

FCC Test Report

Report No: FCS202309133W01

Issued for

Applicant:	LightByYun Xiamen Intelligent Technology Co., LTD	
Address:	No.66-2, Gaoqi 2nd Road, Fujian Pilot Free Trade Zone Huli District, Xiamen City, Fujian 361006	
Product Name:	Harmoni Bluetooth Speaker	
Brand Name:	Artin-X	
Model Name:	JDZ-2208	
Series Model:	N/A	
FCC ID:	2BCDR-JDZ-2208	
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com		

TEST RESULT CERTIFICATION

Applicant's Name:	LightByYun Xiamen Intelligent Technology Co., LTD
Address	No.66-2, Gaoqi 2nd Road, Fujian Pilot Free Trade Zone Huli District, Xiamen City, Fujian 361006
Manufacture's Name:	LightByYun Xiamen Intelligent Technology Co., LTD
Address	No.66-2, Gaoqi 2nd Road, Fujian Pilot Free Trade Zone Huli District, Xiamen City, Fujian 361006
Product Description	
Product Name:	Harmoni Bluetooth Speaker
Brand Name	Artin-X
Model Name:	JDZ-2208
Series Model	N/A
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.:	Sep 8, 2023 ~ Sep 11, 2023
Date of Issue	Sep 11 , 2023

Test Result..... Pass

Tested by	:	Scott shen	
		(Scott Shen)	STON CERIFICIT
Reviewed by	:	Duke Quar	FCS
		(Duke Qian)	
Approved by	:	Jukion	-OMIZINGHOS

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	-
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3 CONDUCTED EMISSION MEASUREMENT	13
4. 20 DB BANDWIDTH	17
4.1 Limit	17
4.2 Test Procedure	
4.3 Test setup	17
4.4 Test results	17
4.5 Original Test Data	18
5. CONDUCTED OUTPUT POWER	19
5.1 LIMIT	19
5.3 TEST SETUP	19
5.5 TEST RESULTS	19
6 NUMBER OF HOPPING CHANNEL	20
6.1 LIMIT	20
6.2 TEST PROCEDURE	
5.3 TEST SETUP	20
6.4 EUT OPERATION CONDITIONS	20
6.5 TEST RESULTS	21
7. BAND EDGE AND SPURIOUS(CONDUCTED)	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 TEST SETUP	22
7.4 TEST RESULTS	
7.5 Original test data	23

Table of Contents

Page

7.6 For Hopping Band edge	26
8. RADIATED EMISSION MEASUREMENT	27
8.1 RADIATED EMISSION LIMITS	27
8.2 TEST PROCEDURE	28
8.3 TESTSETUP	
8.4. TEST RESULTS	
8.5 (30MHZ-1000MHZ)	
■ 8.6 ABOVE 1GHZ	33
8.7 RADIATED BAND EDGE DATA	
9. AVERAGE TIME OF OCCUPANCY	37
9.1 LIMIT	
9.2 TEST PROCEDURE	37
9.3 TEST SETUP	37
9.4 TEST RESULTS	
9.5 ORIGINAL TEST DATA	
10. HOPPING CHANNEL SEPARATION MEASUREMEN	40
10.1 LIMIT	
10.2 TEST PROCEDURE	40
10.3 TEST SETUP	40
10.4 EUT OPERATION CONDITIONS	
10.5 TEST RESULTS	41
11. ANTENNA REQUIREMENT	
11.1 STANDARD REQUIREMENT	42
11.2 RESULT	42

Revision History

Rev.	Issue Date	Effect Page	Contents
00	Sep 11 , 2023	N/A	N/A

Flux Compliance Service LaboratoryRoom 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song
shan lake DongguanTel: 769-27280901Fax:769-27280901http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247 (b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	
15.247(a)(1)(i)	Number of Hopping Frequency	PASS	
15.247(a)(1)(i)	Dwell Time	PASS	
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory		
Address:Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan			
Telephone:	+86-769-27280901		
Fax:	+86-769-27280901		
Laboray Accreditations			
FCC Test Firm Regist CNAS Number: L15 Designation number: A2LA accreditation nu ISED Number: 2580	CN0127 imber: 5545.01		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	\pm 4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	\pm 4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	\pm 5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth and PSD	±0.3 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Harmoni Bluetooth Speaker
Trade Name	Artin-X
Model Name	JDZ-2208
Series Model	N/A
Model Difference	N/A
Channel List	Please refer to the Note 2.
Operation frequency	2402MHz-2480MHz
Modulation:	GFSK
Channel number	79 CH
Transmitter rate:	1MHz
Power Supply	Input:DC 5V 1A
Battery	DC 3.7V
Report number	FCS202309133W01
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

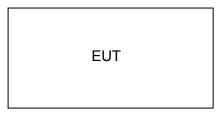
2.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
		!					į
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Page 9 of 42

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	NA	N/A	PCB Antenna	N/A	0	Antenna



Page 10 of 42

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the FCC_assist_1.0.2.2.exe

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Hopping GFSK

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

Remark: The EDR function is disabled by software control

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	adapter	XIAOMI	AD652G	N/A	Test use

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note	Manufacturer
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2023.08.30	2024.08.29
Signal Analyzer	R&S	FSV40-N	FCS-E012	2023.08.30	2024.08.29
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2023.08.30	2024.08.29
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2023.08.30	2024.08.29
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2023.08.30	2024.08.29
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2023.08.30	2024.08.29
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2023.08.30	2024.08.29
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2023.08.30	2024.08.29
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2023.08.30	2024.08.29
Temperature & Humidity	HTC-1	victor	FCS-E005	2023.08.30	2024.08.29
Testing Software		EZ-EMC(Ve	er.STSLAB 03A	1 RE)	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2023.08.30	2024.08.29
LISN	R&S	ENV216	FCS-E007	2023.08.30	2024.08.29
LISN	ETS	3810/2NM	FCS-E009	2023.08.30	2024.08.29
Temperature & Humidity	HTC-1	victor	FCS-E008	2023.08.30	2024.08.29
Testing Software		EZ-EN	IC(Ver.EMC-CON	I 3A1.1)	

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2023.08.30	2024.08.29
Spectrum Analyzer	Agilent	E4447A	MY50180039	2023.08.30	2024.08.29
Spectrum Analyzer	R&S	FSV-40	101499	2023.08.30	2024.08.29
Power Sensor	Agilent	UX2021XA	FCS-E021	2023.08.30	2024.08.29
Testing Software		EZ-EN	//C(Ver.STSLAB 0	03A1 RE)	

3 CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

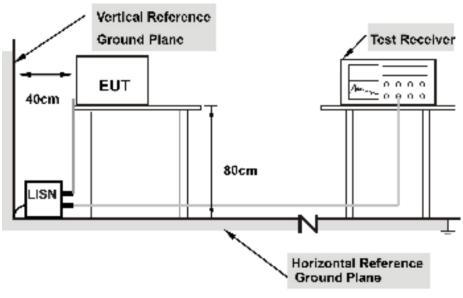
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emiss	sionlimit (dBuV)
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

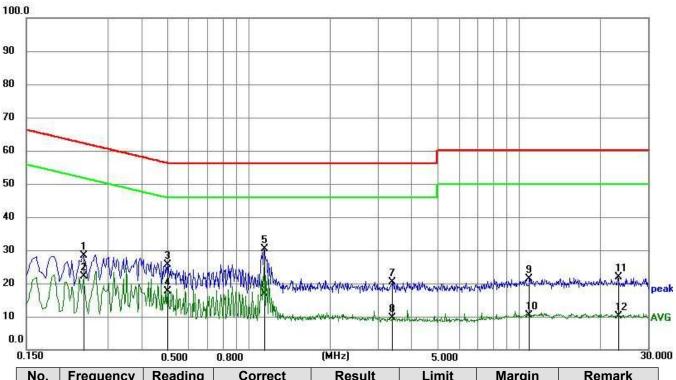
3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP



Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK(worst mode)	Test Voltage:	DC 5V from adapter AC 120V/60Hz
Result:	L	Result:	Pass

0.100		0.000	0.000	(0012)	5.000		00.
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2175	17.66	10.07	27.73	62.91	35. 18	QP
2	0.2175	6.72	10.07	16.79	52.91	36. 12	AVG
3	0.5144	13.62	10.02	23.64	56.00	32.36	QP
4	0.5144	5.39	10.02	15.41	46.00	30.59	AVG
5	1. 1445	19.32	10.00	29.32	56.00	26.68	QP
6	1. 1445	6.25	10.00	16.25	46.00	29.75	AVG
7	3.6375	11.08	9.92	21.00	56.00	35.00	QP
8	3.6375	- 1.31	9.92	8.61	46.00	37.39	AVG
9	15.3735	12.83	9.82	22.65	60.00	37.35	QP
10	15.3735	-0.31	9.82	9.51	50.00	40.49	AVG
11	29.3685	11.87	9.89	21.76	60.00	38.24	QP
12	29.3685	0.55	9.89	10.44	50.00	39.56	AVG

15

1011	perature:	25 ℃		Relativ	e Humidity:	50%	
Test	Mode:	E: GFSK(worst mode) Test Voltage: DC 5V from adapter Ad 120V/60Hz				adapter AC	
Resu	ult:	N		Result:		Pass	
0.0							0
-							
-							
-							-
	1		5				
A	ANBAMA	Allama	Anthen Mu		-	9	200
	(AV 1) AV 14 PL 4	A MANAGANA	ANALIN WINAA ALAWA	18	6	X .	11 * 11
1	AMAM	MMMMMM	AMARIN WINNAN MANA	here where the second of the s	Marthanthe will work		uportigenter and a start the start
A	AMM/M	M. W. Walanda	atterner and the second	terner and a second	Marthantherentering	hurgerieligen der Ander	
ıμ	AMM AM	0.500	0.800	hopen the population of the second se	Studenter and and a state of the state of th	AP AMARA BALLAND	uportigenter and a stand they
.0	Frequency	0.500 Reading		anawawaharpananahan	Enerthermedenterne	AP AMARA BALLAND	upolyphiliporushanitanti 22
.0 0.150	Frequency (MHz)		0.800	(MHz)	5.000	An Area been been and a second	under the second section of the second se
		Reading	0.800 Correct	(MHz) Result	5.000 Limit	Margin	under the second section of the second se
0.150	(MHz)	Reading (dBuV)	0.800 Correct Factor(dB)	(MHz) Result (dBuV)	5.000 Limit (dBuV)	Margin (dB)	Remark
1 0.150 No. 1 2 3	(MHz) 0.2445 0.2445 0.5010	Reading (dBuV) 18.35 12.03 15.54	0.800 Correct Factor(dB) 10.05 10.05 10.01	(MHz) Result (dBuV) 28.40 22.08 25.55	\$.000 5.000 Limit (dBuV) 61.94 51.94 56.00	Margin (dB) 33.54 29.86 30.45	Remark
1 2 3 4	(MHz) 0.2445 0.2445 0.5010 0.5010	Reading (dBuV) 18.35 12.03 15.54 7.68	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01	(MHz) Result (dBuV) 28.40 22.08 25.55 17.69	3 5.000 Limit (dBuV) 61.94 51.94 56.00 46.00	Margin (dB) 33.54 29.86 30.45 28.31	Remark
1 0.0 0.150 No. 1 2 3 4 5	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355	Reading (dBuV) 18.35 12.03 15.54 7.68 20.29	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99	(MH₂) Result (dBuV) 28.40 22.08 25.55 17.69 30.28	3 5.000 Limit (dBuV) 61.94 51.94 56.00 46.00 56.00	Margin (dB) 33.54 29.86 30.45 28.31 25.72	Remark
1 0.150 No. 1 2 3 4 5 6	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355 1. 1355	Reading (dBuV) 18.35 12.03 15.54 7.68 20.29 6.93	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99	(MH₂) Result (dBuV) 28.40 22.08 25.55 17.69 30.28 16.92	3 5.000 Limit (dBuV) 61.94 51.94 56.00 46.00 46.00	Margin (dB) 33.54 29.86 30.45 28.31 25.72 29.08	Remark QP AVG QP AVG QP AVG
1 0.150 No. 1 2 3 4 5 6 7	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355 1. 1355 3.3900	Reading (dBuV) 18.35 12.03 15.54 7.68 20.29 6.93 10.54	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.93	(MHz) Result (dBuV) 28.40 22.08 25.55 17.69 30.28 16.92 20.47	 ₹.000 Limit (dBuV) 61.94 51.94 56.00 46.00 56.00 46.00 56.00 	Margin (dB) 33.54 29.86 30.45 28.31 25.72 29.08 35.53	Image: Control of the second
1 0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355 1. 1355 3.3900 3.3900	Reading (dBuV) 18.35 12.03 15.54 7.68 20.29 6.93 10.54 -0.35	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.93 9.93 9.93	(MHz) Result (dBuV) 28.40 22.08 25.55 17.69 30.28 16.92 20.47 9.58	5.000 Limit (dBuV) 61.94 51.94 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 33.54 29.86 30.45 28.31 25.72 29.08 35.53 36.42	
1 2 3 4 5 6 7	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355 1. 1355 3.3900	Reading (dBuV) 18.35 12.03 15.54 7.68 20.29 6.93 10.54	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.93	(MHz) Result (dBuV) 28.40 22.08 25.55 17.69 30.28 16.92 20.47	 ₹.000 Limit (dBuV) 61.94 51.94 56.00 46.00 56.00 46.00 56.00 	Margin (dB) 33.54 29.86 30.45 28.31 25.72 29.08 35.53	Image: Control of the second
1 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.2445 0.2445 0.5010 0.5010 1. 1355 1. 1355 3.3900 3.3900 10.9230	Reading(dBuV)18.3512.0315.547.6820.296.9310.54-0.3511.59	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.93 9.93 9.93 9.93 9.81	(MH₂) Result (dBuV) 28.40 22.08 25.55 17.69 30.28 16.92 20.47 9.58 21.40	 5.000 Limit (dBuV) 61.94 51.94 56.00 46.00 56.00 46.00 56.00 46.00 60.00 	Margin (dB) 33.54 29.86 30.45 28.31 25.72 29.08 35.53 36.42 38.60	

Remark:

1. All readings are Quasi-Peak and Average values

4. 20 DB BANDWIDTH

4.1 Limit

	FCC Part15	(15.247) , Subpar	C
Section	Test Item	Limit	Frequency Range (MHz)
15.247a(1)	20dB bandwidth	N/A	2400-2483.5

4.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 20 dB Bandwidth :30KHz
RBW	For 99% Bandwidth :1% to 5% of the occupied bandwidth
	For 20dB Bandwidth : ≥3 × RBW
VBW	For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

(3) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator

- (4) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (5) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

4.3 Test setup

Spectrum Analyzer

E

4.4 Test results

TestMode	Channel (MHz)	99%OBW(MHz)	20dB Bandwidth (MHz)	Verdict
Lowest	2402MHz	0.866	0.938	Pass
Middle	2441MHz	0.877	0.936	Pass
Highest	2480MHz	0.864	0.938	Pass

STATUS

STATUS

5. CONDUCTED OUTPUT POWER

5.1 LIMIT

FCC Part 15 Subpart C									
Section	Test Item	Limit	Frequency Range						
15.247(b)(1)	Peak output power	Power <1W(30dBm)	2400-2483.5						

1.Connect each EUT's antenna output to power sensor by RF cable and attenuator 2.Measure the PK output power of each antenna port by power sensor.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	3.99	30	Pass
Middle	2441MHz	4.07	30	Pass
Highest	2480MHz	4.65	30	Pass

6 NUMBER OF HOPPING CHANNEL

6.1 LIMIT

			art 15.247,Subpa SS-247 Issue 2	rt C			
Section Test Item Limit FrequencyRange Re							
	15.247 (a)(1)(iii) RSS-247	Number of Hopping Channel	>15	2400-2483.5	PASS		

6.2 TEST PROCEDURE

a The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto

5.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	Hopping Mode	Test Voltage:	DC 3.7V

RL	spectru		r - Swept SA 50 Ω AC		RREC			CENC	E:PULS	-1		-	ALIGN A	UITO						02.5	0.51	PM Sep	
	Ero		17500				1	D DEING	E.PUL3	-1		1		vg Ty	pe: I	og-	wr			02.4		and the second second	234
TILET	FIE	1 2.44	17500	00 01		PNO: F FGain:	ast (Low	⊋		Free en: 30											Т		www
	F	ef Offse	et 0.5 dB														Μ	kr2	2.	479		26 0	
dB/di			60 dBn																		5	.55	dB
	1			- 2.00		in the second		-					1		_								2
	nnr	MAN	MMM				nn)		M	MA	ìΛΛ	MAN	MAA	ANN			MA		nn:		W	AAA	11
4	AAAA	4 L P X Y	11114	11.15	.11.		1.1.1.1				4 4 4	* 1 1 *	* 4 4 4		0.4.4	0.1	1144		4 1 4	61.			1
4		_				-							_		_			_				-	
4		_				_							_		_								
4													_					_				-	
4																			_			_	P
4																							
				8																			
.4																							
		0 GHz		100															ę	Stop	2.4	1835	0 GH
es B	W 10	0 kHz					#\	/BW	/ 300	kHz							SW	eep	8.0	000	ms	(100	11 pt
RMODE	TRC	SCL		х			Y			FUN	CTION	FUN	ICTION V	WIDTH				FU	NCTIC)n val	UE		
N		f f			5 GHz 0 GHz			.53 d															
	M	•	2.4	19 820	UGHZ		J	.00 u	DIII														
						1				m					-								۱.

Flux Compliance Service LaboratoryRoom 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song
shan lake DongguanTel: 769-27280901Fax:769-27280901http://www.FCS-lab.com

7. BAND EDGE AND SPURIOUS(CONDUCTED)

7.1 LIMIT

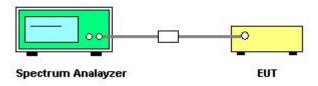
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

7.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center
	frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Detector Mode:	Peak
	1 out
Sweep time:	auto

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.3 TEST SETUP

7.4 TEST RESULTS

Eut set mode	CH or Frequency	Result
GFSK	CH1	Pass
	CH79	Pass

7.5 Original test data

CH1 2402MHZ

RL		RF 50 9		SENSE:PUL	SE	ALIGN AUTO			6 PM Sep 11, 202
enter	Fre	q 2.3750	00000 GHz PNC IFGa		g: Free Run ten: 30 dB	Avg Type	Log-Pwr	Т	TYPE MWWWM DET P P P P P
0 dB/di		Ref Offset 0 Ref 13.96					d	Mkr2 2.39 -4	9 90 GH 9.59 dBn
3.96						8			
5.04									
16.0						1			-16.04 dB
26.0									
36.0				.1					
46.0				()'					
56.0	A		and have been have	Remain to the star	and the stand of the stand	A second second	handrenstrant		4 April 4 march
56.0		when a state of the sec	- TOWN I HARRY CITY WILL DONCO				1000		
76.0			25					3	
		00 GHz 00 kHz		#VBW 30	0 kHz		Swee	Stop 2 p 14.40 m	.45000 GH s (1001 pts
KR MODE		SCL	X	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 2 N	1	f f	2.354 00 GHz 2.399 90 GHz	-46.90 dBm -49.59 dBm					
3									
5									
6 7									
8									
9									
0									
9 0 1					m				•

CH79 2480MHZ

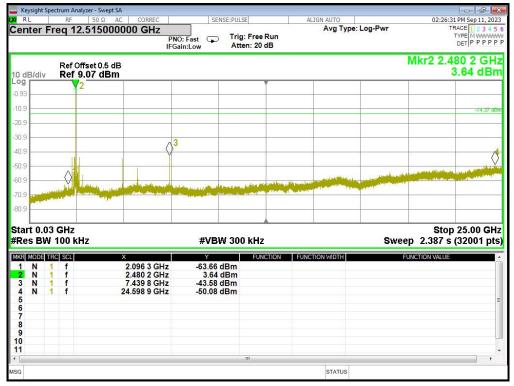
Keysight Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN AUTO	02:25:44 PM Sep 11, 202:
enter Freq 2.505000000 GHz	PNO: Fast Trig: Free Run FGain:Low #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE M
Ref Offset 0.5 dB 0 dB/div Ref 15.63 dBm		N	lkr2 2.528 10 GH: -42.92 dBn
.63			
4.4			-14.37 dB
1.4		A2	
1.4 Any Marine Manuscription of the manuscription o	When the second arrange	month and marken themarken	h . M . M . M
1.4		a a la a	hterment he was the movies and he
art 2.43000 GHz Res BW 100 kHz	#VBW 300 kHz	Swee	Stop 2.58000 GH 14.40 ms (1001 pts
X X 1 N 1 f 2.483 55 GH; 2 N 1 f 2.528 10 GH; 3 4	-55.26 dBm	FUNCTION WIDTH F	JNCTION VALUE
3	m	STATUS	ŀ

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

Spurious emissions

Low Channel 30MHz-25GHz

Page 24 of 42


Middle Channel 30MHz-25GHz

Page 25 of 42

High Channel 30MHz-25GHz

7.6 For Hopping Band edge

The sectrum Analyzer - Swept SA LXI RL RF 50 Ω AC 02:31:57 PM Sep 11, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P F ALIGN A Center Freq 2.440000000 GHz Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast Mkr4 2.523 72 GHz -42.32 dBm Ref Offset 0.5 dB Ref 15.63 dBm 10 dB/div Log 5.63 -4.37 -14.37 dB -14.4 -24 4 -34.4 $\langle \rangle^3$ **⊘**² $\langle \rangle^1$ -44.4 TAPTARA MARINA AND A DAMA AND A D r-searchaile of the search -54.4 -64.4 -74.4 Stop 2.5800 GHz Sweep 26.80 ms (1001 pts) Start 2.3000 GHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.372 80 GHz 2.399 96 GHz 2.483 68 GHz 2.523 72 GHz -46.08 dBm -46.11 dBm -44.36 dBm -42.32 dBm NNNN 1 2 3 4 5 6 7 8 9 10 11 ff STATUS ŝG

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

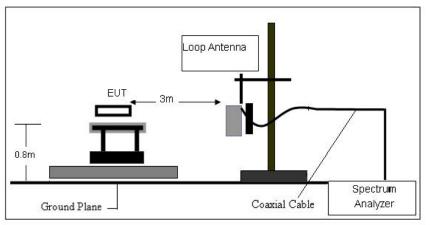
Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

For Band edge

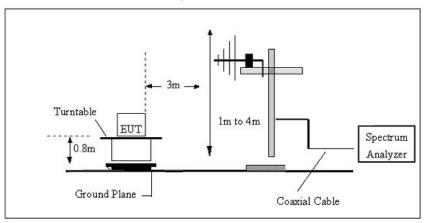
Spectrum Parameter	Setting
Detector	Peak/AV
Start/Stop Frequency	Lower Band Edge: 2300 to 2403 MHz
	Upper Band Edge: 2479 to 2500 MHz
RB / VB (emission in restricted band) PK=1MHz / 1MHz, AV=1 MHz / 10 Hz
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

8.2 TEST PROCEDURE

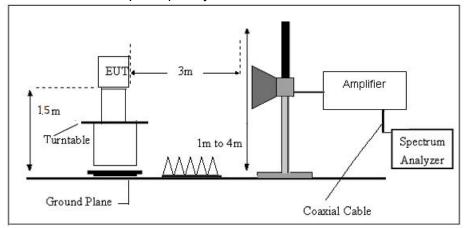
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

8.4. TEST RESULTS

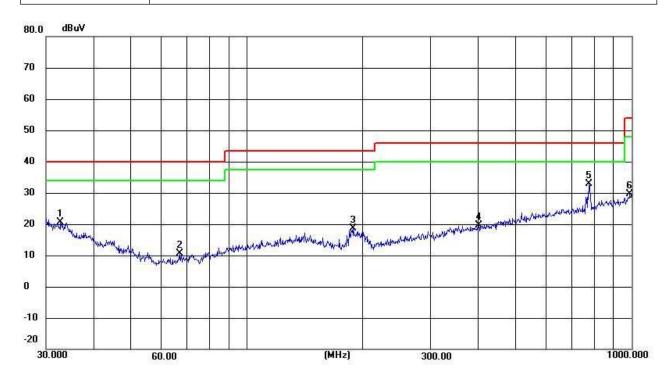
(9KHz-30MHz)

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Test Mode:	GFSK(worst mode)

Freq.	Reading	Limit	Margin	State	Test Result
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

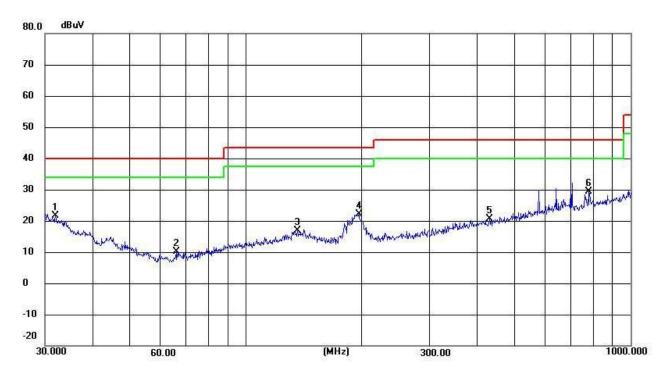

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

8.5 (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m) (dBuV/m)		(dB)	
			m)				
1	32.7486	29.94	-9.19	20.75	40.00	-19.25	QP
2	66.7325	31.10	-20.51	10.59	40.00	-29.41	QP
3	189.0743	50.84	-32.21	18.63	43.50	-24.87	QP
4	400.4319	51.73	-32.00	19.73	46.00	-26.27	QP
5	774.1584	64.32	-31.53	32.79	46.00	-13.21	QP
6	989.5355	61.05	-31.31	29.74	54.00	-24.26	QP


Note: 1. Margin = Result (Result =Reading + Factor)–Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m) (dBuV/m)		(dB)	
			m)				
1	31.9546	30.34	-8.65	21.69	40.00	-18.31	QP
2	65.8031	30.86	-20.74	10.12	40.00	-29.88	QP
3	135.9822	49.18	-32.26	16.92	43.50	-26.58	QP
4	196.5098	54.40	-32.20	22.20	43.50	-21.30	QP
5	429.5228	52.70	-31.97	20.73	46.00	-25.27	QP
6	779.6068	60.86	-31.53	29.33	46.00	-16.67	QP

Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

■ 8.6 ABOVE 1GHZ

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	42.00	31.78	8.60	32.09	50.29	74.00	-23.71	Vertical
7206.00	34.28	36.15	11.65	32.00	50.08	74.00	-23.92	Vertical
9608.00	31.86	37.95	14.14	31.62	52.33	74.00	-21.67	Vertical
12010.00	*					74.00	-	Vertica
14412.00	*			2		74.00	2	Vertica
4804.00	45.76	31.78	8.60	32.09	54.05	74.00	-19.95	Horizontal
7206.00	37.88	36.15	11.65	32.00	53.68	74.00	-20.32	Horizontal
9608.00	34.42	37.95	14.14	31.62	54.89	74.00	-19.11	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.44	31.78	8.60	32.09	36.73	54.00	-17.27	Vertical
7206.00	22.96	36.15	11.65	32.00	38.76	54.00	-15.24	Vertical
9608.00	23.70	37.95	14.14	31.62	44.17	54.00	-9.83	Vertica
12010.00	*					54.00	s	Vertica
14412.00	*					54.00	0 O	Vertical
4804.00	32.32	31.78	8.60	32.09	40.61	54.00	-13.39	Horizontal
7206.00	23.56	36.15	11.65	32.00	39.36	54.00	-14.64	Horizontal
9608.00	23.14	37.95	14.14	31.62	43.61	54.00	-10.39	Horizonta
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Middle CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	37.65	31.85	8.67	32.12	46.05	74.00	-27.95	Vertical
7323.00	32.38	36.37	11.72	31.89	48.58	74.00	-25.42	Vertical
9764.00	29.73	38.35	14.25	31.62	50.71	74.00	-23.29	Vertica
12205.00	*		¢			74.00		Vertical
14646.00	*			8	2	74.00	÷.	Vertical
4882.00	38.89	31.85	8.67	32.12	47.29	74.00	-26.71	Horizonta
7323.00	31.46	36.37	11.72	31.89	47.66	74.00	-26.34	Horizonta
9764.00	28.05	38.35	14.25	31.62	49.03	74.00	-24.97	Horizontal
12205.00	*					74.00		Horizonta
14646.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4882.00	26.30	31.85	8.67	32.12	34.70	54.00	-19.30	Vertical
7323.00	22.16	36.37	11.72	31.89	38.36	54.00	-15.64	Vertical
9764.00	20.85	38.35	14.25	31.62	41.83	54.00	-12.17	Vertical
12205.00	*					54.00		Vertical
14646.00	*		2			54.00	2	Vertical
4882.00	32.51	31.85	8.67	32.12	40.91	54.00	-13.09	Horizontal
7323.00	24.38	36.37	11.72	31.89	40.58	54.00	-13.42	Horizontal
9764.00	20.80	38.35	14.25	31.62	41.78	54.00	-12.22	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	38.16	31.93	8.73	32.16	46.66	74.00	-27.34	Vertical
7440.00	33.70	36.59	11.79	31.78	50.30	74.00	-23.70	Vertical
9920.00	31.04	38.81	14.38	31.88	52.35	74.00	-21.65	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertica
4960.00	39.79	31.93	8.73	32.16	48.29	74.00	-25.71	Horizonta
7440.00	32.46	36.59	11.79	31.78	49.06	74.00	-24.94	Horizonta
9920.00	31.96	38.81	14.38	31.88	53.27	74.00	-20.73	Horizontal
12400.00	*		3			74.00		Horizonta
14880.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	29.70	31.93	8.73	32.16	38.20	54.00	-15.80	Vertical
7440.00	24.08	36.59	11.79	31.78	40.68	54.00	-13.32	Vertical
9920.00	22.27	38.81	14,38	31.88	43.58	54.00	-10.42	Vertica
12400.00	*	8				54.00	0 0	Vertica
14880.00	*		3 (c)			54.00	al de	Vertical
4960.00	32.36	31.93	8.73	32.16	40.86	54.00	-13.14	Horizonta
7440.00	24.13	36.59	11.79	31.78	40.73	54.00	-13.27	Horizonta
9920.00	23.74	38.81	14.38	31.88	45.05	54.00	-8.95	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizonta

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

8.7 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	40.57	27.59	5.38	30.18	43.36	74.00	-30.64	Horizontal
2400.00	54.23	27.58	5.39	30.18	57.02	74.00	-16.98	Horizontal
2390.00	40.30	27.59	5.38	30.18	43.09	74.00	-30.91	Vertical
2400.00	53.41	27.58	5.39	30.18	56.20	74.00	-17.80	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.30	27.59	5.38	30.18	35.09	54.00	-18.91	Horizontal
2400.00	39.47	27.58	5.39	30.18	42.26	54.00	-11.74	Horizontal
2390.00	32.13	27.59	5.38	30.18	34.92	54.00	-19.08	Vertical
2400.00	41.41	27.58	5.39	30.18	44.20	54.00	-9.80	Vertical

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.75	27.53	5.47	29.93	46.82	74.00	-27.18	Horizontal
2500.00	44.93	27.55	5.49	29.93	48.04	74.00	-25.96	Horizontal
2483.50	43.52	27.53	5.47	29.93	46.59	74.00	-27.41	Vertical
2500.00	42.16	27.55	5.49	29.93	45.27	74.00	-28.73	Vertical

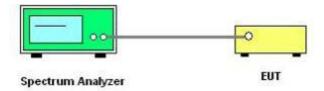
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.59	27.53	5.47	29.93	36.66	54.00	-17.34	Horizontal
2500.00	32.81	27.55	5.49	29.93	35.92	54.00	-18.08	Horizontal
2483.50	34.03	27.53	5.47	29.93	37.10	54.00	-16.90	Vertical
2500.00	34.97	27.55	5.49	29.93	38.08	54.00	-15.92	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

9. AVERAGE TIME OF OCCUPANCY

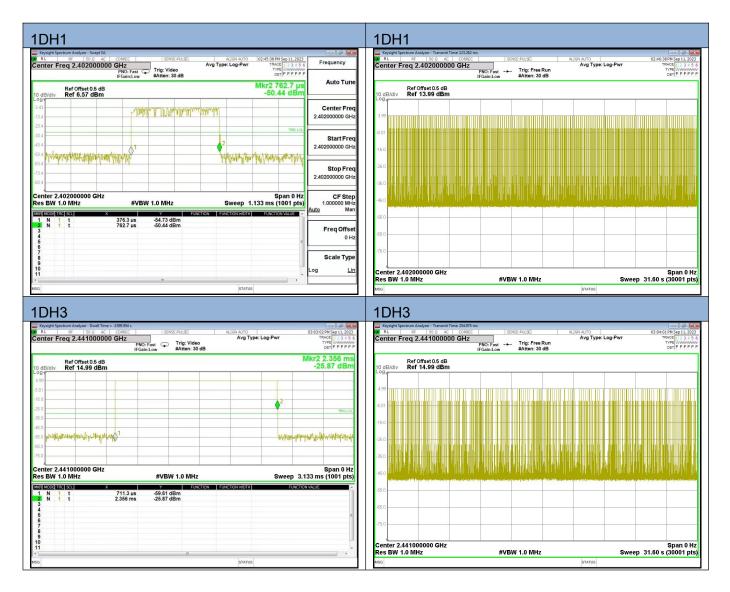

9.1 LIMIT

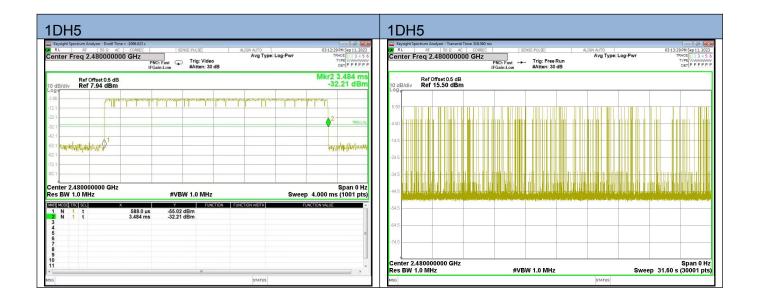
	FCC Parti 5 (15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)					
15.247(a)(1)	Average Time of Occupancy	0.4 sec	2400-2483.5					

9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37x31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06x31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12x31.6 = 320.

9.3 TEST SETUP



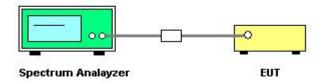

9.4 TEST RESULTS

	AVERAGE_TIME_OF_OCCUPANCY							
CONDITION	MODE	FREQUENCY	PULSE	AVERAGE TIME	LIMIT	BURST	RESULTS	
		(MHZ)	TIME	OF OCCUPANCY	(MS)	NUMBER		
			(MS)	(MS)				
NVNT	1DH1	2402	0.386	123.262	400	319	PASS	
NVNT	1DH3	2441	1.645	254.975	400	155	PASS	
NVNT	1DH5	2480	2.896	318.560	400	110	PASS	

9.5 ORIGINAL TEST DATA

10. HOPPING CHANNEL SEPARATION MEASUREMEN

10.1 LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) /100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

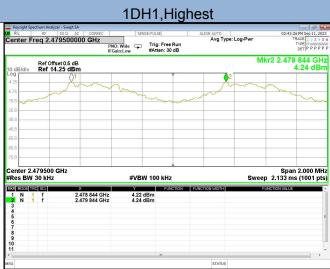
10.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement

10.3 TEST SETUP

10.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



10.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	Hopping Mode	Test Voltage:	DC 3.7V

Modulation	Test Mode	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
GFSK	1DH1	2402	0.998	0.59	Pass
	1DH1	2441	0.998	0.55	Pass
	1DH1	2480	1.000	0.55	Pass

11. ANTENNA REQUIREMENT

11.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 RESULT

The antennas used for this product are PCB antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 0dBi.

42