SAR TEST REPORT | Reference No | : WTD24D08202260W005 | | | | | | |--|----------------------|---|--|--|--|--| | FCC ID | : | 2BC9FSP007 | | | | | | Applicant | : | YIWU HEMAI TECHNOLOGY CO.,LTD | | | | | | Address | : | No.39 Suxin Street, Suxi Town, Yiwu City, Zhejiang Province, China | | | | | | Manufacturer | : | YIWU HEMAI TECHNOLOGY CO.,LTD | | | | | | Address | : | No.39 Suxin Street, Suxi Town, Yiwu City, Zhejiang Province, China | | | | | | Product | : | Thermal Printer | | | | | | Model(s) | : | POCKET S1, POCKET S2, POCKET S3, POCKET S4, POCKET S5, POCKET S6, POCKET S7, POCKET S8, POCKET S9, X1, X2, X3, X4, X5, X6, X7, X8, X9 FCC 47 CFR Part2(2.1093) IEEE Std. C95.1-2019 | | | | | | Date of Receipt sample | : | IEC/IEEE 62209-1528:2020
2024-08-30 | | | | | | • • | • | | | | | | | Date of Test | | 2024-09-02 to 2024-09-13 | | | | | | Date of Issue | : | 2024-10-16 | | | | | | reproduced, except in full, without specific stamp of test ins | | | | | | | | Compiled by: Approved by: | | | | | | | | Ford Wang | | Deval MALTER) | | | | | Ford Wang / Project Engineer EST REPORT Deval Qin / Designated Reviewer ## 2 Contents | | 201 | (ED DAGE | Page | |--------|------|------------------------------------|------| | 1 | | VER PAGE | | | 2 | _ | /ISION HISTORY | | | 3
4 | | NERAL INFORMATION | | | - | 4.1 | GENERAL DESCRIPTION OF E.U.T. | | | | 4.2 | | | | | 4.3 | TEST FACILITY | | | 5 | | JIPMENT USED DURING TEST | | | • | 5.1 | | | | 6 | • | RINTRODUCTION | | | • | 6.1 | Introduction | | | | 6.2 | | | | 7 | SAR | R MEASUREMENT SETUP | 8 | | 8 | EXP | POSURE LIMIT | 17 | | 9 | SYS | STEM AND LIQUID VALIDATION | 18 | | | 9.1 | SYSTEM VALIDATION | 18 | | | 9.2 | LIQUID VALIDATION | 21 | | 10 | TYP | E A MEASUREMENT UNCERTAINTY | 24 | | 11 | OUT | TPUT POWER VERIFICATION | 27 | | | 11.1 | TEST CONDITION | 27 | | | 11.2 | Part Result | 27 | | 12 | EXP | OSURE CONDITIONS CONSIDERATION | 29 | | | 12.1 | EUT ANTENNA LOCATION | 29 | | | 12.2 | Part Position Consideration | 29 | | | 12.3 | RF Exposure | 30 | | 13 | SAR | R TEST RESULTS | 31 | | | 13.1 | TEST CONDITION | 31 | | | 13.2 | GENERALLY TEST PROCEDURES | 31 | | | 13.3 | SAR SUMMARY TEST RESULT | 31 | | 14 | SAR | R MEASUREMENT REFERENCE | 33 | | | 14.1 | | | | | 14.2 | | | | 15 | | LIBRATION REPORTS-PROBE AND DIPOLE | | | 16 | | R SYSTEM PHOTOS | | | 17 | _ | TUP PHOTOS | _ | | 12 | FUT | PHOTOS | 62 | Reference No.: WTD24D08202260W005 Page 3 of 62 3 Revision History | Test Report No. | Date of
Receipt
Sample | Date of
Test | Date of Issue | Purpose | Comment | Approved | |--------------------|------------------------------|--------------------------------|---------------|----------|---------|----------| | WTD24D08202260W005 | 2024-08-30 | 2024-09-02
to
2024-09-12 | 2024-10-16 | Original | - | Valid | Reference No.: WTD24D08202260W005 Page 4 of 62 #### 4 General Information #### 4.1 General Description of E.U.T. Product: Thermal Printer Model(s): POCKET S1, POCKET S2, POCKET S3, POCKET S4, POCKET S5, POCKET S6, POCKET S7, POCKET S8, POCKET S9, X1, X2, X3, X4, X5, X6, X7, X8, X9 Model Description: Only the model names are different. Model POCKET S7 was tested in the report. Test Sample No.: 1-1/1 Wi-Fi Specification: 2.4G-802.11b/g/n HT20 Bluetooth Version: V5.0 Hardware Version: PN82_JL_BWU_V1.0_240322 Software Version: 0.5.1.20240822 BETA #### 4.2 Details of E.U.T. Operation Frequency: 2.4G Wi-Fi: 802.11b/g/n HT20: 2412~2462MHz Bluetooth: 2402~2480MHz BLE: 2402~2480MHz Max. RF output power: 2.4G Wi-Fi: 14.82dBm Bluetooth: 5.88dBm BLE: 4.75dBm Max.SAR: 0.663W/Kg 1g Body Tissue Type of Modulation: 2.4G Wi-Fi: CCK, DSSS, OFDM Bluetooth: GFSK, π/4DQPSK, 8DPSK BLE: GFSK Antenna installation 2.4G Wi-Fi/Bluetooth/BLE: FPC Antenna Antenna Gain: 2.4G Wi-Fi/Bluetooth/BLE: 1dBi Note: Ratings: #: The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, WALTEK lab has not verified the authenticity of its information. DC 5V---3A from adapter DC 7.4V from battery Reference No.: WTD24D08202260W005 Page 5 of 62 #### 4.3 Test Facility The test facility has a test site registered with the following organizations: ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A. Waltek Testing Group Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2016. FCC Designation No.: CN1201. Test Firm Registration No.: 523476. Waltek Testing Group Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration number 523476, September 10, 2019. ## 5 Equipment Used during Test ## 5.1 Equipment List | _Name of | Manufacturer | Type/Model | Serial Number | Calibration | Calibration | |--|----------------------|---------------------------|---------------------------|-------------|-------------| | Equipment | mananaotaror | - | Goriai Italiiboi | Date | Due | | 6 AXIS ROBOT | KUKA | KR6 R900
SIXX | 502635 | N/A | N/A | | SATIMO Test
Software | MVG | OPENSAR | OPENSAR
V_4_02_27 | N/A | N/A | | PHANTOM
TABLE | MVG | N/A | SAR_1215_01 | N/A | N/A | | SAM PHANTOM | MVG | SAM118 | SN 11/15
SAM118 | N/A | N/A | | MultiMeter | Keithley | MiltiMeter 2000 | 4073942 | 2024-02-25 | 2025-02-24 | | S-Parameter
Network
Analyzer | Agilent | 8753E | JP38160684 | 2023-09-15 | 2024-09-14 | | Universal Radio
Communication
Tester | ROHDE&SCHW
ARZ | CMU200 | 114798 | 2024-07-18 | 2025-07-17 | | Wideband Radio
Communication
Tester | ROHDE&SCHW
ARZ | CMW500 | 127818 | 2024-04-22 | 2025-04-21 | | E-Field Probe | MVG | SSE2 | 2523-EPGO-
417 | 2024-07-29 | 2025-07-28 | | DIPOLE 2450 | MVG | SID2450 | SN 09/15 DIP
2G450-363 | 2023-08-08 | 2026-08-07 | | Limesar
Dielectric Probe | MVG | SCLMP | SN 11/15
OCPG 69 | 2024-02-24 | 2025-02-23 | | Power Amplifier | BONN | BLWA 0830
-160/100/40D | 128740 | 2024-07-18 | 2025-07-17 | | Signal Generator | R&S | SMB100A | 105942 | 2024-07-18 | 2025-07-17 | | Power Meter | R&S | NRP2 | 102031 | 2024-07-18 | 2025-07-17 | | Power Meter | R&S | NRVD | 102284 | 2024-07-18 | 2025-07-17 | | USB Wideband
Power Sensor | Malaysia
Keysight | U2021XA | MY54340009 | 2024-07-18 | 2025-07-17 | | USB Wideband
Power Sensor | Malaysia
Keysight | U2021XA | MY54340010 | 2024-07-18 | 2025-07-17 | #### 6 SAR Introduction #### 6.1 Introduction This measurement report shows compliance of the EUT with IEEE Std. C95.1-2019 nd FCC 47 CFR Part2 (2.1093). The test procedures, as described in IEC/IEEE 62209-1528:2020 Standard for Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices —Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) #### 6.2 SAR Definition - SAR : Specific Absorption Rate - The SAR characterize the absorption of energy by a quantity of tissue - This is related to a increase of the temperature of these tissues during a time period. DAS = $$\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ $$DAS = \frac{\sigma E^2}{\rho}$$ DAS = $\frac{\sigma E^2}{\rho}$ $$DAS = \frac{dT}{dt} \Big|_{t=0}$$ $$SAR = \frac{\sigma E^2}{\rho}$$ - SAR : Specific Absorption Rate - σ : Liquid conductivity $oe_r = e' - je''$ (complex permittivity of liquid) $$\circ \sigma = \frac{\varepsilon'' \omega}{\varepsilon_0}$$ ρ: Liquid density ο ρ = 1000 g/L = 1000Kg/m³ where: σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m3) E = rms electric field strength (V/m) ## 7 SAR Measurement Setup ## SAR bench sub-systems ## Scanning System (robot) - It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR. - Must be able to set the probe orthogonal of the surface of the phantom (±30°). - Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe. ## SAM Phantom (Specific Anthropomorphic Mannequin) - The probe scanning of the E-Field is done in the 2 half of the normalized head. - The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size. - The materials for the phantom should not affect the radiation of the device under test (DUT) - Permittivity < 5 - The head is filled with tissue simulating liquid. - The hand holding the DUT does not have to be modeled. Illustration du fantôme donnant les points de référence des oreilles, RE et LE, le point de référence de la bouche, M, la ligne de référence N-F et la bande centrale Bi-section sagittale du fantôme avec périmètre étendu (montrée sur le côté comme lors des essais de DAS de l'appareil) Reference No.: WTD24D08202260W005 Page 10 of 62 # The OPENSAR system for performing compliance tests consist of the following items: - 1. A standard high precision 6-axis robot (KUKA) with controller and software. - 2. KUKA Control Panel (KCP). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - 4. The functions of the PC plug-in card are to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts. - 5. A computer operating Windows 7. - 6. OPENSAR software. - 7. Remote control with teaches pendant and additional circuitry for
robot safety such as warning lamps, etc. - 8. The SAM phantom enabling testing left-hand right-hand and body usage. - 9. The Position device for handheld EUT. - Tissue simulating liquid mixed according to the given recipes (see Application Note). - 11. System validation dipoles to validate the proper functioning of the system. #### **Data Evaluation** The OPENSAR software automatically executes the following procedure to calculate the field units from the microvolt readings at the probe connector. The parameters used in the valuation are stored in the configuration modules of the software: | Probe | - Sensitivity | Norm _i | |--------------------|---------------------------|-------------------| | Parameters | - Conversion factor | ConvFi | | | - Diode compression point | | | | Dcpi | | | Device | - Frequency | f | | Parameter | - Crest factor | cf | | Media
Parametrs | - Conductivity | σ | | Taramens | - Density | ρ | These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the OPENSAR components. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ Where V_i = Compensated signal of channel i ($i = x, y, z$) U_i = Input signal of channel i ($i = x, y, z$) cf = Crest factor of exciting field (DASY parameter) dcp_i = Diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$ E-field probes: $$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \ ConvF}}$$ H-field probes: $$H_{i} = \sqrt{Vi} \ \frac{a_{i10} + a_{i11} f + a_{i12} f^{2}}{f}$$ Where $$V_i$$ = Compensated signal of channel i (i = x , y , z) $$Norm_i$$ = Sensor sensitivity of channel i (i = x, y, z) $$\mu V/(V/m)$$ 2 for E0field Probes ConvF= Sensitivity enhancement in solution f = Carrier frequency (GHz) E_i = Electric field strength of channel i in V/m H_i = Magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} - \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR - E_{ist}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ where SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [siemens/m] ρ = equivalent tissue density in q/cm3 Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field as a free space field. $$P_{pee} = \frac{E_{ss}^2}{3770}$$ or $P_{pee} = H_{ss}^2 \cdot 37.7$ where P_{pwe} = Equivalent power density of a plane wave in mW/cm2 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m #### SAR Evaluation – Peak Spatial - Average The procedure for assessing the peak spatial-average SAR value consists of the following steps #### Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. #### Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user. #### · Zoom Scan Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1). #### Power Drift measurement The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded. #### SAR Evaluation - Peak SAR The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528 standard. It can be conducted for 1 g and 10 g. The OPENSAR system allows evaluations that combine measured data and robot positions, such as: - maximum search - extrapolation - boundary correction - peak search for averaged SAR During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions. #### Extrapolation Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the fourth order least square polynomial method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes. #### **Definition of Reference Points** #### **Ear Reference Point** Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5]. Figure 6.1 Close-up side view of ERP's Figure 6.2 Front, back and side view of SAM #### **Device Reference Points** Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5]. Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points #### Test Configuration – Positioning for Cheek / Touch 1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure below), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom Figure 7.1 Front, Side and Top View of Cheek/Touch Position - 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear. - 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane). - 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the
ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure below. Figure 7.2 Side view w/ relevant markings #### Test Configuration – Positioning for Ear / 15° Tilt With the test device aligned in the Cheek/Touch Position": - 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees. - 2. Rotate the device around the horizontal line by 15 degrees. - 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure below). Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position #### **Test Position – Body Configurations** Body Worn Position - (a) To position the device parallel to the phantom surface with either keypad up or down. - (b) To adjust the device parallel to the flat phantom. - (c) To adjust the distance between the device surface and the flat phantom to 1.0 cm or holster surface and the flat phantom to 0 cm. #### 8 Exposure limit In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual. #### **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. **Table 8.1 Human Exposure Limits** | | UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) | |---|--|--| | SPATIAL PEAK SAR ¹
Brain | 1.60 | 8.00 | | SPATIAL AVERAGE SAR ²
Whole Body | 0.08 | 0.40 | | SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists | 4.00 | 20.00 | ¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ² The Spatial Average value of the SAR averaged over the whole body. ³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ## 9 System and liquid validation ## 9.1 System validation **Verification Setup Block Diagram** **Dipole Antenna Setup Photo** Reference No.: WTD24D08202260W005 Page 19 of 62 The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: - 1. Signal Generator - 2. Amplifier - 3. Directional Coupler - 4. Power Meter - 5. Calibrated Dipole The output power on dipole port must be calibrated to 30 dBm (1000 mW) before dipole is connected. ## Numerical reference SAR values (W/kg) for reference dipole and flat phantom | Frequency
(MHz) | 1g SAR | 10g SAR | Local SAR at surface(above feed-point) | Local SAR at surface(y = 2 cm offset from feedpoint) | |--------------------|--------|---------|--|--| | 300 | 3.02 | 2.04 | 4.40 | 2.10 | | 450 | 4.92 | 3.28 | 7.20 | 3.20 | | 750 | 8.49 | 5.55 | 12.6 | 4.59 | | 835 | 9.56 | 6.22 | 14.1 | 4.90 | | 900 | 10.9 | 6.99 | 16.4 | 5.40 | | 1450 | 29.0 | 16.0 | 50.2 | 6.50 | | 1800 | 38.4 | 20.1 | 69.5 | 6.80 | | 1900 | 39.7 | 20.5 | 72.1 | 6.60 | | 2000 | 41.1 | 21.1 | 74.6 | 6.50 | | 2450 | 52.4 | 24.0 | 104 | 7.70 | | 2600 | 55.3 | 24.6 | 113 | 8.29 | | 3000 | 63.8 | 25.7 | 140 | 9.50 | Table 1: system validation (1g) | Measurement
Date | Frequency
(MHz) | Liquid Type
(head/body) | 1W
Target
SAR1g
(W/kg) | Measured
SAR1g
(W/kg) | 1W
Normalized
SAR1g
(W/kg) | Desired
Tolerance
(%) | Actual
Tolerance
(%) | |---------------------|--------------------|----------------------------|---------------------------------|-----------------------------|-------------------------------------|-----------------------------|----------------------------| | 2024-09-13 | 2450 | head | 54.33 | 5.242 | 52.42 | ±10 | -3.52 | Remark: 1. system check input power: 100mW. ^{2.} Referring to IEEE 1528:2013, Section 8.2, The system check shall be performed at a test frequency that is within $\pm 10\%$ or ± 100 MHz of the compliance test mid-band frequency, so the 1750 MHz system verification is made of 1800MHz Dipole. #### 9.2 liquid validation The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section. #### **KDB 865664 recommended Tissue Dielectric Parameters** The head and body tissue parameters given in this below table should be used to measure the SAR of transmitters operating in 100 MHz to 6 GHz frequency range. The tissue dielectric parameters of the tissue medium at the test frequency should be within the tolerance required in this document. The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency. The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528. | Target Frequency | Head ' | Head Tissue | | Tissue | |------------------|--------|-------------|------|----------| | MHz | εr | O' (S/m) | εr | O' (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 750 | 41.9 | 0.89 | 55.5 | 0.96 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 2600 | 39.0 | 1.96 | 52.5 | 2.16 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | #### **Tissue Dielectric Parameters for Head and Body Phantoms** The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.
Table 2: Recommended Dielectric Performance of Tissue | | Recommended Dielectric Performance of Tissue | | | | | | | | |----------------------|--|-----------------|------|-------|------|------|--|--| | | Head/Body | | | | | | | | | Ingredients
(% by | | Frequency (MHz) | | | | | | | | weight) | 750 | 835 | 1800 | 1900 | 2450 | 2600 | | | | Water | 40.52 | 41.45 | 55.2 | 54.9 | 62.7 | 54.8 | | | | Salt (Nacl) | 1.61 | 1.45 | 0.3 | 0.18 | 0.5 | 0.1 | | | | Sugar | 57.67 | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | HEC | 0.1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Bactericide | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Triton x-100 | 0.0 | 0.0 | 0.0 | 0.0 | 36.8 | 0.0 | | | | DGBE | 0.0 | 0.0 | 44.5 | 44.92 | 0.0 | 45.1 | | | | Dielectric | 40.93 | 42.54 | 40.0 | 39.9 | 39.8 | 39.0 | | | | Conductivity | 0.87 | 0.91 | 1.40 | 1.42 | 1.88 | 1.96 | | | Table 3: Dielectric Performance of Head Tissue Simulating Liquid | rabio di Biolocato i diformatico di rioda ficodo diminiating Elquia | | | | | | |---|---------------|--------------|---------------|-------------|--| | Temperature: 24.5°C , Relative humidity: 51% | | | | | | | Frequency(MHz) | Measured Date | Description | Dielectric Pa | arameters | | | 1 requericy(Wiriz) | Weasured Date | Description | εr | σ(s/m) | | | | | Target Value | 39.2 | 1.80 | | | 2450 2023-05-25 | | ±5% window | 37.24— 41.16 | 1.71 — 1.89 | | | | 2,00 | | 39.23 | 1.79 | | # System Verification Plots Product Description: Dipole Model: SID2450 Test Date: 2024-09-13 | Medium(liquid type) | HL2450 | |---|--| | Frequency (MHz) | 2450.000 | | Relative permittivity (real part) | 39.23 | | Conductivity (S/m) | 1.79 | | Input power | 100mW | | Crest factor | 1.0 | | E-Field Probe | 2523-EPGO-417 | | Conversion Factor | 3.01 | | Area Scan | dx=8mm dy=8mm | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5mm | | Variation (%) | 0.28 | | SAR 10g (W/Kg) | 2.608324 | | SAR 1g (W/Kg) | 5.241895 | | SURFACE SAR SAN Viroulisation Graphical Interface | VOLUME SAR SAN Virualization Graphical Interface | | Surface Redisted Intensity Zoom In/Out | Volume Redisted Intensity Colors Seale Office 1990000 S. 090000 S. 000019 S. 000019 S. 010000 0100000 S. 010000 0100000 S. 010000 0100000 S. 010000 010 | | | | #### 10 Type a Measurement Uncertainty The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table below: | Uncertainty
Distribution | Normal | Rectangle | Triangular | U Shape | |-----------------------------|--------|-----------|------------|---------| | Multi-plying
Factor(a) | 1/k(b) | 1 / √3 | 1 / √6 | 1 / √2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type -sumby taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The COMOSAR Uncertainty Budget is show in below table: | UNCERTAINTY FO | D CVCT | EM DE | DEOD | MANC | E CUE | r K | | | |--|---------------|----------------|--------|----------------|-------------|----------------|-----------------|----| | a UNCERTAINTY FO | c c | d d | e= | MANC | g g | h= | i= | k | | ū | | | f(d,k) | | | c*f/e | c*g/e | | | Uncertainty Component | Tol
(+- %) | Prob.
Dist. | Div. | Ci
(1g) | Ci
(10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | Vi | | Measurement System | ' | • | | | | | | | | Probe calibration | 5.8 | N | 1 | 1 | 1 | 5.80 | 5.80 | ∞ | | Axial Isotropy | 3.5 | R | √3 | (1_Cp)
^1/2 | (1_Cp)^1/ | 1.43 | 1.43 | ∞ | | Hemispherical Isotropy | 5.9 | R | √3 | (Cp)^1
/2 | (Cp)^1/2 | 2.41 | 2.41 | ∞ | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | ∞ | | System detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | 0.00 | N | 1 | 1 | 1 | 0.00 | 0.00 | ∞ | | Readout Electronics | 0.50 | N | 1 | 1 | 1 | 0.50 | 0.50 | ∞ | | Reponse Time | 0.0 | R | √3 | 1 | 1 | 0.00 | 0.00 | ∞ | | Integration Time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | RF ambient Conditions - Noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | RF ambient Conditions - Reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical Tolerance | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Probe positioning with respect to Phantom Shell | 1.40 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | 2.3 | R | √3 | 1 | 1 | 1.33 | 1.33 | ∞ | | Dipole | • | • | | | | • | • | | | Deviation of experimental source from numerical source | 4.00 | N | 1 | 1 | 1 | 4.00 | 4.00 | 8 | | Input power and SAR drift measurement | 5.00 | R | √3 | 1 | 1 | 2.89 | 2.89 | ∞ | | Dipole axis to liquid Distance | 2.00 | R | √3 | 1 | 1 | 1.15 | 1.15 | ∞ | | Phantom and Tissue Parameters | • | • | | | | • | • | | | Phantom Uncertainty (Shape and thickness tolerances) | 4.00 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | Uncertainty in SAR correction for deviation (in permittivity and conductivity) | 2.00 | N | 1 | 1 | 1 | 2.00 | 1.68 | ∞ | | Liquid conductivity (temperature uncertainty) | 2.50 | N | 1 | 0.78 | 0.71 | 1.95 | 1.77 | 8 | | Liquid conductivity - measurement uncertainty | 4.00 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | М | | Liquid permittivity (temperature uncertainty) | 2.50 | N | 1 | 0.78 | 0.71 | 1.95 | 1.77 | ∞ | | Liquid permittivity - measurement uncertainty |
5.00 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | М | | Combined Standard Uncertainty | | RSS | | | | 10.21 | 10.12 | | | Expanded Uncertainty (95% Confidence interval) | | k | | | | 19.91 | 19.73 | | | UNCERTAINTY EVA | LUATIO | ON FO | R HAN | DSET | SAR TE | ST | | | |--|---------------|----------------|--------------|--------------------|-------------------|----------------|-----------------|---------| | а | С | d | e=
f(d,k) | f | g | h=
c*f/e | i=
c*g/e | k | | Uncertainty Component | Tol
(+- %) | Prob.
Dist. | Div. | Ci
(1g) | Ci
(10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | Vi | | Measurement System | (, , , , | Diot. | | ('9/ | (109) | (* /0) | (, ,0) | | | Probe calibration | 5.8 | N | 1 | 1 | 1 | 5.80 | 5.80 | ∞ | | Axial Isotropy | 3.5 | R | √3 | (1_Cp)
^
1/2 | (1_Cp)^1/
2 | 1.43 | 1.43 | ∞ | | Hemispherical Isotropy | 5.9 | R | √3 | (Cp) [^] | (Cp) [^] | 2.41 | 2.41 | ∞ | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | ∞ | | System detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | 3.00 | N | 1 | 1 | 1 | 3.00 | 3.00 | ∞ | | Readout Electronics | 0.50 | N | 1 | 1 | 1 | 0.50 | 0.50 | ∞ | | Reponse Time | 0.0 | R | √3 | 1 | 1 | 0.00 | 0.00 | ∞ | | Integration Time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | RF ambient Conditions - Noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | RF ambient Conditions - Reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical Tolerance | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Probe positioning with respect to Phantom Shell | 1.40 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | 2.3 | R | √3 | 1 | 1 | 1.33 | 1.33 | ∞ | | Test sample Related | | | | | | | | | | Test sample positioning | 2.60 | N | 1 | 1 | 1 | 2.60 | 2.60 | N-
1 | | Device Holder Uncertainty | 3.00 | N | 1 | 1 | 1 | 3.00 | 3.00 | N-
1 | | Output power Variation - SAR drift measurement | 5.00 | R | √3 | 1 | 1 | 2.89 | 2.89 | 8 | | SAR scaling | 2.00 | R | √3 | 1 | 1 | 1.15 | 1.15 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | Phantom Uncertainty (Shape and thickness tolerances) | 4.00 | R | √3 | 1 | 1 | 2.31 | 2.31 | 8 | | Uncertainty in SAR correction for deviation (in permittivity and conductivity) | 2.00 | N | 1 | 1 | 1 | 2.00 | 1.68 | 8 | | Liquid conductivity (temperature uncertainty) | 2.50 | N | 1 | 0.78 | 0.71 | 1.95 | 1.77 | ∞ | | Liquid conductivity - measurement uncertainty | 4.00 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | M | | Liquid permittivity (temperature uncertainty) | 2.50 | N | 1 | 0.78 | 0.71 | 1.95 | 1.77 | 8 | | Liquid permittivity - measurement uncertainty | 5.00 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | М | | Combined Standard Uncertainty | | RSS | | | | 10.63 | 10.54 | | | Expanded Uncertainty
(95% Confidence interval) | | k | | | | 20.73 | 20.56 | | Waltek Testing Group Co., Ltd. http://www.waltek.com.cn Reference No.: WTD24D08202260W005 Page 27 of 62 ### 11 Output Power Verification #### 11.1 Test Condition 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The base station simulator was connected to the antenna terminal. 2 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30 MHz - 40 GHz is $\pm 1.5 \text{dB}$. 3 Environmental Conditions Temperature 25.5°C Relative Humidity 56% Atmospheric Pressure 1011mbar #### 11.2Test Result #### **Bluetooth Measurement Result** | Mode | Frequency (MHz) | Average Output
Power(dBm) | Tune up limited(dBm) | |-----------|-----------------|------------------------------|----------------------| | | 2402 | 4.50 | 5.0±1 | | GFSK | 2441 | 4.36 | 5.0±1 | | | 2480 | 4.38 | 5.0±1 | | | 2402 | 5.49 | 5.0±1 | | π/4 DQPSK | 2441 | 5.38 | 5.0±1 | | | 2480 | 5.21 | 5.0±1 | | | 2402 | 5.88 | 5.0±1 | | 8DPSK | 2441 | 5.75 | 5.0±1 | | | 2480 | 5.55 | 5.0±1 | #### **BLE Measurement Result** | Mode | Channel
number | Frequency
(MHz) | Average Output
Power(dBm) | Tune up
limited(dBm) | |----------|-------------------|--------------------|------------------------------|-------------------------| | | 0 | 2402 | 4.51 | 4.0±1 | | GFSK(1M) | 19 | 2440 | 4.27 | 4.0±1 | | | 39 | 2480 | 4.13 | 4.0±1 | | | 0 | 2402 | 4.75 | 4.0±1 | | GFSK(1M) | 19 | 2440 | 4.64 | 4.0±1 | | | 39 | 2480 | 4.61 | 4.0±1 | Reference No.: WTD24D08202260W005 Page 28 of 62 #### 2.4G Wi-Fi Measurement Result | Channel number | Frequency (MHz) | Average Output
Power(dBm) | Tune up limited(dBm) | |----------------|-----------------|------------------------------|----------------------| | | 2412 | 14.73 | 14.0±1 | | TX 11b | 2437 | 14.73 | 14.0±1 | | | 2462 | 14.82 | 14.0±1 | | | 2412 | 12.85 | 12.0±1 | | TX 11g | 2437 | 12.90 | 12.0±1 | | | 2462 | 12.94 | 12.0±1 | | | 2412 | 13.06 | 13.0±1 | | TX 11n HT20 | 2437 | 12.95 | 13.0±1 | | | 2462 | 13.10 | 13.0±1 | ## 12 Exposure Conditions Consideration #### 12.1 EUT antenna location < EUT Front View > #### 12.2Test position consideration | Distance of EUT antenna-to-edge/surface(mm) | | | | | | | | | |---|-------------------|------------|-----------|------------|----------|-------------|--|--| | Antennas | Back side | Front side | Left Edge | Right Edge | Top Edge | Bottom Edge | | | | WLAN | <25 | <25 | 93 | 153 | <25 | 38 | | | | | Test distance:0mm | | | | | | | | | Antennas | Back side | Front side | Left Edge | Right Edge | Top Edge | Bottom Edge | | | | WLAN | YES | YES | NO | NO | YES | NO | | | #### Note: - 1. Body SAR mode assessments are required. - 2. Per KDB 447498 D01v06, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user, which is 0 mm for body SAR. #### 12.3RF Exposure #### **Standard Requirement:** According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, ¹⁶ where - f_(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation¹⁷ - The result is rounded to one decimal place for comparison The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval. #### Exclusion Thresholds = $P\sqrt{F}/D$ P= Maximum turn-up power in mW F= Channel frequency in GHz D= Minimum test separation distance in mm #### Test Distance (5mm) | Mode | MAX
Power
(dBm) | Tune Up
Power (dBm) | Max Tune Up
Power (dBm) | Max Tune Up
Power (mW) | Exclusion
Thresholds | Limit | |------------|-----------------------|------------------------|----------------------------|---------------------------|-------------------------|-------| | Bluetooth | 5.88 | 5.0±1 | 6 | 3.98 | 1.244 | 3 | | BLE | 4.75 | 4.0±1 | 5 | 3.16 | 0.988 | 3 | | 2.4G Wi-Fi | 14.82 | 14.0±1 | 15 | 31.62 | 9.873 | 3 | #### 13 SAR Test Results #### 13.1 Test Condition 1. SAR Measurement The distance between the EUT and the antenna of the emulator is more than 50 cm and the output power radiated from the emulator antenna is at least 30 dB less than the output power of EUT. 2 Environmental Conditions Temperature 24.5°C Relative Humidity 51% Atmospheric Pressure 1013mbar #### 13.2 Generally Test Procedures - 1. Establish communication link between EUT and base station emulation by air link. - 2. Place the EUT in the selected test position. (Cheek, tilt or flat) - 3. Perform SAR testing at middle or highest output power channel under the selected test mode. If the measured 1-g SAR is ≤ 0.8 W/kg, then testing for the other channel will not be performed. - 4. When SAR is<0.8W/kg, no repeated SAR measurement is required #### 13.3SAR Summary Test Result Table 4: SAR Values of 2.4G Wi-Fi | | | Cha | nnel | Power(dBm) | | | | | | | |--------------------------|---------------|-----|------|--------------|--------------------------------------|--------------------------------------|-------------------|-----------------------------|---------------------------|-------------| | Test Posit | ions | СН. | MHz | Test
Mode | Maximum
Turn-up
Power
(dBm) | Measured
output
power
(dBm) | Scaling
Factor | Measured
SAR
1g(W/kg) | Scaled
SAR
1g(W/kg) | Plot
No. | | | Front
Side | 11 | 2462 | 802.11b | 15 | 14.82 | 1.042 | 0.255 | 0.266 | 1 | | Body (0mm
Separation) | Back
Side | 11 | 2462 | 802.11b | 15 | 14.82 | 1.042 | 0.349 | 0.364 | 2 | | | Top
Edge | 11 | 2462 | 802.11b | 15 | 14.82 | 1.042 | 0.636 | 0.663 | 3 | Reference No.: WTD24D08202260W005 Page 32 of 62 #### Measurement variability consideration According to KDB 865664 D01v01r04 section 2.8.1, repeated measurements are
required following the procedures as below: Repeated measurement is not required when the original highest measured SAR is < 0.80W/kg; steps 2) through 4) do not apply. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. No Repeated SAR. Simultaneous Transmission SAR Analysis. Note: No Simultaneous Transmission SAR. Reference No.: WTD24D08202260W005 Page 33 of 62 #### 14 SAR Measurement Reference #### 14.1 References - 1. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - 2. IEEE Std. C95.1-2019, "IEEE Standards for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz" - 3. IEC/IEEE 62209-1528:2020, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range 4 MHz to 10 GHz) - 4. FCC KDB447498 D01v06, "RF exposure requirements for mobile and portable device equipment authorizations" - 5. FCC KDB865664 D01 v01r04, "SAR measurement procedures for devices operating between 100 MHz to 6 GHz" - 6. FCC KDB865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" - 7. FCC KDB248227 D01 v02r02, "SAR measurements for devices incorporating IEEE 802.11 wireless transmitters" #### 14.2 Maximum SAR measurement Plots Plot 1: 2.4G Wi-Fi, High channel (Body SAR, Front Side) Product Description: Thermal Printer Test Date: 2024-09-13 | Medium(liquid type) | HL2450 | |---|----------------------------| | Frequency (MHz) | 2462.0000 | | Relative permittivity (real part) | 52.35 | | Conductivity (S/m) | 1.93 | | Signal | Crest factor: 1.0 | | E-Field Probe | 2523-EPGO-417 | | Conversion Factor | 3.01 | | Area Scan | dx=8mm dy=8mm | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5mm | | Variation (%) | -3.65 | | SAR 10g (W/Kg) | 0.132918 | | SAR 1g (W/Kg) | 0.255325 | | SURFACE SAR | VOLUME SAR | | SAM Visualization Graphical Interface Zoon In/Out | Calum Scale | | | | Plot 2: 2.4G Wi-Fi, High channel (Body SAR, Back Side) Product Description: Thermal Printer Test Date: 2024-09-13 | Medium(liquid type) | HL2450 | |--|--| | Frequency (MHz) | 2462.0000 | | Relative permittivity (real part) | 52.35 | | Conductivity (S/m) | 1.93 | | Signal | Crest factor: 1.0 | | E-Field Probe | 2523-EPGO-417 | | Conversion Factor | 3.01 | | Area Scan | dx=8mm dy=8mm | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5mm | | Variation (%) | -3.82 | | SAR 10g (W/Kg) | 0.170493 | | SAR 1g (W/Kg) | 0.348626 | | SURFACE SAR | VOLUME SAR | | SAE Virualization Graphical Interface Surface Reducted Intensity Zeen In/Out | SAR Virualisation Graphical Interface Volume Redisted Intensity Zeem In/Out | | Colors Scale 150 | 150 | | | | Plot 3: 2.4G Wi-Fi, High channel (Body SAR, Top Edge) Product Description: Thermal Printer Test Date: 2024-09-13 | Medium(liquid type) | HL2450 | |---|---| | Frequency (MHz) | 2462.0000 | | Relative permittivity (real part) | 52.35 | | Conductivity (S/m) | 1.93 | | Signal | Crest factor: 1.0 | | E-Field Probe | 2523-EPGO-417 | | Conversion Factor | 3.01 | | Area Scan | dx=8mm dy=8mm | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5mm | | Variation (%) | -2.18 | | SAR 10g (W/Kg) | 0.274706 | | SAR 1g (W/Kg) | 0.636048 | | SURFACE SAR | VOLUME SAR | | SAR Virwalisation Graphical Interface Surface Radiated Intensity Zoom In/Out | SAR Virualisation Graphical Interface Volume Reducted Intensity Zeom In/Out | | 0. 6864689 0. 0. 6864689 0. 0. 5867141 0. 0. 517462 0. 0. 575742 0.
0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 575742 0. 0. 0. 575742 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0. 688119 0. 0. 688119 0. 0. 5851100 0. 5855100 0. 5855000 0. 5855000 0. 5850000 0. 5850000 0. 5850000 0. 5850000 0. 5850000 0. 5850000 0. 58500000 0. 5850 | | | | ## 15 Calibration Reports-Probe and Dipole #### **COMOSAR E-Field Probe Calibration Report** Ref: ACR.208.13.24.BES.A # WALTEK TESTING GROUP CO., LTD NO,77, HOUJIE SECTION, GUANTAI ROAD, HOUJIE TOWN DONGGUAN GUANGDONG 518105, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE **SERIAL NO.: 2523-EPGO-417** Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 07/29/2024 Accreditations #2-6789 Scope available on <u>www.cofrac.fr</u> The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/10 Ref: ACR.208.13.24.BES.A | | Name | Function | Date | Signature | |------------------------|---------------|-------------------------|-----------|--------------| | Prepared by: | Cyrille ONNEE | Measurement Responsible | 7/29/2024 | 3 | | Checked & approved by: | Jérôme Luc | Technical Manager | 7/29/2024 | JES | | Authorized by: | Yann Toutain | Laboratory Director | 7/29/2024 | Yann TOUTAAN | Signature Yann numérique de Yann Toutain ID Date: 2024.07.29 10:49:25 +01'00' | 1 | Customer Name | | |---------------|---------------|--| | | WALTEK | | | Distribution: | TESTING GROUP | | | | CO., LTD | | | Name | Date | Modifications | |---------------|-----------|-----------------| | Cyrille ONNEE | 7/29/2024 | Initial release | | | | | | | | | | | | | | | | | Page: 2/10 Template ACR.DDD.N. YY.MVGB.ISSUE COMOSAR Probe vt. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.208.13.24.BES.A #### TABLE OF CONTENTS | 1 | Device Under Test4 | | | | |---|----------------------|-----------------------|---|--| | 2 | Prod | uct Description4 | | | | | 2.1 | General Information | 4 | | | 3 | 3 Measurement Method | | | | | | 3.1 | Sensitivity | 4 | | | | 3.2 | Linearity | | | | | 3.3 | Isotropy | 5 | | | | 3.4 | Boundary Effect | 5 | | | 4 | Meas | surement Uncertainty6 | | | | 5 | Calib | oration Results | | | | | 5.1 | Calibration in air | 6 | | | | 5.2 | Calibration in liquid | 7 | | | 6 | Veri | ication Results8 | | | | 7 | List of Equipment 9 | | | | Page: 3/10 Template ACR.DDD.N. YY.MVGB.ISSUE COMOSAR Probe vt. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR. 208.13.24 BES.A #### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|-----------------------|--|--| | Device Type COMOSAR DOSIMETRIC E FIELD | | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | 2523-EPGO-417 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-7.5GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.231 MΩ | | | | | Dipole 2: R2=0.220 MΩ | | | | | Dipole 3: R3=0.206 MΩ | | | #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 – MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|---------| | Length of Individual Dipoles | 24.5 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.55 mm | | Distance between dipoles / probe extremity | 12.7 mm | #### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards. #### 3.1 <u>SENSITIVITY</u> The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz. Page: 4/10 Template ACR, DDD, N. YY, MV GB JSSUE COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR 208.13.24 BES A #### 3.2 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.3 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.4 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface: $$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}f(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre $\Delta_{ ext{step}}$ is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; ΔSAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). Page: 5/10 Template ACR.DDD.N.YY.MVGB.JSSUE COMOSAR Probe vL This document shall not be
reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.208.13.24.BES.A #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 11% for the frequency range 150-450MHz. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 14% for the frequency range 600-7500MHz. #### 5 CALIBRATION RESULTS | Ambient condition | | | |--------------------|-------------|--| | Liquid Temperature | 20 +/- 1 °C | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | #### 5.1 <u>CALIBRATION IN AIR</u> The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide. From this curve, the sensitivity in air is calculated using the below formula. $$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$ where Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe Page: 6/10 #### Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vL This document shall not be reproduced, except in fidl or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.208.13.24.BES.A | Normx dipole | Normy dipole | Normz dipole | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 1.64 | 0.73 | 1.30 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 110 | 110 | 106 | #### 5.2 CALIBRATION IN LIQUID The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below. $$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$ The E-field in the liquid is determined from the SAR measurement according to the below formula. $$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$ where σ =the conductivity of the liquid ρ=the volumetric density of the liquid SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below For the calorimeter cell (150-450 MHz), the formula is: $$SAR = c \frac{dT}{dt}$$ where c=the specific heat for the liquid dT/dt=the temperature rises over the time For the waveguide setup (600-75000 MHz), the formula is: $$SAR = \frac{4PW}{ab\delta}e^{\frac{-2Z}{\delta}}$$ where a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid Page: 7/10 #### Template ACR, DDD, N. YY, MV GB JSSUE COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.208.13.24.BES.A The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid. | <u>Liquid</u> | Frequency
(MHz*) | <u>ConvF</u> | |---------------|---------------------|--------------| | HL750 | 750 | 2.58 | | HL850 | 835 | 2.46 | | HL900 | 900 | 2.64 | | HL1800 | 1800 | 2.62 | | HL1900 | 1900 | 2.84 | | HL2000 | 2000 | 2.98 | | HL2300 | 2300 | 2.90 | | HL2450 | 2450 | 3.01 | | HL2600 | 2600 | 2.75 | (*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz #### VERIFICATION RESULTS The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy. Linearity:+/-1.43% (+/-0.06dB) Page: 8/10 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.