

FCC Test Report

Report No.: AGC15705231016FR01

FCC ID	:	2BC57-2301
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	R/C CAR
BRAND NAME	:	N/A
MODEL NAME	:	See page 4
APPLICANT	:	YOU XIANG TOYS FACTORY
DATE OF ISSUE	:	Oct. 20, 2023
STANDARD(S)	:	FCC Part 15 Subpart C §15.227
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Oct. 20, 2023	Valid	Initial Release	

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Test Frequency List	5
2.3 Related Submittal(S) / Grant (S)	6
2.4 Test Methodology	6
2.5 Special Accessories	6
2.6 Equipment Modifications	6
2.7 Antenna Requirement	6
3. Test Environment	7
3.1 Address of The Test Laboratory	7
3.2 Test Facility	7
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	9
4. System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	11
5. Description of Test Modes	
6. Field Strength of Fundamental and Radiated Emission	
6.1 Provisions Applicable	
6.2 Measurement Procedure	
6.3 Measurement Setup (Block Diagram Of Configuration)	
6.4 Measurement Result	
7. 20dB Bandwidth Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	24
8. AC Power Line Conducted Emission Test	
8.1 Measurement Limit	
8.2 Measurement Setup (Block Diagram of Configuration)	
8.3 Preliminary Procedure of Line Conducted Emission Test	
8.4 Final Procedure of Line Conducted Emission Test	
8.5 Measurement Result	
APPENDIX I: PHOTOGRAPHS OF Test SETUP	
APPENDIX II: PHOTOGRAPHS OF TEST EUT	

1. General Information

Applicant	YOU XIANG TOYS FACTORY
Address	No. 18, Lane 6 of Niu Lu Wei Liu Xiang, Zhulin Village, Lianshang Town, Chenghai District, Shantou City, Guangdong Province, China
Manufacturer	YOU XIANG TOYS FACTORY
Address	No. 18, Lane 6 of Niu Lu Wei Liu Xiang, Zhulin Village, Lianshang Town, Chenghai District, Shantou City, Guangdong Province, China
Factory	YOU XIANG TOYS FACTORY
Address	No. 18, Lane 6 of Niu Lu Wei Liu Xiang, Zhulin Village, Lianshang Town, Chenghai District, Shantou City, Guangdong Province, China
Product Designation	R/C CAR
Brand Name	N/A
Test Model	2301
Series Model(s)	See page 5
Difference Description	All the series models are the same as the test model except for the model names and the color of appearance.
Date of receipt of test item	Oct. 10, 2023
Date of Test	Oct. 10, 2023 to Oct. 18, 2023
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-SRD27MHz-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Zhou

Sky Zhou (Project Engineer)

Oct. 20, 2023

Reviewed By

in

Calvin Liu (Reviewer)

Oct. 20, 2023

Approved By

Max Zhang (Authorized Officer)

Oct. 20, 2023

2. Product Information

2.1 Product Technical Description

Operation Frequency	27.145MHz
Hardware Version	Ver 1.0
Software Version	Ver 1.0
Modulation Type	FSK
Number of channels	1
Field Strength of Fundamental	57.03dBµV/m
Antenna Designation	Wire Antenna
Antenna Gain	0dBi
Power Supply	DC 3V by battery

2.2 Test Frequency List

Frequency Band Channel Number		Test Frequency		
26.96~27.28 MHz 01		27.145MHz		

	2301-1, 2301-2, 2301-3, 2301-4, 2301-5, 2301-6, 2301-7, 2301-8, 2301-9,
	2301-10, 2301-11, 2301-12, 2301-13, 2301-14, 2301-15, 2301-16, 2301-17,
	2301-18, 2301-19, 2301-20, 2301-21, 2301-22, 2301-23, 2301-24, 2301-25,
	2301-26, 2301-27, 2301-28, 2301-29, 2301-30, 2302, 2302-1, 2302-2, 2302-3,
	2302-4, 2302-5, 2302-6, 2302-7, 2302-8, 2302-9, 2302-10, 2302-11, 2302-12,
	2302-13, 2302-14, 2302-15, 2302-16, 2302-17, 2302-18, 2302-19, 2302-20,
	2302-21, 2302-22, 2302-23, 2302-24, 2302-25, 2302-26, 2302-27, 2302-28,
	2302-29, 2302-30, 2203, 2203-1, 2203-2, 2203-3, 2203-4, 2203-5, 2203-6,
	2203-7, 2203-8, 2203-9, 2203-10, 2203-11, 2203-12, 2203-13, 2203-14,
	2203-15, 2203-16, 2203-17, 2203-18, 2203-19, 2203-20, 2203-21, 2203-22,
	2203-23, 2203-24, 2203-25, 2203-26, 2203-27, 2203-28, 2203-29, 2203-30,
Series Model	77755, HST-23015, 0036-1, 0036-2, 0036-3, 0036-4, 0036-5, HST-0036,
	HST-00365, 368-1, 368-2, 368-3, HST-368-1, HST-368-2, HST-368-3,
	HST-19615, HST-61425, QF526, QF528, 57527-B, 57527-G, 57529A-G,
	57529A-Y, 57529B-G, 57529B-Y, BZ001, BZ001-1, BZ001-2, BZ002, BZ003,
	BZ004, BZ005, BZ006, BZ007, BZ008, BZ009, BZ010, BZ011, BZ012, BZ013,
	BZ014, BZ015, BZ016, BZ017, BZ018, BZ019, BZ020, BZ021, BZ022, BZ023,
	BZ024, BZ025, BZ026, BZ027, BZ028, BZ029, BZ030, 57001, 57002, 57003,
	57004, 57005, 57006, 57007, 57008, 57009, 57010, 57011, 57012, 57013,
	57014, 57015, 57016, 57017, 57018, 57019, 57020, 57021, 57022, 57023,
	57024, 57025, 57026

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BC57-2301**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices			

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (℃)	15 - 35
Relative humidty range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	3V

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Radiated Emission below 150kHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission below 30MHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

3.5 List of Equipment Used

• R	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31	
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2023-03-03	2024-03-02	
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2023-03-03	2024-03-02	
	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02	
	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22	
	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2021-10-31	2023-10-30	
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31	
	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	

• A	AC Power Line Conducted Emission							
Used	Used Equipment No. Test Equipment Manufacturer Model No. Serial No. Last Cal. Date (YY-MM-DD) (YY-MM-DD)							
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023/06/03	2024/06/02	
	AGC-EM-E023 AMN R&S 100086 ESH2-Z5 2023/06/03 2024/06/02							

4. System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement: Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

Test Accessories Come From The Manufacturer

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

4.5 Summary of Test Results

ltem	FCC Rules	Description Of Test	Result
1	§15.203	Antenna Equipment	Pass
2	15.227(a)	Field Strength of Fundamental	Pass
3	§15.209	Radiated Emission	Pass
4	§15.215(c)	20dB Bandwidth	Pass
5	§15.205(a)	Restricted Bands of Operation	Pass
6	§15.207	AC Power Line Conducted Emission	N/A

Note: 1.N/A means not applicable

Note: 2. The device under test is battery-powered and does not require evaluation of AC Power Line Conducted Emission.

5. Description of Test Modes

Summary table of Test Cases						
	Equipment Type / Modulation					
Test Item	Short Range Wireless Device/ FSK					
Radiated & Conducted Test Cases	Mode 1: TX _27.145 MHz					
AC Conducted Emission						
Note:						
1. Only the result of the worst case was recorded in the report, if no other cases.						

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

6. Field Strength of Fundamental and Radiated Emission

6.1 Provisions Applicable

15.209 Limit in the below table has to be followed:

Frequency	Distance	Field Strengths Limit	
(MHz)	Meters	μV/m	dBµV/m
0.009 ~ 0.490	300	2400/F(kHz)	
0.490 ~ 1.705	30	24000/F(kHz)	
1.705 ~ 30	30	30	
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)	

Remark:

1) Emission level dB μ V = 20 log Emission level μ V/m

2) The smaller limit shall apply at the cross point between two frequency bands.

3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

15.227(a) Limit in the below table has to be followed:

Fundamental Frequency	Field Strength of Fundamental	
r undamentar requency	(microvolts/meter)	
26.96-27.28MHz	10000	

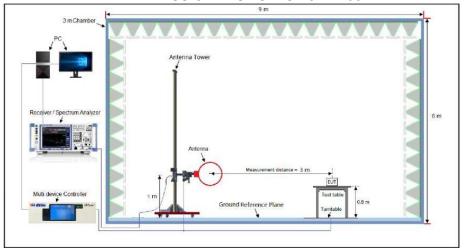
6.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement

antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

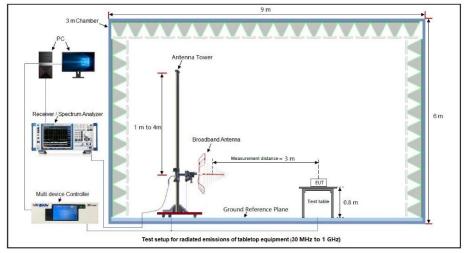
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average		


The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.



6.3 Measurement Setup (Block Diagram Of Configuration)

RADIATED EMISSION TEST SETUP 9KHz-30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

6.4 Measurement Result

Field Strength of Fundamental

EUT Name	R/C CAR	Model Name	2301
Temperature	23.4°C	Relative Humidity	62.5%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Face/Side

Peak Value							
Frequency (MHz)	Measured Level @3m(dBuV/m)	Correction Factor dB/m	Field Strength (dBuV/m)	Limit @3m (dBuV/m)	E-Field Polarity		
27.145	29.86	24.38	54.24	100	Face		
27.145	32.65	24.38	57.03	100	Side		

Average Value							
Frequency (MHz)	Measured Level @3m(dBuV/m)	Correction Factor dB/m	Field Strength (dBuV/m)	Limit @3m (dBuV/m)	E-Field Polarity		
27.145	25.23	24.38	49.61	80	Face		
27.145	27.19	24.38	51.57	80	Side		

RESULT: Pass

Note: Corr. Factor= Antenna Factor (dB/m) + Cable Loss (dB)

EUT Name	R/C C	CAR		N	lodel Name		2301			
Temperature	23.4°	С		R	elative Humi	62.5% Normal Voltage				
Pressure	960h	Pa		Т	est Voltage					
Test Mode	Mode	e 1		А	ntenna		Face			
130.0 dBuV/r	n		1							
							Lim Ma	nit: — Ingin: —		
70										
anter -	(married	2 A MARINA	3	4	5					
with	muy	NHN WWW.W	A yan ya	~~~~	what have not the	And Marine V	Mu , An .	5		
with	muy	MAN ANNA ANNA ANNA ANNA ANNA ANNA ANNA	- marina	n hand	แกงปการสุดทางที่ไ		- Murine Mar	1 want		
10.0	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NHIN MININA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~		u Na Marina	Murry	t Murtham		
	(manulu)	un the second	Ly Mark	(MHz)			- Mulant Mark	5 1 1 0.150		
10.0	(many)	white white the second se	- Ju - Ange			ur ^A ay Wary V	- Murit Uni			
10.0 0.009	(~~wy)	WHIN MINING	Reading	Correct	Measure-					
10.0 0.009	(^{м.} м. ₎ /	Freq.	Level	Correct Factor	Measure- ment	Limit	Over	0.150		
10.0 0.009	(^~у . Mk.	MHz	Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Over	0.150 Detector		
10.0 0.009			Level	Correct Factor	Measure- ment	Limit	Over	0.150		
10.0 0.009		MHz	Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Over	0.150 Detector		
10.0 0.009		MHz 0.0099	Level dBuV 14.29	Correct Factor dB 28.35	Measure- ment dBuV/m 42.64	Limit dB/m 127.4	Over dB -84.84	0.150 Detector peak		
10.0 0.009		MHz 0.0099 0.0158	Level dBuV 14.29 12.92	Correct Factor dB 28.35 27.91	Measure- ment dBuV/m 42.64 40.83	Limit dB/m 127.4 123.4	Over dB -84.84 -82.62	0.150 Detector peak peak		
10.0 0.009 No 10.0 10.0 0.009		MHz 0.0099 0.0158 0.0276	Level dBuV 14.29 12.92 7.67	Correct Factor dB 28.35 27.91 27.03	Measure- ment dBuV/m 42.64 40.83 34.70	Limit dB/m 127.4 123.4 118.6	Over dB -84.84 -82.62 -83.93	0.150 Detector peak peak peak		

Electric Field Test in The Frequency Range 9kHz-150kHz

RESULT: PASS

EUT Name		R/C (CAR		1	Model Name	2301					
Temperature		23.4°	°C		1	Relative Hun	nidity	62.5%				
Pressure		960h	Pa			Test Voltage		Normal Vo				
Test Mode		Mode	e 1			Antenna		Side	Side			
130.0	dBuV/n	n										
					-				imit: <u> </u>			
_												
_												
_												
_												
70												
_												
	1		2	3	4	5						
٨M	1 Marina	m why	Mr. Mulanyay	when a stranger of	-the here the more	hand the second	Anna Namellikipungan	mm for the	Inthe second			
	n an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mar Mallingar	all and a stranger of	when have have	Martin	Anna Anna Maina an Anna Anna Anna Anna Maina an Anna Anna Anna Anna Anna Anna An	un and a start of the	munan			
10.0		muy	phall Mullimarally	all and a stranger of		Martin Annual Martin	Ann-Anna Maigaine th	where the				
		~~~wy	phall Mullim year	- Andrew Barrison	(MHz)		Ann <u>Anna</u> dhigeanna	which the	ም⁄ኪ 0.15			
10.0	9	r		Reading	(MHz)	Measure-	Limit	Over				
10.0	9	Mk.	Freq.	Reading Level	(MHz)							
10.0	9	r	Freq.	Level	(MHz) Correct Factor	Measure- ment	Limit	Over	0.15			
10.0	9 No.	r	Freq. MHz	Level dBuV	(MHz) Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Over	0.15 Detector			
10.0	9 No.	r	Freq. MHz 0.0099	Level dBuV 12.79	(MHz) Correct Factor dB 28.35	Measure- ment dBuV/m 41.14	Limit dB/m 127.4	Over dB -86.34	0.15 Detector peak			
10.0	9 No.	Mk.	Freq. MHz 0.0099 0.0158	Level dBuV 12.79 11.92	(MHz) Correct Factor dB 28.35 27.91 27.29	Measure- ment dBuV/m 41.14 39.83 34.88	Limit dB/m 127.4 123.4	Over dB -86.34 -83.62 -84.96	0.15 Detector peak peak peak			
10.0	9 No.	Mk.	Freq. MHz 0.0099 0.0158 0.0240	Level dBuV 12.79 11.92 7.59 10.40	(MHz) Correct Factor dB 28.35 27.91 27.29	Measure- ment dBuV/m 41.14 39.83 34.88 36.84	Limit dB/m 127.4 123.4 119.8 116.4	Over dB -86.34 -83.62 -84.96 -79.64	0.15 Detector peak peak peak peak			

## Electric Field Test in The Frequency Range 9kHz-150kHz

# **RESULT: Pass**



EUT Name	R/C	CAR		1	Model Name		2301			
Temperature	23.4	°C			Relative Hun	62.5%				
Pressure	960h	nPa			Test Voltage	Norma	Normal Voltage			
Test Mode	Mod	e 1			Antenna		Face			
	//m							it:		
0.0		0.5		(MHz)	5			30.000		
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector		
1		0.3410	22.95	21.17	44.12	96.93	-52.81	peak		
2		0.5047	23.77	20.88	44.65	73.54	-28.89	peak		
3		0.8437	20.80	21.16	41.96	69.08	-27.12	peak		
4		4.3376	17.72	22.82	40.54	69.54	-29.00	peak		
		44.0707	17.02	24.46	41.48	69.54	-28.06	peak		
5		11.0797	17.02	21.10						

#### Electric Field Test in The Frequency Range 150kHz-30MHz

## **RESULT: Pass**



	Electric Fiel		le Flequei	icy Kaliye i	JUK112-30		
EUT Name	R/C CAR		N	lodel Name	•	2301	
Temperature	23.4°C		R	Relative Hur	nidity	62.5%	
Pressure	960hPa		т	est Voltage	!	Norma	I Voltage
Test Mode	Mode 1		Δ	ntenna		Side	
60 0.0 0.150	0.5		(MHz)				imit: Aargin: 6 × w\uluuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
		Reading	Correct	Measure-			
No.	Mk. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	0.3356	24.34	21.18	45.52	97.07	-51.55	peak
2	0.6010	23.16	20.96	44.12	72.02	-27.90	peak
3	0.9039	19.82	21.21	41.03	68.48	-27.45	peak
4	3.2930	17.34	22.50	39.84	69.54	-29.70	peak
	10.7330	17.02	24.43	41.45	69.54	-28.09	peak
5	10.7550						

# Electric Field Test in The Frequency Range 150kHz-30MHz

# **RESULT: Pass**

## Note:

- 1. Negative value in the margin column shows emission below limit.
- 2. All measurements were made with 0.6m loop antenna at 3m distance. All emissions are below the QP limit.
- 3. Corr. Factor= Antenna Factor (dB/m) + Cable Loss (dB)
- 4. Loop antenna is used for the emission under 30MHz.



JT Name	R/C CAR						Mode	Model Name				2301				
mperature	erature 22.				22.8°C				Relat	Relative Humidity			56.5%			
essure			96	0hF	<b>°</b> a				Test	Volta	ge		Normal Voltage			
st Mode			Мс	ode	1				Ante	nna			Horizontal			
72.0	dBuV/m													mit:		
														argin:	_	
															-6	
						_			<u> </u>							
									+						6	
32						_						4 X		5	trange	
							Z X		3	لعمار	www.alfredura	many	****	VIII		
	· ·															
	a dente de la company	munuh	housedu	month	Johnsteilu	halusta	and the state of t	and the second second	an a	Lan and						
ji der	and and address of the second	kon hartan datu	houdentur	waren be	Shalandhi	duludu	in the second	en welter finder and and and	and the second second	Land						
hler A	nduhuliter ang	ker have daal het	hourista	un de	Unanantu	halmen	and the second	an and a second second second	un de la contra de l La contra de la contra	Land a second						
), her	nduladator and	ir wadada	troubaha	un de la companya de	Jonanda	harring		and a support	and the second sec							
-8									(manual) (12-da)			E00	003	700	1000.0	
					70 80			(MHz)		300	400	500	600	700	1000.0	
-8									Measu	300	400			700	1000.0	
-8		50	) 61		70 84	0	ding	(MHz)		300 Jre-		500		700	1000.0	
-8	00 40	50	) 61 F	07	70 80	Rea	ding /el	(MHz)	Measu	300 Jre- It	400		ver		1000.0	
-8	00 40	50 Mk.	) 61 F	o ; Frec	70 80	Rea	ding /el	(MHz) Correct Factor	Measumen	300 Jre- it	400 Limit	Ov	/er B	Dete		
-8	100 40 No.	50 Mk.	F	o ; Frec MHz 854	70 80	Rea Lev dB	ding /el uV	(MHz) Correct Factor dB	Measu men dBuV/	300 ure- it m 2	400 Limit dB/m	Ov d	ver B	Dete	ector	
-8	00 40	50 Mk. 1	F 39.8	• Frec MHz 854	70 80	Rea Lev dB 5.	ding vel u∨ 98	(MHz) Correct Factor dB 13.84	Measu men dBuV/r 19.82	300 ure- it 2 7	400 Limit dB/m 40.00	0v d	ver B .18 .03	Dete pe	ector eak	
-8	00 40	50 Mk. 1 2	F 839.8	• Frec MHz 854 359	70 84 1- 1 7 0	Rea Lev dB 5. 6.	ding vel uV 98 25	(MHz) Correct Factor dB 13.84 16.22	Measu men dBuV// 19.82 22.4	300 ure- it 7 1	400 Limit dB/m 40.00 43.50	Ov d -20 -21	ver B .18 .03 .89	Dete pe pe	ector eak eak	
-8	No.	50 Mk. 1 2 4	F M 39.8 02.3	• Frec MHz 359 676	70 80 	Rea Lev dB 5. 6. 6.	ding /el uV 98 25 76	(MHz) Correct Factor dB 13.84 16.22 15.35	Measu men dBuV// 19.82 22.4 22.1	300 Jre- it 7 7 1	400 Limit dB/m 40.00 43.50 46.00	Ov d -20 -21 -23	ver B .18 .03 .89 .18	Dete pe pe pe	ector eak eak eak	

## Radiated Emission from 30MHz ~1000MHz

# **RESULT: Pass**



EUT Nam	е			R/C	CAR	2				Model N	lame			230	)1		
Temperat	ure		22.8°C Relative Humidit					idity	/	56.	5%						
Pressure				960ł	hPa					Test Vol	tage			Normal Voltage Vertical			
Fest Mode	е			Mod	le 1					Antenna	1						
72.	0 dB	uV/m															_
														Lin Ma	nic: nigin:	-	
																	ſ
									_								-1
32											3X	4	Å	1000 . A/T	halin	NUM	<b>Å</b>
				and the second	1 X		. Mr	2 martin martine from the	að	NW WWW.		-	vur"	A COMPT			
	frider Nil	han dining any s	WALLAN .	entropic e model	and when	Mar Mark	nother		a front free	MAN A							11
	1						Ľ.										
-8 31	0.000	40	50	60	70 8							00	500	600	700	10	
	0.000	40	50	60	70 8			(MHz)		300	1 4	00	500	600	700	10	DD0.0
	0.000	40	50			80 R	eading	(MHz)	t		e-					10	DDO. 0
	0.000		50 Mk.		70 8	80 R		(MHz)		300	e-	oo .imit		600 Over		10	DD0.0
	0.000			F		80 R	eading	(MHz) g Correct		300 Measure	e- L				r	10 Dete	
	0.000 -			F	req.	BO R	eadin	(MHz) g Correct Factor dB		300 Measure ment	e- L	imit.		Ove	r [		ector
	0.000 - -	No.	Mk.	F	Freq. MHz	BO R	eading Level dBuV	(MH₂) g Correct Factor dB 17.00		300 Measure ment dBuV/m	e- L (	.imit dB/m	-	Ove dB	r (	Dete	ector ak
	0.000	No.	Mk.	F 69.6	Freq. MHz 3003 3873	80 R	eadin Level dBuV 6.62	(MHz) g Correct Factor dB 17.00 18.16	r	300 Measure ment dBuV/m 23.62	e- L 4( 4;	.imit dB/m D.00	-	Over dB 16.3	r 18 16	Dete pe	ector ak ak
	0.000	No.	Mk.	F 69.6	Freq. MHz 3003 3873 9318	80 R	eadin Level dBuV 6.62 6.78	(MHz) g Correct Factor dB 17.00 18.16 21.56	r	300 Measure ment dBuV/m 23.62 24.94	e- L 4( 4(	.imit dB/m 0.00 3.50	-	Over dB 16.3 18.5	r 18 16 5	Dete pe pe pe	ector ak ak
	0.000 - - - - - - - - - - - - - - - - -	No.	Mk.	F 69.6 138.3 383.9	Freq. MHz 3003 3873 3873 3318 5457	80 R	eadin Level dBuV 6.62 6.78 6.99	(MHz) g Correct Factor dB 17.00 18.16 21.56 24.91	r 	300 Measure ment dBuV/m 23.62 24.94 28.55	e- 4( 4( 4( 4(	.imit dB/m 0.00 3.50 6.00	-	Ove dB 16.3 18.5 17.4	r 18 16 5	Dete pe pe pe	ector ak ak ak

# Radiated Emission from 30MHz ~1000MHz

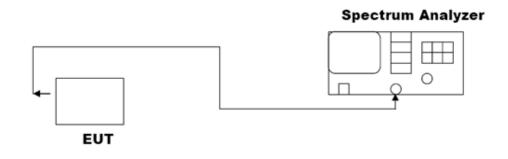
# RESULT: Pass

- Note:
- 1. Factor=Antenna Factor + Cable loss, Over=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.



# 7. 20dB Bandwidth Measurement

#### 7.1 Provisions Applicable

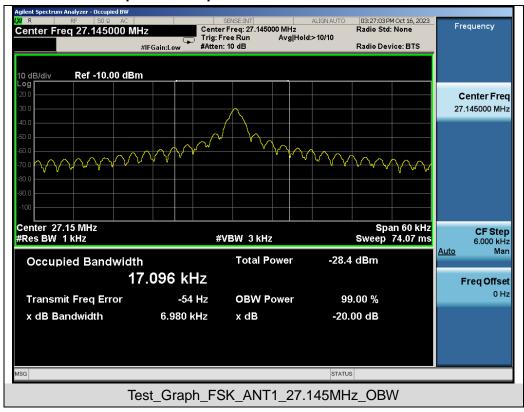

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 26.96~27.28MHz.

#### 7.2 Measurement Procedure

Set the parameters of SPA as below:

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. Centre frequency = Operation Frequency
- 3. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 4. Span: 60kHz, Sweep time: Auto
- 5. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 6. Measured the spectrum width with power higher than 20dB below carrier.
- 7. Measured the 99% OBW.
- 8. Record the plots and Reported.

#### 7.3 Measurement Setup (Block Diagram of Configuration)






#### 7.4 Measurement Result

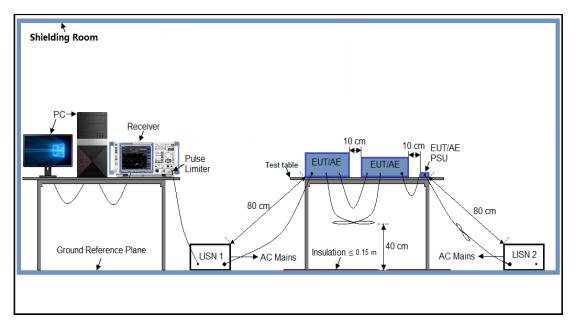
	Test Data of Bandwidth Measurement								
Test Mode	Test Channel (MHz)	99% Occupied Bandwidth (MHz)	-20dB Bandwidth (MHz)	Limits (MHz)	Pass or Fail				
FSK	27.145	0.017096	0.006980	N/A	Pass				

#### Test Graphs of Occupied Bandwidth and -20dB Bandwidth





# 8. AC Power Line Conducted Emission Test


#### 8.1 Measurement Limit

	Maximum RF Line Voltage				
Frequency Range	Q.P. (dBµV)	Average (dBµV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

# 8.2 Measurement Setup (Block Diagram of Configuration)





# 8.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

# 8.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

# 8.5 Measurement Result

Not Applicable Note: This device is battery powered, there is no AC power supply



# **APPENDIX I: PHOTOGRAPHS OF TEST SETUP**

Refer to the Report No.: AGC15705231016AP01

# **APPENDIX II: PHOTOGRAPHS OF TEST EUT**

Refer to the Report No.: AGC15705231016AP02

-----End of Report-----



# Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.