

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA23101300701 FCC ID.....: 2BCAX-HY350

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)... Project Engineer Amy Wen

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue....: Oct. 20, 2023

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... GuangDong SINOY Smart Technology CO., LTD

5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin

Town, DongGuan City, Guangdong, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....: Smart Projector

Trade Mark N/A

Manufacturer GuangDong SINOY Smart Technology CO., LTD

Model/Type reference.....: HY350

P2, D099, L003, TO1, TO2, D071, D072, D073, D075, D076,

D033, D035, HY350_QZ713, HY350_HQ3100

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings AC 100-260V, 50/60Hz

Result..... PASS

Report No.: CTA23101300701 Page 2 of 39

TEST REPORT

Equipment under Test **Smart Projector**

Model /Type HY350

Listed Models P2, D099, L003, TO1, TO2, D071, D072, D073, D075, D076, HY350C,

HY350D, HY350E, D08, D013, D016, D025, D026, D029, D033, D035,

HY350_QZ713, HY350_HQ3100

Applicant GuangDong SINOY Smart Technology CO., LTD

5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin Town, Address

DongGuan City, Guangdong, China

Manufacturer **GuangDong SINOY Smart Technology CO., LTD**

Address : 5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin

Town, Dong Guan City, Guangdong, China

	TING
Test Result:	PASS
	CIA

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTA TESTING

Page 3 of 39 Report No.: CTA23101300701

Contents

		TATESTING	Contents	
	1 VA	TEST STANDARDS	ESTING	
	100 Tay was 1 11 100	- 31	ATL	.NG
	2	SUMMARY		STIN
	_	O M M A R T	الم.	
				_
	2.1	General Remarks		5_
	2.2	Product Description*		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipme	ent under Test (EUT)	5
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
'C.	2.7	Related Submittal(s) / Grant (s)		6
1	2.8	Modifications		6
	<u>3</u>	TEST ENVIRONMENT	169	
	_	and the second	CIP	Mr.
				CTATES 7 7 7 7 8
	3.1	Address of the test laboratory		TATE 7
	3.2	Test Facility		<u> </u>
	3.3	Environmental conditions		7
	3.4	Summary of measurement result		
	3.5	Statement of the measurement u		8
	3.6	Equipments Used during the Tes	t	9
		-ESI"		
	4	TEST CONDITIONS AND	RESULTS	
	C	, \	-C7/11	-
	G			10 13 20 21 23
	4.1	AC Power Conducted Emission		10 TING
	4.2	Radiated Emissions and Band Ed	dge	7ES 13
	4.3	Maximum Peak Output Power		20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth		23
	4.6	Out-of-band Emissions		25
	4.7	Antenna Requirement		29
	5	TEST SETUP PHOTOS O	F THE EUT	
CIP.	_	TING		
CTATE				
	<u>6</u>	PHOTOS OF THE EUT		31
			CTATESTING CTATESTING	
			CIP	
				TES
				CTATESTING

Report No.: CTA23101300701 Page 4 of 39

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Page 5 of 39 Report No.: CTA23101300701

SUMMARY

General Remarks 2.1

CTATES			
2.1 General Remarks		TESI	
Date of receipt of test sample	T T	Oct. 13, 2023	TESTING
Testing commenced on		Oct. 13, 2023	CTA
Testing concluded on	:	Oct. 20, 2023	

2.2 Product Description*

Testing commenced on	: Oct. 13, 2023
Testing concluded on	: Oct. 20, 2023
2.2 Product Descrip	ption*
Product Description:	Smart Projector
Model/Type reference:	HY350
Power supply:	AC 100-260V, 50/60Hz
Adapter information (Auxiliary test supplied by test Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA231013007-1# (Engineer sample) CTA231013007-2# (Normal sample)
Bluetooth BLE	, , ,
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PIFA antenna
Antenna gain:	1.31 dBi

2.3 Equipment Under Test

Power supply system utilised

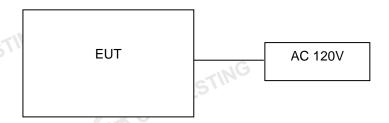
2.3 Equipment Unde	er Test		
Power supply system u	utilised		
ING			
Power supply voltage	: O 230V / 5	0 Hz	
Power supply voltage			

Short description of the Equipment under Test (EUT)

This is a Smart Projector.

For more details, refer to the user's manual of the EUT.

Page 6 of 39 Report No.: CTA23101300701


2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

Frequency (MHz)
2402
2404
2406
2440
i i
2476
2478
2480
CTA TEST

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA23101300701 Page 7 of 39

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
VIS	TES
Humidity:	44 %
270	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
NG	
Humidity:	47 %
. (the state of the s
Atmospheric pressure:	950-1050mbar

	Allilosphene pressure.	930-103011bai	
С	onducted testing:	LES,	TING
	Temperature:	24 ° C	TESI
	Walter and the same of the sam	0.116	(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA23101300701 Page 8 of 39

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	Lowest	complies
,	§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	Lowest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
G	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	1NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

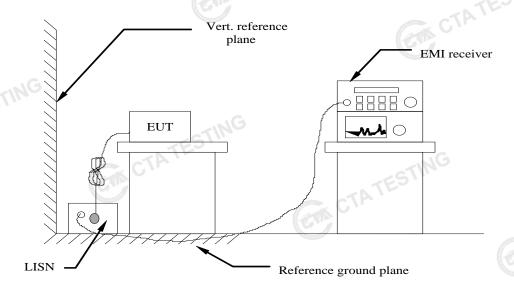
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.: ESTING

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTATE CTATE CTA TESTING

Page 9 of 39 Report No.: CTA23101300701

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
CTATE	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	(cm)		CTP CTP	TESTIN	C CT	ATESTING

Report No.: CTA23101300701 Page 10 of 39

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

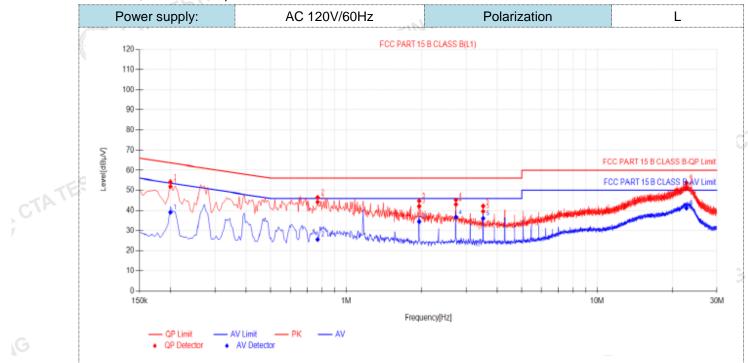
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

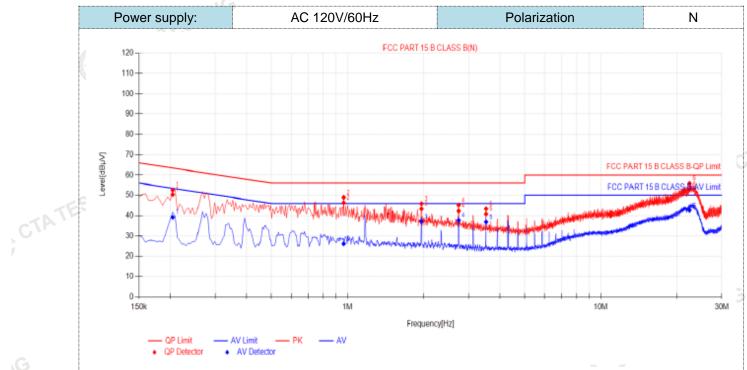

Fraguenay rango (M	⊔ →\	Limit (dBuV)
Frequency range (M	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithn	of the frequency.	
TEST RESULTS Remark:	CTATES	ESTING

TEST RESULTS

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 11 of 39 Report No.: CTA23101300701

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



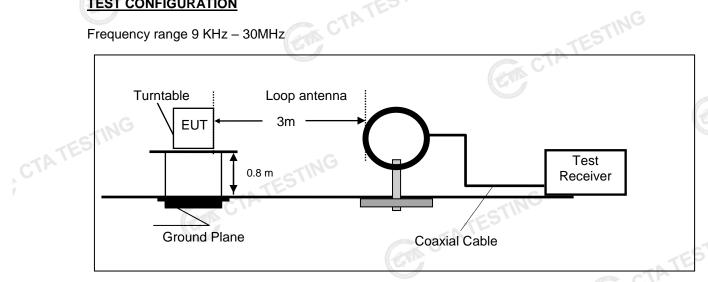
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1995	10.10	41.80	51.90	63.63	11.73	29.03	39.13	53.63	14.50	PASS
2	0.771	9.95	34.25	44.20	56.00	11.80	15.67	25.62	46.00	20.38	PASS
3	1.9545	9.92	32.15	42.07	56.00	13.93	24.58	34.50	46.00	11.50	PASS
4	2.733	10.06	32.89	42.95	56.00	13.05	26.61	36.67	46.00	9.33	PASS
5	3.516	9.96	29.63	39.59	56.00	16.41	26.05	36.01	46.00	9.99	PASS
6	22.722	10.47	40.42	50.89	60.00	9.11	30.76	41.23	50.00	8.77	PASS

CTATESTING

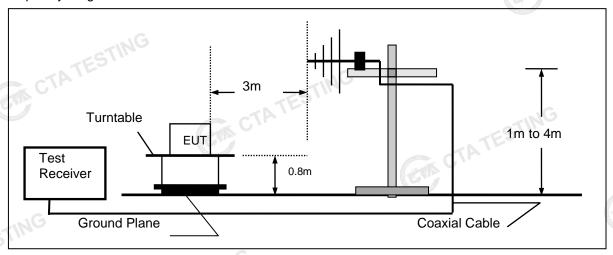
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA23101300701 Page 12 of 39

MHz (dB) µV (dBµV (dB) (dBµV (Fina	l Data Lis	st										
2 0.9645 10.12 36.22 46.34 56.00 9.66 16.10 26.22 46.00 19.78 F 3 1.959 10.19 33.12 43.31 56.00 12.69 26.96 37.15 46.00 8.85 F 4 2.742 10.18 32.12 42.30 56.00 13.70 27.52 37.70 46.00 8.30 F 5 3.525 10.18 30.67 40.85 56.00 15.15 26.70 36.88 46.00 9.12 F	NO.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict	
3 1.959 10.19 33.12 43.31 56.00 12.69 26.96 37.15 46.00 8.85 F 4 2.742 10.18 32.12 42.30 56.00 13.70 27.52 37.70 46.00 8.30 F 5 3.525 10.18 30.67 40.85 56.00 15.15 26.70 36.88 46.00 9.12 F	1	0.204	9.96	40.34	50.30	63.45	13.15	29.24	39.20	53.45	14.25	PASS	
4 2.742 10.18 32.12 42.30 56.00 13.70 27.52 37.70 46.00 8.30 F 5 3.525 10.18 30.67 40.85 56.00 15.15 26.70 36.88 46.00 9.12 F	2	0.9645	10.12	36.22	46.34	56.00	9.66	16.10	26.22	46.00	19.78	PASS	
5 3.525 10.18 30.67 40.85 56.00 15.15 26.70 36.88 46.00 9.12 P	3	1.959	10.19	33.12	43.31	56.00	12.69	26.96	37.15	46.00	8.85	PASS	
	4	2.742	10.18	32.12	42.30	56.00	13.70	27.52	37.70	46.00	8.30	PASS	
6 22.434 10.64 42.26 52.90 60.00 7.10 32.05 42.69 50.00 7.31 F	5	3.525	10.18	30.67	40.85	56.00	15.15	26.70	36.88	46.00	9.12	PASS	
	6	22.434	10.64	42.26	52.90	60.00	7.10	32.05	42.69	50.00	7.31	PASS	
Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	lota·1) OP Value	(dRu\/)	– OP Ra	adina (dl	Ru\/\± Fs	actor (dB	No sunt				PASS	3TP

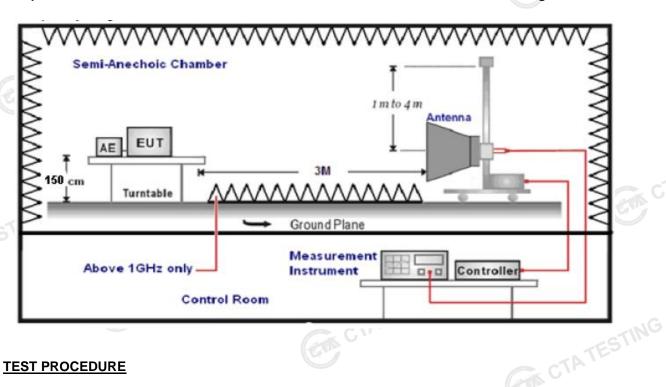

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

Page 13 of 39 Report No.: CTA23101300701


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 39 Report No.: CTA23101300701

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

The distance between test	antenna and EUT as following tab	le states:		
Test Frequency range	Test Antenna Type	Test Distance		1 A 7 E
9KHz-30MHz	Active Loop Antenna	3	Silco He	, , , ,
30MHz-1GHz	Ultra-Broadband Antenna	3	15	
1GHz-18GHz	Double Ridged Horn Antenna	3	Va usutish	
18GHz-25GHz	Horn Anternna	1		

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	ESTING
1GHz-40GHz	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

de calculation is as follows.	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(CV)

Report No.: CTA23101300701 Page 15 of 39

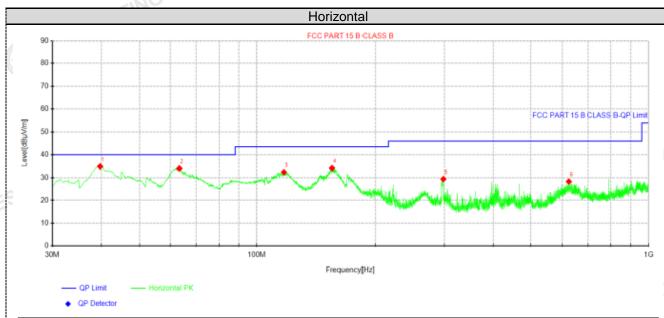
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

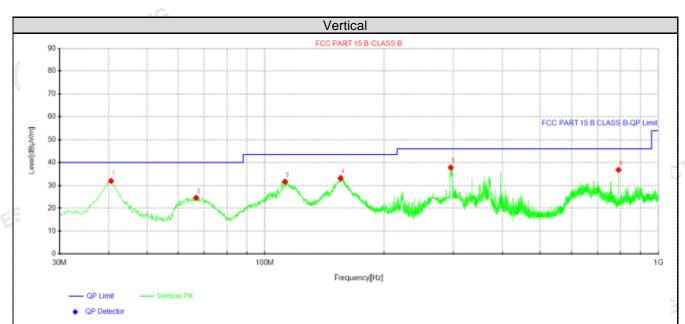
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found CTATESTING except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Page 16 of 39 Report No.: CTA23101300701

Suspe	ected Data	List								
NIC	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalasita	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	39.7	47.19	34.86	-12.33	40.00	5.14	100	317	Horizontal	
2	63.3438	47.91	33.97	-13.94	40.00	6.03	100	54	Horizontal	
3	117.178	46.53	32.39	-14.14	43.50	11.11	100	305	Horizontal	
4	155.857	50.34	34.12	-16.22	43.50	9.38	100	261	Horizontal	
5	298.326	40.83	29.40	-11.43	46.00	16.60	100	101	Horizontal	
6	624.488	33.53	28.29	-5.24	46.00	17.71	100	101	Horizontal	


CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA23101300701 Page 17 of 39

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Doloritu
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	40.5488	44.21	32.03	-12.18	40.00	7.97	100	226	Vertical
2	66.86	39.08	24.57	-14.51	40.00	15.43	100	31	Vertical
3	112.328	45.53	31.68	-13.85	43.50	11.82	100	143	Vertical
4	155.978	49.36	33.14	-16.22	43.50	10.36	100	283	Vertical
5	295.658	49.28	37.74	-11.54	46.00	8.26	100	0	Vertical
6	792.056	41.24	36.67	-4.57	46.00	9.33	100	247	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 18 of 39 Report No.: CTA23101300701

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):			24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.63	PK	74	12.37	65.90	32.33	5.12	41.72	-4.27	
4804.00	44.58	AV	54	9.42	48.85	32.33	5.12	41.72	-4.27	
7206.00	52.33	PK	74	21.67	52.85	36.6	6.49	43.61	-0.52	
7206.00	42.66	AV	54	11.34	43.18	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	58.93	PK	74	15.07	63.20	32.33	5.12	41.72	-4.27	
4804.00	41.75	AV	54	12.25	46.02	32.33	5.12	41.72	-4.27	
7206.00	50.21	PK	74	23.79	50.73	36.6	6.49	43.61	-0.52	
7206.00	40.75	AV	54	13.25	41.27	36.6	6.49	43.61	-0.52	

				VA. AV						
Freque	ncy(MHz)):	24	40	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.28	PK	74	12.72	65.16	32.6	5.34	41.82	-3.88	
4880.00	44.43	AV	54	9.57	48.31	32.6	5.34	41.82	-3.88	
7320.00	53.19	PK	74	20.81	53.30	36.8	6.81	43.72	-0.11	
7320.00	42.96	AV	54	11.04	43.07	36.8	6.81	43.72	-0.11	

Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	58.75	PK	74	15.25	62.63	32.6	5.34	41.82	-3.88
4880.00	42.88	AV	54	11.12	46.76	32.6	5.34	41.82	-3.88
7320.00	51.33	PK	74	22.67	51.44	36.8	6.81	43.72	-0.11
7320.00	40.09	ΑV	54	13.91	40.20	36.8	6.81	43.72	-0.11

Freque	Frequency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.96	PK	74	13.04	64.04	32.73	5.66	41.47	-3.08
4960.00	44.54	AV	54	9.46	47.62	32.73	5.66	41.47	-3.08
7440.00	54.19	PK	74	19.81	53.74	37.04	7.25	43.84	0.45
7440.00	42.51	PK	54	11.49	42.06	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.46	PK	74	15.54	61.54	32.73	5.66	3 41.47	-3.08
4960.00	42.11	AV	54	11.89	45.19	32.73	5.66	41.47	-3.08
7440.00	51.97	PK	74	22.03	51.52	37.04	7.25	43.84	0.45
7440.00	41.14	PK	54	12.86	40.69	37.04	7.25	43.84	0.45

REMARKS:

Page 19 of 39 Report No.: CTA23101300701

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Emissic Level (dBuV/r 1.32 2.29 (MHz): Emissic Level (dBuV/r 3.53 0.81	PK AV	Limit (dBuV/m) 74 54 24 Limit			Antenna Factor (dB/m) 27.42 27.42 arity:	Cable Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15 42.15 VERTICAL	Correction Factor (dB/m) -10.42 -10.42		
2.29 (MHz): Emissio Level (dBuV/r 3.53	AV ion	54 24 0 Limit	11.71 02	52.71 Pola	27.42		42.15	-10.42		
(MHz): Emissio Level (dBuV/r 3.53	on	Limit	02	Pola	1	4.31	L.			
Emission Level (dBuV/r 3.53	CTP	Limit			rity:		VERTICAL			
Level (dBuV/r 3.53	CTP		Morgin		Polarity:			VERTICAL		
		(dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
).81	PK	74	15.47	68.95	27.42	4.31	42.15	-10.42		
·· <u>~ ·</u>	AV	54	13.19	51.23	27.42	4.31	42.15	-10.42		
Frequency(MHz):		248	80	P ola	arity:	Н	IORIZONTA	AL .		
Level	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
0.53	РK	74	13.47	70.64	27.7	4.47	42.28	-10.11		
2.79	AV	54	11.21	52.90	27.7	4.47	42.28	-10.11		
(MHz):		24	80	Pola	arity:		VERTICAL			
Level	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
3.54	PK	74	15.46	68.65	27.7	4.47	42.28	-10.11		
0.92	AV	54	13.08	51.03	27.7	4.47	42.28	-10.11		
2: (I	Level (dBuV/d.53 .79	.79 AV MHz): Emission Level (dBuV/m) .54 PK .92 AV	Level (dBuV/m) .53 PK 74 .79 AV 54 MHz): 24: Emission Level (dBuV/m) .54 PK 74 .92 AV 54 Limit (dBuV/m) .54 PK 74 .92 AV 54	Level (dBuV/m) Limit (dBuV/m) Margin (dB) .53 PK 74 13.47 .79 AV 54 11.21 MHz): 2480 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) .54 PK 74 15.46 .92 AV 54 13.08	Level (dBuV/m) Limit (dBuV/m) Margin (dB) Value (dBuV) .53 PK 74 13.47 70.64 .79 AV 54 11.21 52.90 MHz): 2480 Pola Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) .54 PK 74 15.46 68.65 .92 AV 54 13.08 51.03	Level (dBuV/m) Limit (dBuV/m) Margin (dB) Value (dBuV) Factor (dB/m) .53 PK 74 13.47 70.64 27.7 .79 AV 54 11.21 52.90 27.7 MHz): 2480 Polarity: Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dB/m) .54 PK 74 15.46 68.65 27.7 .92 AV 54 13.08 51.03 27.7 el (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)	Level (dBuV/m) Limit (dBuV/m) Margin (dB) Value (dBuV) Factor (dB/m) Factor (dB/m) .53 PK 74 13.47 70.64 27.7 4.47 .79 AV 54 11.21 52.90 27.7 4.47 MHz): 2480 Polarity: Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value Factor (dBuV) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) 4.47 .54 PK 74 15.46 68.65 27.7 4.47 .92 AV 54 13.08 51.03 27.7 4.47	Level (dBuV/m) Limit (dBuV/m) Margin (dB) Value (dBuV) Factor (dB/m) amplifier (dB) .53 PK 74 13.47 70.64 27.7 4.47 42.28 .79 AV 54 11.21 52.90 27.7 4.47 42.28 MHz): 2480 Polarity: VERTICAL Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dB/m) Pre-amplifier (dB) .54 PK 74 15.46 68.65 27.7 4.47 42.28 .92 AV 54 13.08 51.03 27.7 4.47 42.28 .el (dBuV/m) = Raw Value (dBuV)+Correction Factor (dB/m)		

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 39 Report No.: CTA23101300701

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

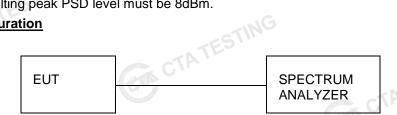
Test Configuration

Test Results

est Results				ATESTI
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	2.52		
GFSK 1Mbps	19	3.22	30.00	Pass
	39	3.66		

Report No.: CTA23101300701 Page 21 of 39

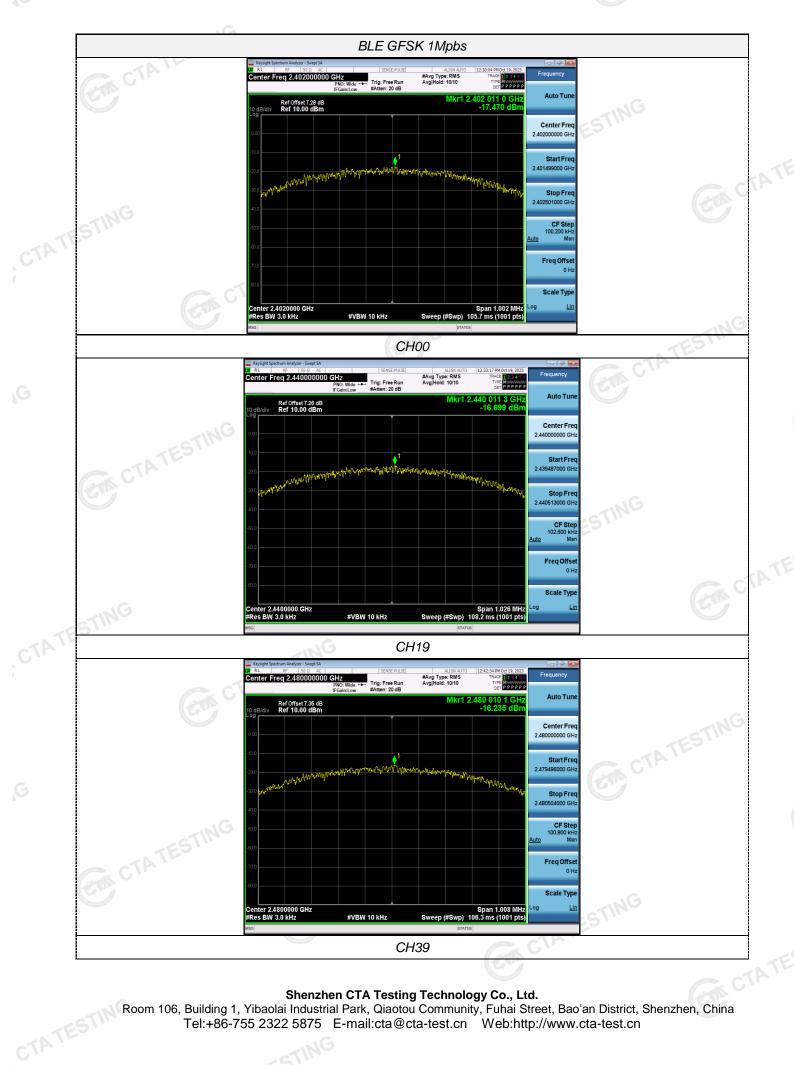
Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

ſ			Power Spectral Density		
_=	Туре	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
		00	<u>-17.47</u>		
	GFSK 1Mbps	19	-16.70	8.00	Pass
		39	-16.24		
	Test plot as follows	31			

Report No.: CTA23101300701 Page 22 of 39

Report No.: CTA23101300701 Page 23 of 39

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ		CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
STIM	00	0.668		
GFSK 1Mbps	19	0.684	≥500	Pass
C	39	0.672		
Test plot as follows:		TATES	CTATESTIN	

Report No.: CTA23101300701 Page 25 of 39

Out-of-band Emissions 4.6

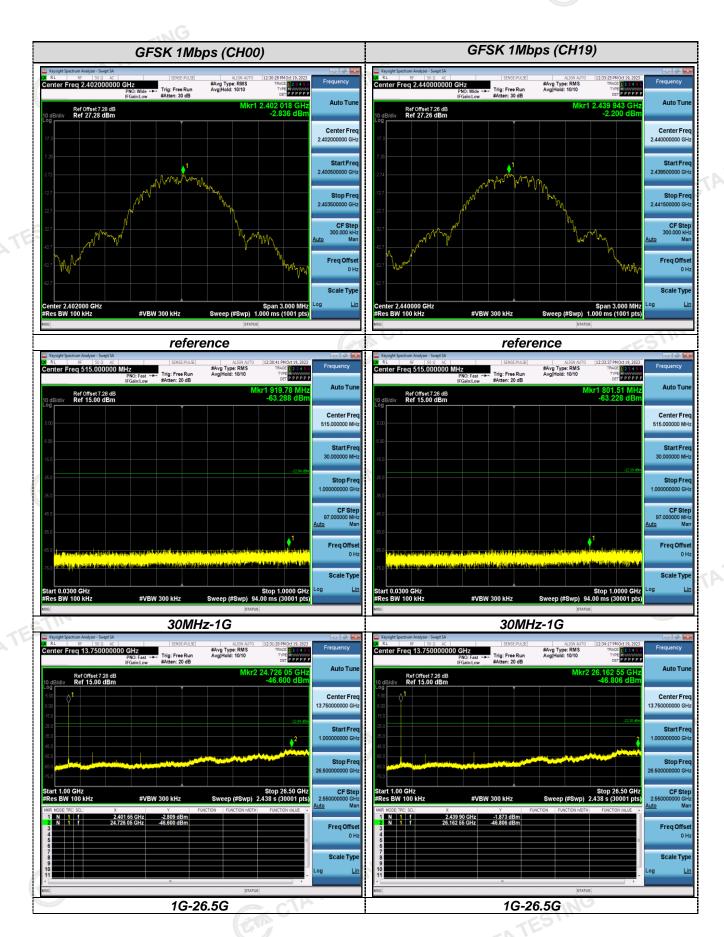
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

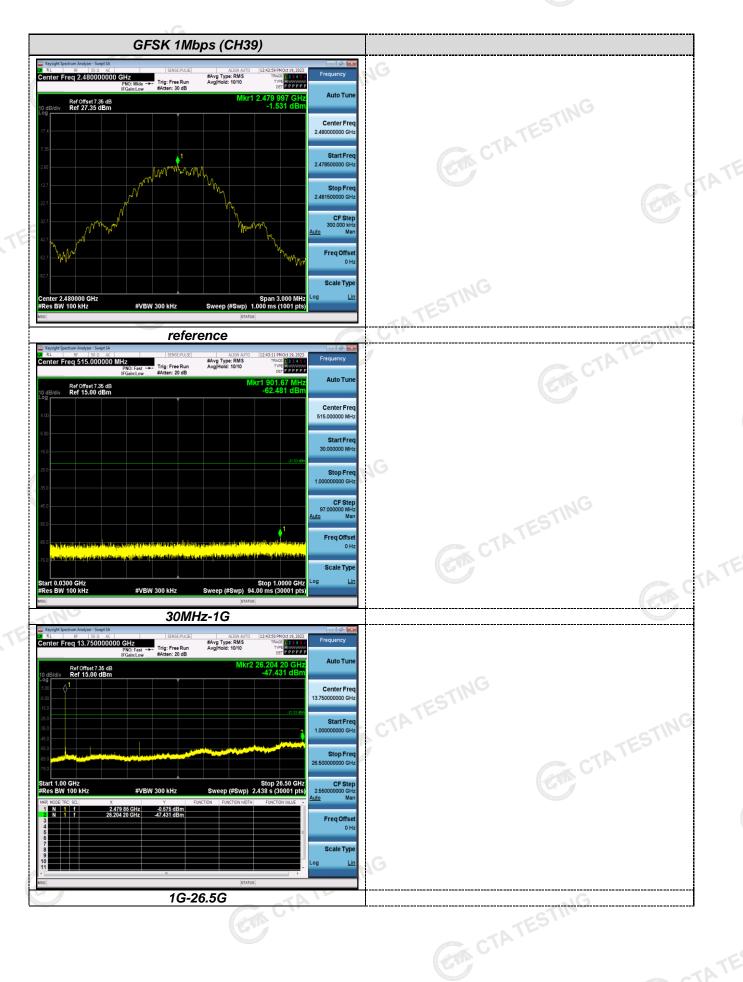
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

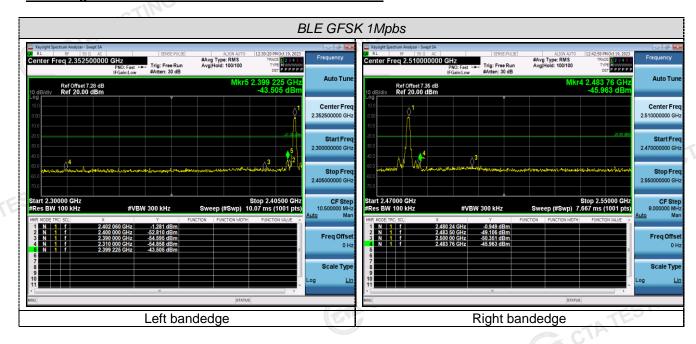


Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Report No.: CTA23101300701 Page 26 of 39



Page 27 of 39 Report No.: CTA23101300701

Page 28 of 39 Report No.: CTA23101300701

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA23101300701 Page 29 of 39

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

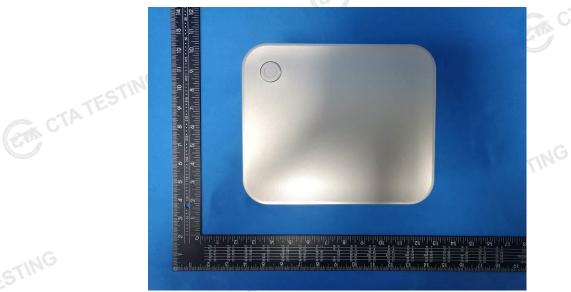
The gain of antenna was 1.31 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

CTATESTING

Page 30 of 39 Report No.: CTA23101300701

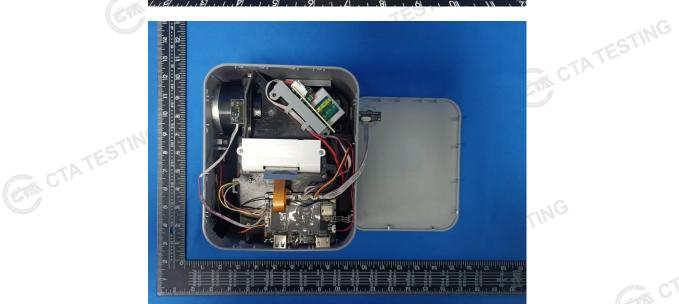
Test Setup Photos of the EUT

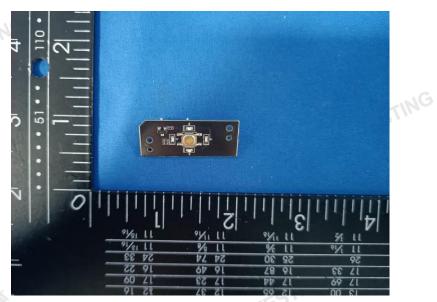


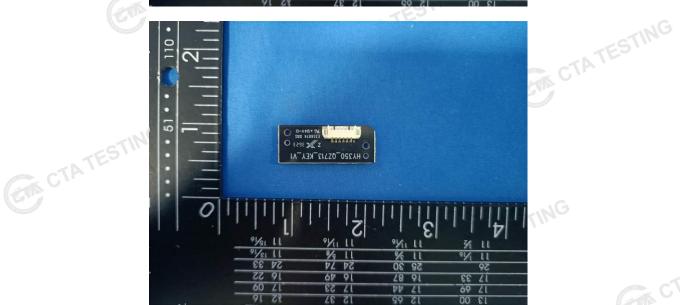
Page 31 of 39 Report No.: CTA23101300701

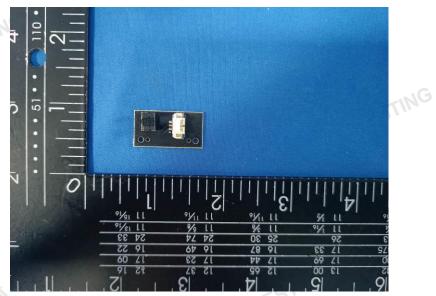
Photos of the EUT

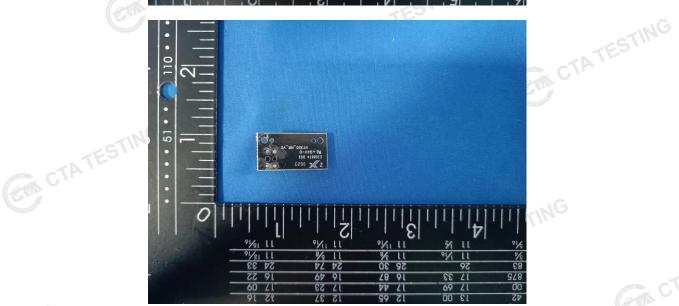
Page 32 of 39 Report No.: CTA23101300701

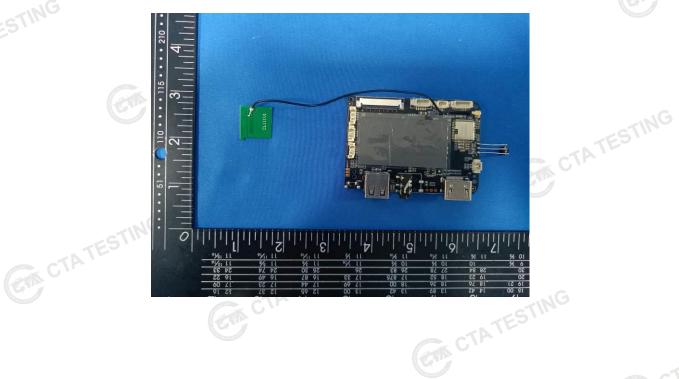


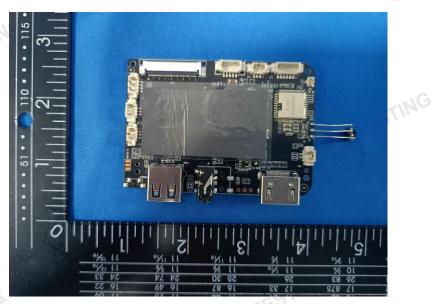

Page 33 of 39 Report No.: CTA23101300701

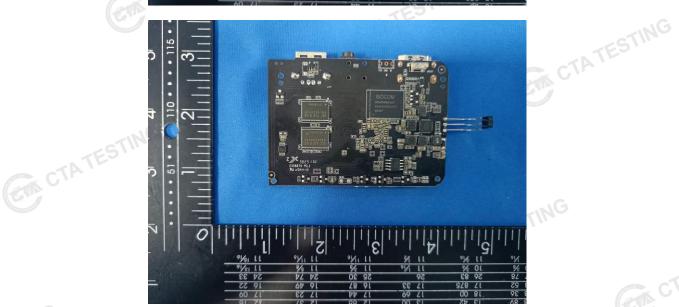


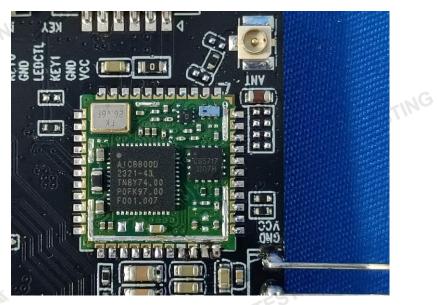

Page 34 of 39 Report No.: CTA23101300701

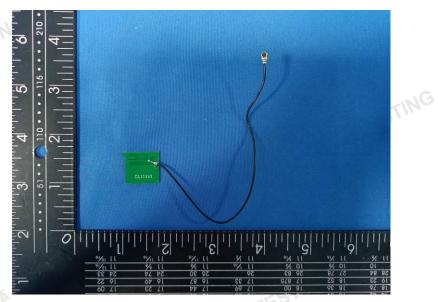


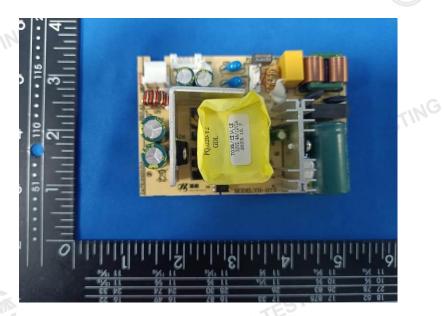


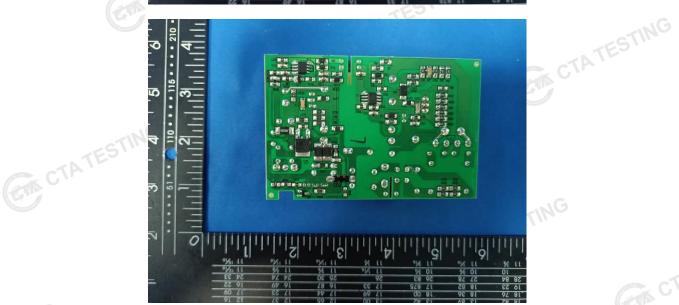

Page 35 of 39 Report No.: CTA23101300701




Page 36 of 39 Report No.: CTA23101300701


Page 37 of 39 Report No.: CTA23101300701


Page 38 of 39 Report No.: CTA23101300701



Page 39 of 39 Report No.: CTA23101300701

