Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Pa

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.231

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name...... HONGKONG XMEN TECHNOLOGY CO.,LTD

City, China 523000

Test specification:

Standard FCC Part 15.231

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Couples Choice Ring

Trade Mark N/A

Manufacturer HONGKONG XMEN TECHNOLOGY CO.,LTD

Model/Type reference.....: XMEN2361

Listed Models 5402530

Modulation: ASK

Ratings DC 3.0V From Battery

Result..... PASS

Report No.: CTA23072400401 Page 2 of 22

TEST REPORT

Equipment under Test : Couples Choice Ring

Model /Type : XMEN2361

Listed Models : 5402530

Applicant : HONGKONG XMEN TECHNOLOGY CO.,LTD

Address : 5-2Building, Haiyong Industrial Zone, Fenggang Town, Dongguan

City, China 523000

Manufacturer : HONGKONG XMEN TECHNOLOGY CO.,LTD

Address : 5-2Building, Haiyong Industrial Zone, Fenggang Town, Dongguan

City, China 523000

	Oity, C	511111a 525000		
15				
CIA		TING		
	Test Result:	-ES / "	PASS	
		TATE	17100	
113%				

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	<u>1</u>	TEST STANDARDS	4
	al Carlie	TA	
	2	SUMMARY	5
	TO DO WASHING	6715	<u> </u>
		General Remarks Product Description Equipment Under Test Short description of the Equipment under Test (EUT)	_
	2.1	General Remarks	5
	2.2	Product Description	5
	2.3 2.4	Equipment Under Test Short description of the Equipment under Test (EUT)	5
	2.4 2.5	Block Diagram of Test Setup	5 C
	2.6	Special Accessories	5 5 5
	2.7	Related Submittal(s) / Grant (s)	6
	2.8	Modifications	6
		TING	•
	_	TEST ENVIRONMENT	_
	<u>3</u>	TEST ENVIRONMENT	<u>/</u>
		Address of the test laboratory Test Facility Environmental conditions	
	3.1	Address of the test laboratory	Z.G
	3.2	Test Facility	G 17
	3.3	Environmental conditions	7
	3.4	Summary of measurement results	8
	3.5	Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty	8
	3.6	Equipments Used during the Test	9
	4	TEST CONDITIONS AND RESULTS	10
	<u>4</u>	TEST CONDITIONS AND RESULTS	10
		TATE	
	4.1	AC Power Conducted Emission Radiated Emission 20dB Bandwidth Description Time	10
	4.2	Radiated Emission	11
	4.3	20dB Bandwidth	15
	4.4	Deactivation Time	16
	4.5	Antenna Requirement	17
		Radiated Emission 20dB Bandwidth Deactivation Time Antenna Requirement	
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT	18
	6-ING	PHOTOS OF THE EUT	19
	<u>o</u> '''	1110100 01 111 <u>L L01</u>	
TAIL		CTA TESTING	
TATES			
		CTATESTING CTATESTING	

Report No.: CTA23072400401 Page 4 of 22

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 22 Report No.: CTA23072400401

SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	:	Jul. 24, 2023
Testing commenced on	(dil	Jul. 24, 2023
Testing concluded on	9000	Jul. 31, 2023

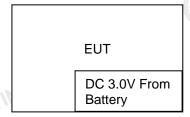
2.2 Product Description

Testing concluded on	: Jul. 31, 2023	
2.2 Product Descripti		CTA CTA
Product Name:	Couples Choice Ring	
Model/Type reference:	XMEN2361	
Testing sample ID:	CTA230724004-1# (Engineer sample), CTA230724004-2#(Normal sample)	
Power supply:	DC 3.0V From Battery	
Modulation:	ASK	ESTING
Operation frequency:	433.95MHz	TATE
Channel number:	1	
Antenna type:	PCB antenna	
Antenna gain:	0.0 dBi	

2.3 Equipment Under Test

Power supply system utilised

Power supply system utilised						TING
Power supply voltage		0	230V / 50 Hz	Lid	O 120V / 60H	Нz
		0	12 V DC		O 24 V DC	
		•	Other (specified in	blank bel	ow)	


DC 3.0V From Battery

2.4 Short description of the Equipment under Test (EUT)

This is a Couples Choice Ring.

For more details, refer to the user's manual of the EUT.

2.5 **Block Diagram of Test Setup**

2.6 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
/	/	/	1	/	/
/	/	/	1	/	1111
STING					The state of the s

Report No.: CTA23072400401 Page 6 of 22

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Page 7 of 22 Report No.: CTA23072400401

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

CTATESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

	Atmospheric pressure:	950-1050mbar	
CTATES	Conducted testing:	3	
	Temperature:	25 ° C	
	- CIA		ING
	Humidity:	44 %	ESTIN
			CATE
	Atmospheric pressure:	950-1050mbar	1

Report No.: CTA23072400401 Page 8 of 22

Summary of measurement results

FCC and IC Requirements					
FCC Part 15.207	Conducted Emission	N/A			
FCC Part 15.231(a)(2)	Automatically Deactivate	PASS			
FCC Part 15.231(b)	Electric Field Strength of Fundamental Emission	PASS			
FCC Part 15.205 &15.209& 15.231(b)	Electric Field Strength of Spurious Emission	PASS			
FCC Part 15.231(c)	-20dB bandwidth	PASS			

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

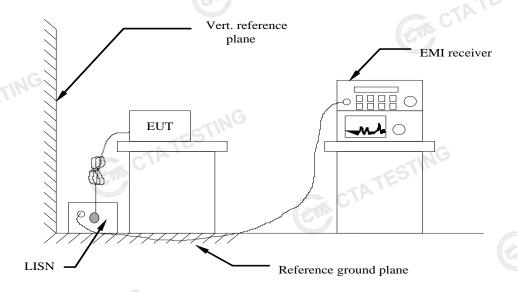
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CTA23072400401 Page 9 of 22

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02	
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02	
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02	-
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02	, `
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02	1
CTAIL	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02	
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02	
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02	3
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02	
G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02	
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02	<1
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02	, \ '
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02	
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02	
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02	
·			CTA CTA	TES		ATESTING)
					CTA CT		
G							

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (c	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	G 60	50
* Decreases with the logarithm of the frequen	ncy.	

TEST RESULTS

The EUT is powered by the Battery ,So this test item is not applicable for the EUT.

4.2 Radiated Emission

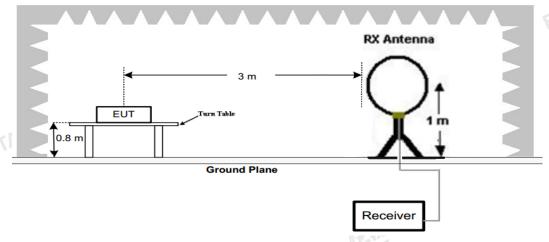
Limit

For intentional device, according to 15.209(a) the general requirement of field strength of radiated emission

from intentional radiators at a distance of 3 meters shall not exceed the following table.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
TE	88-216	3	43.5	150
CTATE	216-960	3 1116	46.0	200
1	Above 960	3	54.0	500

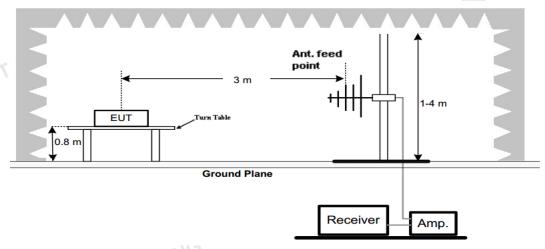
In addition to the provisions of 15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

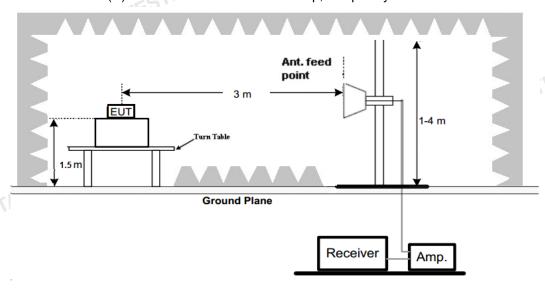

Funda- mental fre- quency (MHz)	Field strength of funda- mental (microvolts/ meter)	Field strength of spurious emissions (microvolts/meter)		
40.66– 40.70.	2,250	225		
70-130	1,250	125		
130-174	¹ 1,250 to 3,750	¹ 125 to 375		
174-260	3,750	375		
260-470	¹ 3,750 to 12,500	1375 to 1,250		
Above 470	12,500	1,250		

¹ Linear interpolations.

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, 20*log(41.6667*433.890-7083.3333)=80.82dBuV/m The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz


(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Page 12 of 22 Report No.: CTA23072400401

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both 3. CTATESTING horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

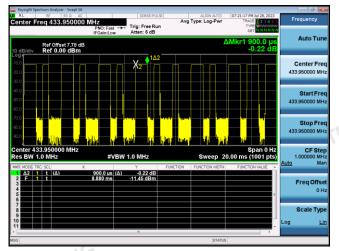
The emissions from 30MHz to 5GHz are measured peak and average level, below 1 GHz measured QP level, detailed test data please see below. Besides, we tested 3 directions and recorded the worst data. CTATES

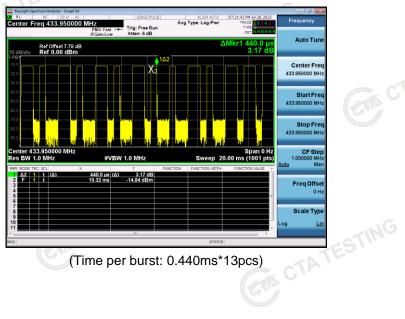
	Emission Styles	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Direction (H/V)
	Fundamental	433.95	94.70	-11.26	83.44	100.83	17.39	PK	Н
	Spurious	480.12	47.11	-12.49	34.62	46	11.38	PK	Н
· ·	Harmonics	867.90	71.94	-17.69	54.25	80.83	26.58	PK	Н
	Harmonics	1301.85	46.64	5.29	51.93	74	22.07	PK	Н
	Fundamental	433.95	92.44	-11.26	81.18	100.83	19.65	PK	V
	Spurious	480.12	47.23	-12.49	34.74	46	11.26	PK	V
TES	Harmonics	867.90	70.81	-17.69	53.12	80.83	27.71	PK	V
CTATES	Harmonics	1301.85	47.40	5.29	52.69	74	21.31	PK	V
1			TES						
		CI				STING			

Emission Styles	Frequency (MHz)	PK Level (dBuV/m)	AV Factor (dB/m)	AV Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Direction (H/V)
Fundamental	433.95	83.44	-7.74	75.7	80.83	5.13	Н
Harmonics	867.90	54.25	-7.74	46.51	60.83	14.32	Н
Harmonics	1301.85	51.93	-7.74	44.19	54	9.81	Н
STATES			NG				
Fundamental	433.95	81.18	-7.74	73.44	80.83	7.39	V
Harmonics	867.90	53.12	-7.74	45.38	60.83	15.45	V
Harmonics	1301.85	52.69	-7.74	44.95	54	9.05	V
					C/L		
ote:	•			The state of the s	1		
Level (dBuV/i	m)= Reading (d uV/m)= PK Lev	,	•)			C. C.

Note:

- Level (dBuV/m)= Reading (dBuV)+Factor(dB/m)
- 2. AV Level (dBuV/m)= PK Level (dBuV/m)+ AV Factor(dB)
- In a transmit cycle 100ms period found burst 25pcs, the Duty Cycle can calculate as below: Duty Cycle= (0.900*13+0.440*13)/42.49=(11.7+5.72)/42.49=0.4100 AV Factor=20*log(Duty Cycle)=20*log(0.4100)=-7.74

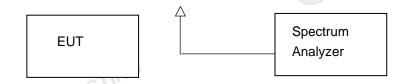

(The plot of Duty Cycle See the follow page)


(Transmit cycle 42.49ms)

Page 14 of 22 Report No.: CTA23072400401

(Time per burst: 0.900ms*13pcs)

(Time per burst: 0.440ms*13pcs)


Report No.: CTA23072400401 Page 15 of 22

4.3 20dB Bandwidth

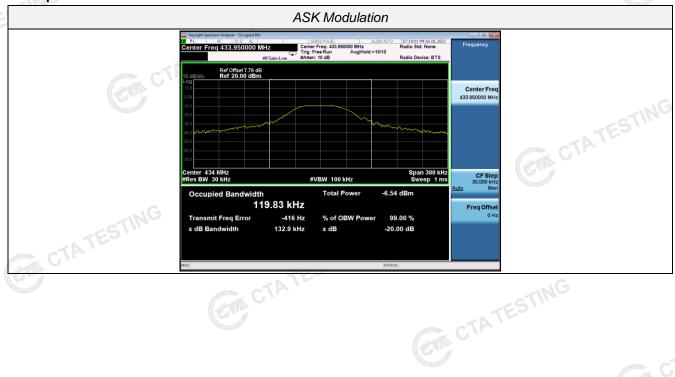
Limit

According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Configuration

CTATESTING **Test Procedure**

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

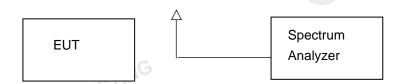

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Test Results

est Results			STING		
Modulation	Channel Frequency (MHz)	99% OBW (KHz)	20dB bandwidth (KHz)	Limit (KHz)	Result
ASK	433.95	119.83	132.9	0.25%*433.95=1084.9	Pass

Test plot as follows:

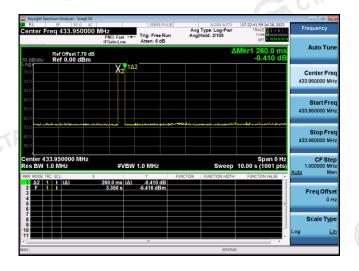

Report No.: CTA23072400401 Page 16 of 22

Deactivation Time 4.4

Limit

According to FCC §15.231(a)(2), A transmitter activated automatically shall cease transmission within 5 CTATESTING seconds after activation.

Test Configuration


CTATESTING **Test Procedure**

- The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum 1. analyzer.
- The spectrum analyzer resolution bandwidth was set to 1 MHz and video bandwidth was set to 1 MHz to 2. encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

Note: The transmitter was automatically activated, and the carrier frequency 433.95MHz:

F	Hote: The transmitter was	T detrotted, and	The carrier frequency recise	T
	Frequency	One transmission time	Limit(S)	Result
	(MHz)	(S)	Limit(3)	Result
Ī	433.95	0.260	5	Pass

Report No.: CTA23072400401 Page 17 of 22

4.5 Antenna Requirement

Standard Applicable

According to FCC Part 15C 15.203

- a) An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
- b) The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA23072400401 Page 18 of 22

5 Test Setup Photos of the EUT

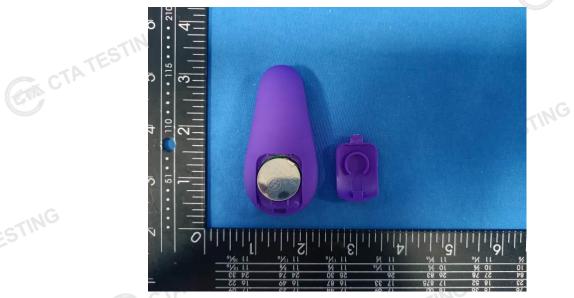
CTATESTING CTATESTING

Report No.: CTA23072400401 Page 19 of 22

6 Photos of the EUT

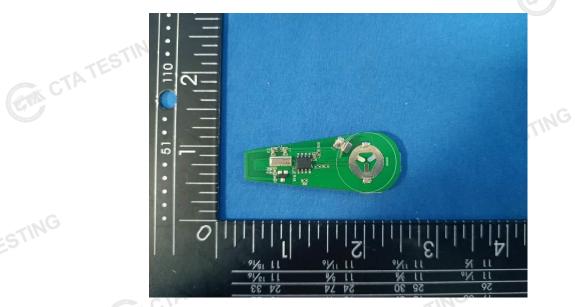
ATESTING

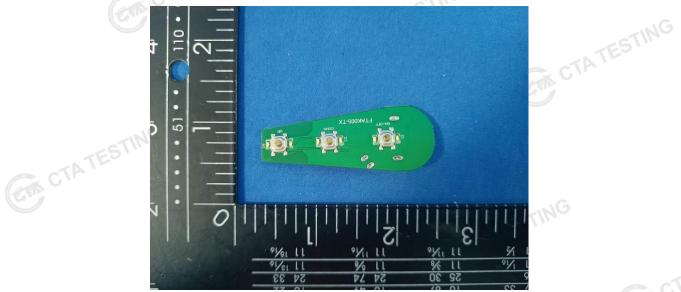
Report No.: CTA23072400401 Page 20 of 22



TESTING

Report No.: CTA23072400401 Page 21 of 22







TESTING

Page 22 of 22 Report No.: CTA23072400401

