.	
Power Metter	Keysight	E4419	I	May 15, 2023	May 14, 2024	
Power Sensor (AV)	Keysight	E9300A	\backslash	May 15, 2023	May 14, 2024	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024	
Spectrum Analyzer9kHz- $40 G H z$	R\&S	FSP40	100363	May 15, 2023	May 14, 2024	

Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model\#	Serial\#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R\&S	ESR3	102075	May 15, 2023	May 14, 2024
Receiver	R\&S	ESRP	101154	May 15, 2023	May 14, 2024
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024
$\begin{gathered} \text { Loop } \\ \text { Antenna(9KHz } \\ -30 \mathrm{MHz}) \\ \hline \end{gathered}$	Schwarzbeck	FMZB1519B	00014	May 31,2023	May 30, 2024
Amplifier	SKET	$\begin{gathered} \text { LAPA_01G18 } \\ \text { G-45dB } \end{gathered}$	SK202104090	May 15, 2023	May 14, 2024
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024
Amplifier(18G $\mathrm{Hz}-40 \mathrm{GHz})$	MITEQ	$\begin{gathered} \text { TTA1840-35- } \\ \text { HG } \end{gathered}$	2034381	May 15, 2023	May 14, 2024
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31,2023	May 30, 2024
$\begin{gathered} \text { Spectrum } \\ \text { Analyzer9kHz- } \\ 40 \mathrm{GHz} \end{gathered}$	R\&S	FSP40	100363	May 15, 2023	May 14,2024
Software	Frad	EZ-EMC	FA-03A2 RE	!	1

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Frequency (MHz)	Limit (dBuV)	
	Quas-peak	Average
$0.15-0.5$	$66-56^{*}$	$56-46^{*}$
$0.50-5.0$	56.00	46.00
$5.0-30.0$	60.00	50.00

6.3 Test Procedure

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line lmpedance Stability Network (L.I.S.N).
b. The RBW of the receiver was set at 9 kHz in $150 \mathrm{kHz} \sim 30 \mathrm{MHz}$ with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use ti) The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

The EUT is powered by the DC only, the test item is not applicable.

7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance	
(MHz)	uV/m	(m)	uV/m	dBuV/m
$0.009 \sim 0.490$	2400/F(kHz)	300	10000* 2400/F(kHz)	20log ${ }^{(2400)-(k H z)]}+80$
$0.490 \sim 1.705$	24000/F(kHz)	30	100* $24000 / \mathrm{F}(\mathrm{kHz})$	$2010{ }^{(240007-(k H z)}+40$
$1.705 \sim 30$	30	30	100*30	$20 \log ^{(30)}+40$
$30 \sim 88$	100	3	100	$2010{ }^{(100)}$
88 ~ 216	150	3	150	$20 \mathrm{log}^{(150)}$
216 ~ 960	200	3	200	$2010{ }^{(200)}$
Above 960	500	3	500	$20 \mathrm{log}^{(500)}$

Field Strength of Fundamental Limit:

Fundamental and harmonics emission limits Frequency(MHz)	Field strength of Fundamental $($ (microvolts/meter)	Field strength of spurious Emissions (microvolts/meter)
$40.66-40.70$	2250	225
$70-130$	1250	125
$130-174$	1250 to $3750^{* *}$	125 to $375^{* *}$
$174-260$	3750	375
$260-470$	3750 to $12500^{* *}$	375 to $1250 *$
Above 470	12500	1250

** linear interpolations

[Where F is the frequency in MHz , the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band $130-174 \mathrm{MHz}, \mu \mathrm{V} / \mathrm{m}$ at 3 meters $=56.81818(\mathrm{~F})-6136.3636$; for the band $260-470 \mathrm{MHz}, \mu \mathrm{V} / \mathrm{m}$ at 3 meters $=41.6667(\mathrm{~F})-7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

Frequency (MHz)	Limit (dBuV/m) (at 3M)	
	Peak	Average
433.92	100.8	80.8

Limits Of Radiated Emission Measurement (Above 1000mhz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)	
	Peak	Average
Above 1000	74	54

Notes:
(1)The limit for radiated test was performed according to FCC PART 15C.
(2)The tighter limit applies at the band edges.
(3) Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.

Frequency Range Of Radiated Measurement (For unintentional radiators)

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
$9 \mathrm{kHz} \sim 150 \mathrm{kHz}$	RBW 200Hz for QP
$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	RBW 9kHz for QP
$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	RBW 120kHz for QP

Spectrum Parameter	Setting
$1-6 \mathrm{GHz}$	RBW $1 \mathrm{MHz} / \mathrm{VBW} 1 \mathrm{MHz} \mathrm{for} \mathrm{Peak}$,
RBW $1 \mathrm{MHz} / \mathrm{VBW} 10 \mathrm{~Hz}$ for Average	

Below 1GHz test procedure as below:
a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30 MHz , the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Above 1 GHz test procedure as below:
g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18 GHz the distance is 1 meter and table is 1.5 metre).
h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.

Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1 GHz test procedure as below:
a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
g. Test the EUT in the lowest channel, the Highest channel.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it) The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

Temperature:	$26^{\circ} \mathrm{C}$	Relative Humidity:	24%
Pressure:	101 kPa	Test Voltage:	DC 3V
Test Mode:	Mode 1		

Freq.	Reading	Limit	Margin	State
(MHz)	$(\mathrm{dBuV} / \mathrm{m})$	$(\mathrm{dBuV} / \mathrm{m})$	(dB)	P/F
--	--	--	--	PASS
--	--	--	--	PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
Distance extrapolation factor $=40 \log$ (specific distance/test distance)(dB);
Limit line $=$ specific limits(dBuv) + distance extrapolation factor.

Between 30 MHz - 1 GHz

Temperature:	$26{ }^{\circ} \mathrm{C}$	Relative Humidity:	54%
Pressure:	101 kPa	Phase :	Horizontal
Test Voltage :	DC 3V	Test Mode:	Mode 1

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over= Measurement-Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	$\mathrm{dBuV} / \mathrm{m}$	dB / m	dB	Detector
1	106.0126	26.17	-16.35	9.82	43.50	-33.68	QP	
2	199.9856	35.62	-15.72	19.90	43.50	-23.60	QP	
3	325.5958	31.07	-12.34	18.73	46.00	-27.27	QP	
4	$*$	434.0651	72.92	-10.17	62.75	100.8	-38.05	peak
5	651.9417	37.24	-6.14	31.10	46.00	-14.90	QP	
6	\times	869.1301	61.61	-3.65	57.96	80.80	-22.84	peak

Temperature:	$26{ }^{\circ} \mathrm{C}$	Relative Humidity:	54%
Pressure:	101 kPa	Phase :	Vertical
Test Voltage :	DC 3V	Test Mode:	Mode 1

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over= Measurement-Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	$\mathrm{dBuV/m}$	$\mathrm{~dB} / \mathrm{m}$	dB	Detector
1	60.7044	31.60	-15.44	16.16	40.00	-23.84	QP
2	199.9856	30.44	-15.72	14.72	43.50	-28.78	QP
3	325.5958	33.91	-12.34	21.57	46.00	-24.43	QP
4	$*$	434.0651	64.32	-10.17	54.15	100.8	-46.65
5	651.9417	34.13	-6.14	27.99	46.00	-18.01	QPeak
6	X	869.1301	54.78	-3.65	51.13	80.80	-29.67

For average Emission

Frequency MHz	Peak Level $\mathrm{dBuV} / \mathrm{m}$	Duty cycle factor	Average Level $\mathrm{dBuV} / \mathrm{m}$	Limit AV	Margin	Polarization
433.92	62.75	-7.72	55.03	80.83	-25.8	Horizontal
867.84	57.96	-7.72	50.24	60.83	-10.59	Horizontal

Notes: 1. Average emission Level $=$ Peak Level + Duty cycle factor
2.Duty cycle level please see clause 9.

Frequency MHz	Peak Level $\mathrm{dBuV} / \mathrm{m}$	Duty cycle factor	Average Level $\mathrm{dBuV} / \mathrm{m}$	Limit AV	Margin	Polarization
433.92	54.15	-7.72	46.43	80.83	-34.4	Vertical
867.84	51.13	-7.72	43.41	60.83	-17.42	Vertical

Notes: 1. Average emission Level $=$ Peak Level + Duty cycle factor
2. Duty cycle level please see clause 9 .

Radiated Spurious Emission (1 GHz to $10^{\text {th }}$ harmonics)

Frequency MHz	Peak Level $\mathrm{dBuV} / \mathrm{m}$	Duty cycle factor	Average Level $\mathrm{dBuV} / \mathrm{m}$	Limit		PK	MV	PK
	Polarization							
1301.76	56.86	-7.72	49.13	74.00	54.00	-17.14	-4.87	Vertical
1735.68	55.25	-7.72	47.53	74.00	54.00	-18.75	-6.47	Vertical
2603.52	53.86	-7.72	46.13	74.00	54.00	-20.14	-7.87	Vertical
3037.44	57.18	-7.72	49.45	74.00	54.00	-16.82	-4.55	Vertical
3471.36	56.75	-7.72	49.03	74.00	54.00	-17.25	-4.97	Vertical
3905.28	52.29	-7.72	44.57	74.00	54.00	-21.71	-9.43	Vertical
1301.76	54.60	-7.72	46.88	74.0	54.00	-19.40	-7.12	Horizontal
1735.68	56.18	-7.72	48.46	74.00	54.00	-17.82	-5.54	Horizontal
2603.52	58.06	-7.72	50.34	74.00	54.00	-15.94	-3.66	Horizontal
3037.44	56.30	-7.72	48.58	74.00	54.00	-17.70	-5.42	Horizontal
3471.36	52.44	-7.72	44.72	74.00	54.00	-21.56	-9.28	Horizontal
3905.28	57.03	-7.72	49.31	$74: 00$	54.00	-16.97	-4.69	Horizontal

Notes: 1.Average emission Level $=$ Peak Level + Duty cycle factor
2. Duty cycle level please see clause 9 .
3. Pulse Desensitization Correction Factor

Pulse Width (PW) $=27.9 \mathrm{~ms}$
RBW $=1 \mathrm{MHz}$
PW(27.9ms) > 1/RBW (1us)
Therefore PDCF is not needed
4.Other harmonics emissions are lower than 20 dB below the allowable limit.

8. Bandwidth Test

8.1 Block Diagram Of Test Setup

8.2 Limit

According to FCC 15.231 (c) requirement:
The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz . Those devices operating above 900 MHz , the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
B.W (20 dBc) Limit $=0.25 \%$ * $f(\mathrm{MHz})=0.25 \%$ * $433.79 \mathrm{MHz}=1.0845 \mathrm{MHz}$

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	$>$ Measurement Bandwidth or Channel Separation
RB	1% to 5% of the OBW
VB	\geq RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 Test Procedure

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting : RBW $=1 \%$ to 5% of the $\mathrm{OBW}, \mathrm{VBW} \geq$ RBW, Sweep time $=$ Auto.

8.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 Test Result

Temperature:	$26{ }^{\circ} \mathrm{C}$	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	DC 3 V
Test Mode:	Mode 1		

Frequency	20dB Bandwidth $(\mathbf{k H z})$	Limit $(\mathbf{M H z})$	Result
433.92 MHz	7.127	1.0845	PASS

9. Calculation Of Average Factor

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.
The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 100 kHz resolution bandwidth. Averaging factor in $\mathrm{dB}=20 \log$ (duty cycle)

The duration of one cycle $=27.9 \mathrm{~ms}$
The duty cycle is simply the on-time divided the duration of one cycle
Duty Cycle $=\left(1.044^{*} 8+0.345^{*} 9\right) / 27.9 \mathrm{~ms}$
$=0.411$
Therefore, the averaging factor is found by $20 \log 0.411=-7.72 \mathrm{~dB}$
Test plot as follows:
Note: During the 100 ms , the amount of pulse and on-time of pulse are the same for every pulse train.

Report No.: BCTC2403853163E

Cycle

On-time

10. Dwell Time

10.1 Block Diagram Of Test Setup

10.2 Limit

According to FCC 15.231(a) requirement:
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

10.3 Test Procedure

a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
e) Repeat above procedures until all measured frequencies were complete.
10.4 Test Result

Dwell time	Limit (second)	Result
280 ms	$<5 \mathrm{~s}$	Pass

11. Antenna Requirement

11.1 Standard Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2 EUT Antenna

The EUT antenna is the permanent welding Internal antenna. It comply with the standard requirement.
12. EUT Photographs

EUT Photo 1

EUT Photo 2

NOTE: Appendix-Photographs Of EUT Constructional Details

\# В

13. EUT Test Setup Photographs

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.
2. The test report can not be partially copied unless prior written approval is issued from our lab.
3. The test report is invalid without the "special seal for inspection and testing".
4. The test report is invalid without the signature of the approver.
5. The test process and test result is only related to the Unit Under Test.
6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
7. The quality system of our laboratory is in accordance with ISO/IEC17025.
8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:
1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558
P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com
E-Mail: bctc@bctc-lab.com.cn

$※ ※ ※ ※ ※ E N D ~ ※ ※ ※ ※ ※$

