

RF TEST REPORT

For

Dongguan Gen.M Intelligent Technology Co., Ltd Product Name: Bone conduction sleep speaker Test Model(s).: S8

Report Reference No. : DACE240927001RF001

FCC ID : 2BBXP-S8

Applicant's Name : Dongguan Gen.M Intelligent Technology Co., Ltd

Address : No. 177, Dongyuan Avenue, Shipai Town, Dongguan City, Guangdong

Province

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : September 27, 2024

Date of Test : September 27, 2024 to October 10, 2024

Data of Issue : October 10, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 95

Revision History Of Report

Version	on Description REPORT No.		Issue Date	
V1.0	Original	DACE240927001RF001	October 10, 2024	
	16	6		
-				
		7		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:		
Keren Huang	Ben Tang	Machael Mo		
Keren Huang / Test Engineer	Ben Tang / Project Engineer	Machael Mo / Manager		
October 10, 2024	October 10, 2024	October 10, 2024		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 95

CONTENTS

1 TEST SUMMARY	5
1.1 Test Standards	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	
2.1 CLIENT INFORMATION	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	7
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	.11
3.1 ANTENNA REQUIREMENT	11
3.1.1 Conclusion:	.11
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.1. Operation:	.12
4.1.3 Test Data:	
4.1.3 Test Data.	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	16
4.2.3 Test Data:	16
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 CHANNEL SEPARATION	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 NUMBER OF HOPPING FREQUENCIES	
4.5.1 E.U.T. Operation:	.19
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 DWELL TIME	.20
4.6.1 E.U.T. Operation:	.20
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	21
4.7 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.7.1 E.U.T. Operation:	
4.7.2 Test Setup Diagram:	
4.7.3 Test Data:	
4.8 BAND EDGE EMISSIONS (RADIATED)	
4.8.1 E.U.T. Operation:	.23

4.8.2 Test Setup Diagram:	23
4.8.3 Test Data:	24
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	28
4.9.1 E.U.T. Operation:	29
4.9.2 Test Data:	30
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	40
6 PHOTOS OF THE EUT	
APPENDIX	
1. DUTY CYCLE	
220dB Bandwidth	55
3. 99% OCCUPIED BANDWIDTH	59
4. PEAK OUTPUT POWER	63
5. Spurious Emissions	67
6. Bandedge	73
7. CARRIER FREQUENCIES SEPARATION (HOPPING)	
8. NUMBER OF HOPPING CHANNEL (HOPPING)	86
9. DWELL TIME (HOPPING)	90

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 4 of 95

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 95

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Dongguan Gen.M Intelligent Technology Co., Ltd

Address : No. 177, Dongyuan Avenue, Shipai Town, Dongguan City, Guangdong

Report No.: DACE240927001RF001

Province

Manufacturer : Dongguan Gen.M Intelligent Technology Co., Ltd

Address : No. 177, Dongyuan Avenue, Shipai Town, Dongguan City, Guangdong

Province

2.2 Description of Device (EUT)

Product Name:	Bone conduction sleep speaker
Model/Type reference:	S8
Series Model:	N/A
Trade Mark:	YOOGU
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V
Operation Frequency:	2402~2480MHz
Number of Channels:	79
Modulation Type:	GFSK, p/4DQPSK
Antenna Type:	PCB
Antenna Gain:	0dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 95

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see

Test channel	Frequency (MHz)
rest channel	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description			
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.			
TM3 TX-GFSK (Hopping)		Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.			
Remark:Only the data of the worst mode would be recorded in this report.					

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.	
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	2)V	

Page 7 of 95 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

2.5 Equipments Used During The Test

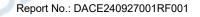
Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1	
Cable	SCHWARZ BECK	100	1	2024-03-20	2025-03-19	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	1	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	1	

Dwell Time

Emissions in non-restricted frequency bands

Occupied Bandwidth

Maximum Conducted Output Power


Channel Separation

Number of Hopping Frequencies

· · · · · · · · · · · · · · · · · · ·	Training Training Training									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
RF Test Software	TACHOY	RTS-01	V1.0.0	/	1					
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10					
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1					
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11					
Signal Generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08					
Signal Generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08					
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11					

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 95

Emissions in frequency bands (above 1GHz) Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)

Equipment	Manufacturer Model No		Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1
Positioning Controller	<i>-</i> /	MF-7802	61	1	/
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	Spectrum Analyzer R&S		SP30 1321.3008K40 -101729-jR		2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 95

2.6 Statement Of The Measurement Uncertainty

V1.0

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
FCC Registration Number:	0032847402					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

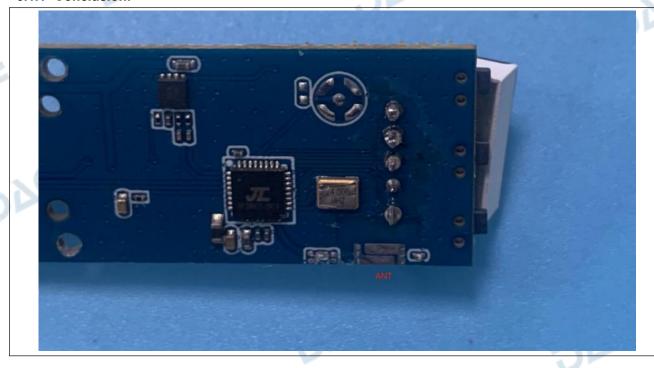
2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 95

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

3 Evaluation Results (Evaluation)


V1.0

3.1 Antenna requirement

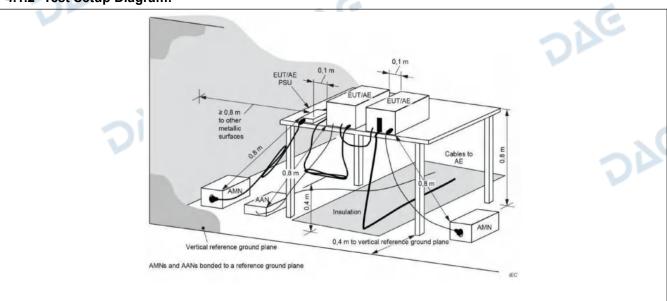
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 95

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

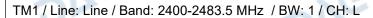
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
\	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2							
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

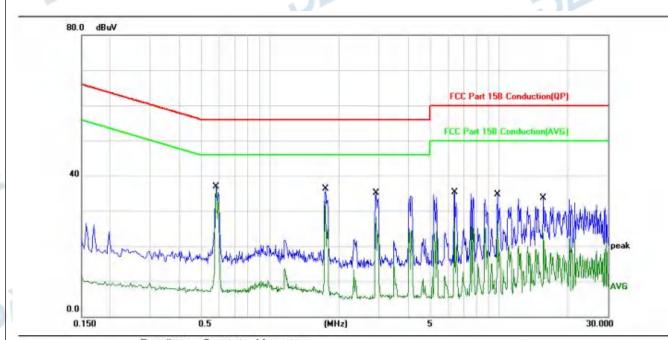
4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.4 °C			Humidity:	50 %		Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2				
Final test mode:		TM1,	TM2				

4.1.2 Test Setup Diagram:

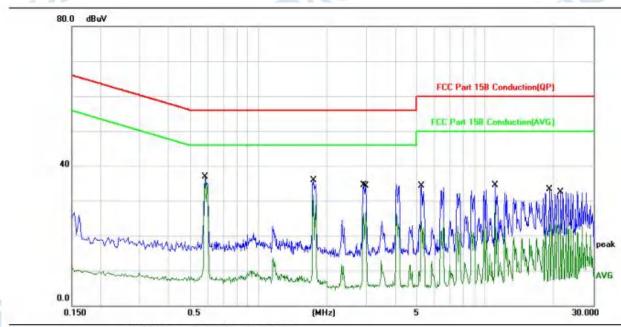
Web: http://www.dace-lab.com


Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 12 of 95

4.1.3 Test Data:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.5820	26.89	10.09	36.98	56.00	-19.02	QP		
2	*	0.5820	26.04	10.09	36.13	46.00	-9.87	AVG		
3		1.7460	26.24	10.02	36.26	56.00	-19.74	QP		
4		1.7460	22.64	10.02	32.66	46.00	-13.34	AVG		
5		2.9060	24.98	10.05	35.03	56.00	-20.97	QP		
6		2.9060	18.28	10.05	28.33	46.00	-17.67	AVG		
7		6.3940	25.19	10.21	35.40	60.00	-24.60	QP		
8		6.3940	16.48	10.21	26.69	50.00	-23.31	AVG		
9		9.8860	24.35	10.31	34.66	60.00	-25.34	QP		
10		9.8860	17.05	10.31	27.36	50.00	-22.64	AVG		
11		15.6940	23.14	10.50	33.64	60.00	-26.36	QP		
12		15.6940	13.13	10.50	23.63	50.00	-26.37	AVG		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 95

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5820	26.82	10.09	36.91	56.00	-19.09	QP	
2	*	0.5820	26.07	10.09	36.16	46.00	-9.84	AVG	
3		1.7460	25.87	10.02	35.89	56.00	-20.11	QP	
4		1.7460	21.62	10.02	31.64	46.00	-14.36	AVG	
5		2.9100	24.54	10.05	34.59	56.00	-21.41	QP	
6		2.9739	16.54	10.06	26.60	46.00	-19.40	AVG	
7		5.2340	24.06	10.19	34.25	60.00	-25.75	QP	
8		5.2340	13.91	10.19	24.10	50.00	-25.90	AVG	
9		11.0500	24.13	10.34	34.47	60.00	-25.53	QP	
10		11.0500	18.92	10.34	29.26	50.00	-20.74	AVG	
11		19.1860	22.83	10.56	33.39	60.00	-26.61	QP	
12		21.5220	14.36	10.62	24.98	50.00	-25.02	AVG	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 95

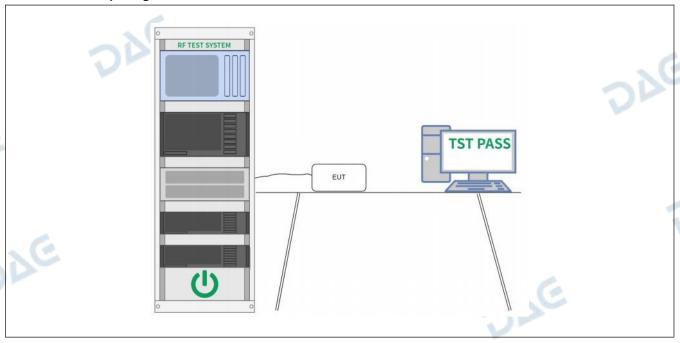
4.2 Occupied Bandwidth

4.2 Occupied Band	width	
Test Requirement:	47 CFR 15.247(a)(1)	2/6
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating provisions to the general emission limits, as contained in and in subpart E of this part, must be designed to ensure of the emission, or whatever bandwidth may otherwise be rule section under which the equipment operates, is contaband designated in the rule section under which the equipment	§§ 15.217 through 15.257 that the 20 dB bandwidth e specified in the specific ained within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	h measurements, use the
Procedure:	a) The spectrum analyzer center frequency is set to the nacenter frequency. The span range for the EMI receiver or be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the OBW and video bandwidth (VBW) shall be approximal unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keep the content of the	spectrum analyzer shall the range of 1% to 5% of ately three times RBW,
Ve	exceeding the maximum input mixer level for linear opera of the spectral envelope shall be more than [10 log (OBW reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust with tolerances.	tion. In general, the peak //RBW)] below the
DIE	e) The dynamic range of the instrument at the selected RI dB below the target "-xx dB down" requirement; that is, if measuring the -20 dB OBW, the instrument noise floor at be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold g) Determine the reference value: Set the EUT to transmit	the requirement calls for the selected RBW shall d.
	or modulated signal, as applicable. Allow the trace to stab analyzer marker to the highest level of the displayed trace value). h) Determine the "-xx dB down amplitude" using [(referen Alternatively, this calculation may be made by using the minstrument.	oilize. Set the spectrum e (this is the reference nce value) – xx]. narker-delta function of the
DP	i) If the reference value is determined by an unmodulated modulation ON, and either clear the existing trace or start spectrum analyzer and allow the new trace to stabilize. O step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the frequency of the envelope of the spectral display, such that	t a new trace on the therwise, the trace from e other at the highest
	slightly below the "-xx dB down amplitude" determined in below this "-xx dB down amplitude" value, then it shall be this value. The occupied bandwidth is the frequency differ markers. Alternatively, set a marker at the lowest frequency spectral display, such that the marker is at or slightly below amplitude" determined in step h). Reset the marker-delta marker to the other side of the emission until the delta marker.	e as close as possible to rence between the two cy of the envelope of the w the "-xx dB down function and move the
DIE	same level as the reference marker amplitude. The marker at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing instrument display; the plot axes and the scale units per dlabeled. Tabular data may be reported in addition to the p	plot(s) of the measuring division shall be clearly

Report No.: DACE240927001RF001

4.2.1 E.U.T. Operation:

<u> </u>	
()naratina	⊢n\/ironmont
Operaniu	Environment:


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 95

Temperature: 22.4 °	Humidity	: 50 %	Atmospheric	Pressure: 102 kPa	
Pretest mode:	TM1, TM2				G
Final test mode:	TM1, TM2	V		J P	

4.2.2 Test Setup Diagram:

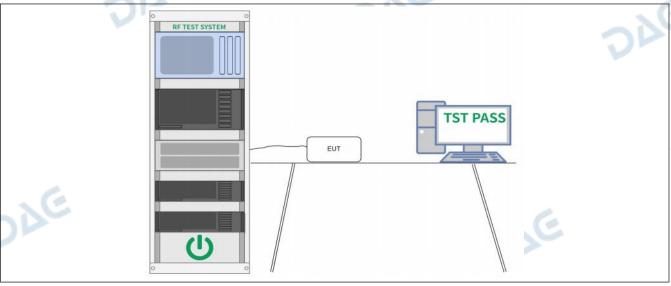
4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 95

4.3 Maximum Conducted Output Power


Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured.
JE JE	 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.3.1 E.U.T. Operation:	XE G

Report No.: DACE240927001RF001

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.4 °C			Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, T			TM2				
Final test mode: TM1, TM2			TM2				

4.3.2 Test Setup Diagram:

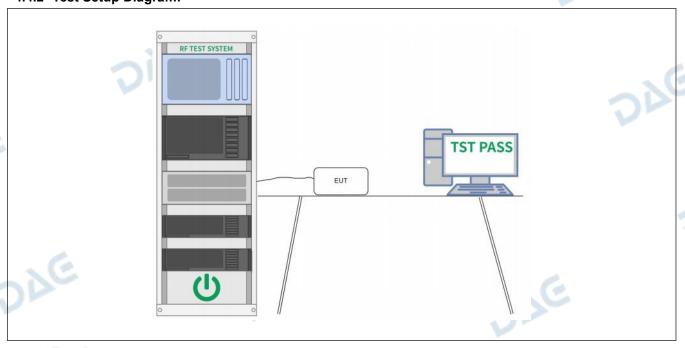
4.3.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Page 17 of 95 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

4.4 Channel Separation


V1.0

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
VG.	d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.4 °C			Humidity:	50 %		Atmospheric Pressure:	102 kPa
Pretest mode: TM3			TM4	- 3	C		. 6
Final test mode: TM3,		TM4	OP			270	

4.4.2 Test Setup Diagram:

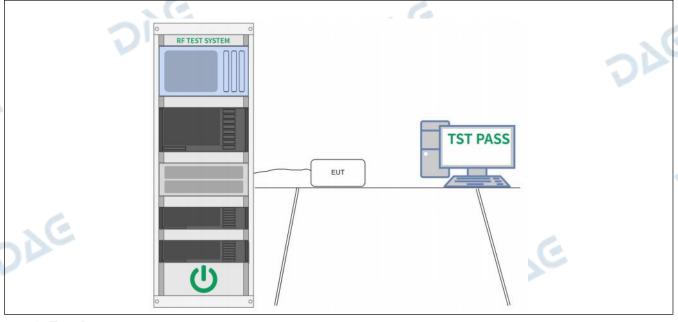
4.4.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 95

4.5 Number of Hopping Frequencies


V1.0

	hma medanine
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.4 °C			Humidity:	50 %	70	Atmospheric Pressure:	102 kPa	
Pretest mode: TM3,			TM4	V			200	
Final test mode: TM3			TM4					

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 95

4.6 Dwell Time

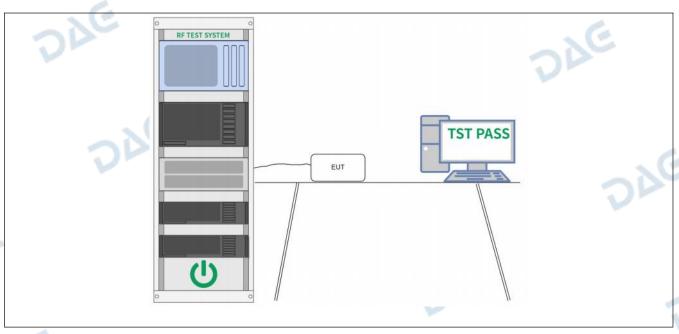
Test Requirement: 47 CFR 15.247(a)(1)(iii) Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then	Test Requirement:	47 CEP 15 247(a)(1)(iii)
MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements.) = (number of hops on spectrum analyzer) × (period specified in the requirements.) from the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for		47 CFK 13.247(a)(1)(iii)
Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for	Test Limit:	MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency
analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for	Test Method:	
The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.	Y.E	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

Report No.: DACE240927001RF001

4.6.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.4 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM3,	TM4			
Final test mode:	1	TM3,	TM4	6		

4.6.2 Test Setup Diagram:


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 95

DAG

DAG

DAG

DAG

4.6.3 Test Data:

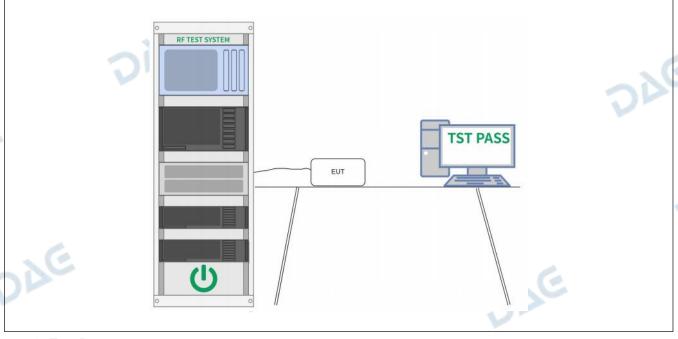
DAG

DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 95


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.4 °C		Humidity:	50 %		Atmospheric Pressure:	102 kPa	
Pretest mode:	TM2, TM3,	TM4	C		. 6		
Final test mode:	TM1,	TM2, TM3,	ГМ4			276	

4.7.2 Test Setup Diagram:

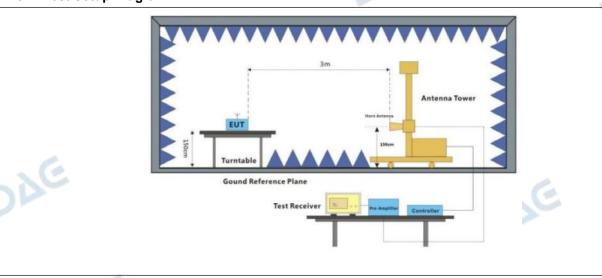
4.7.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 95

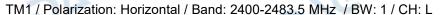
4.8 Band edge emissions (Radiated)

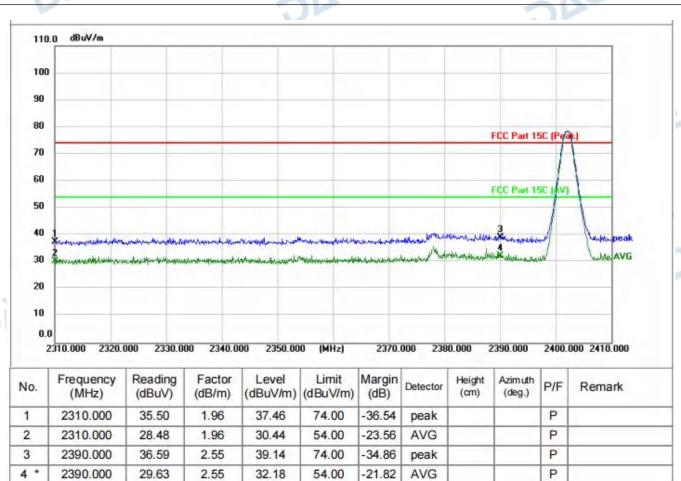

Test Requirement:	restricted bands, as defir	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
4	216-960	200 **	3					
	Above 960	500	3					
VE.	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	ANSI C63.10-2013 secti	on 6.10.5.2	16					

Report No.: DACE240927001RF001

4.8.1 E.U.T. Operation:

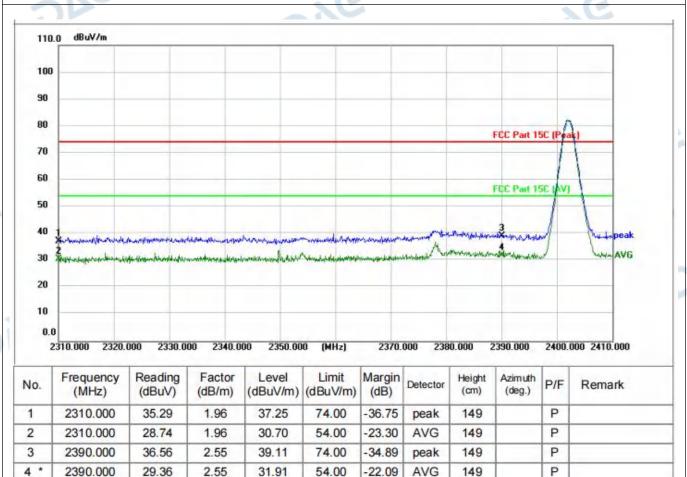
Operating Environment:								
Temperature: 22.4 °C I			Humidity:	50 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1,			TM2		. 6			
Final test mode: TM1, TM2								


4.8.2 Test Setup Diagram:



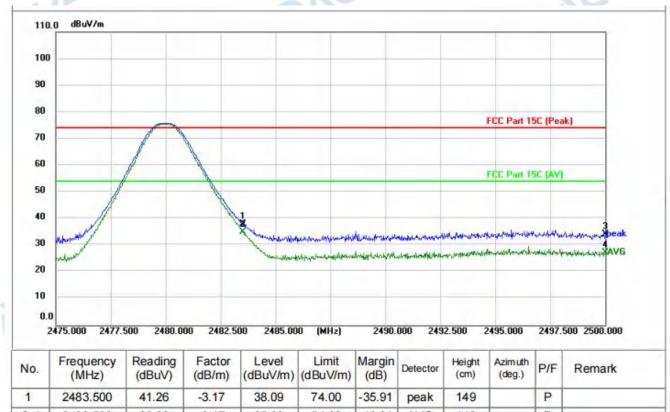
Page 23 of 95 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

4.8.3 Test Data:



Report No.: DACE240927001RF001

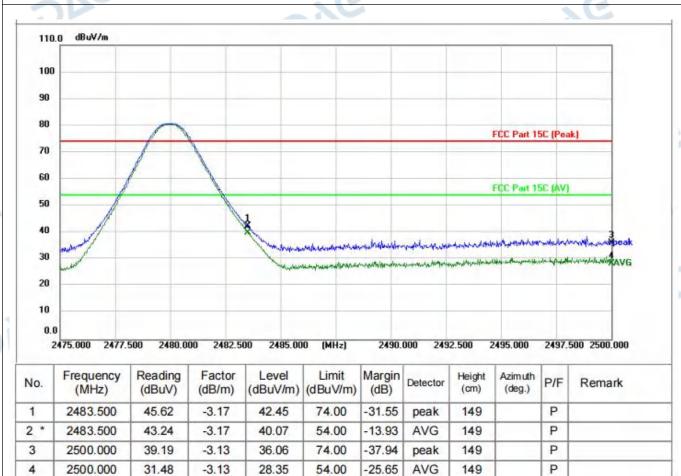
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L



DAG

Report No.: DACE240927001RF001

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 95

DAG

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

DAG

DAG

4.9 Emissions in frequency bands (below 1GHz)

	requency bands (belo		- G						
Test Requirement:	restricted bands, as define	I), In addition, radiated emissions ed in § 15.205(a), must also com n § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.								
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02								
Procedure:	above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 nd degrees to determine the c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is with determine the maximum with polarizations of the antenne e. For each suspected enter the antenna was tuned to below 30MHz, the antenne was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing coureported. Otherwise the e tested one by one using preported in a data sheet.	the EUT in peak mode was 10dE Ild be stopped and the peak valu missions that did not have 10dB leak, quasi-peak or average met	ber. The table was rotated ation. Intating table 1.5 meters are table was rotated 360 mence-receiving antenna, at tower. Interest above the ground to norizontal and vertical ment. In its worst case and then are for the test frequency of and the rotatable table kimum reading. In and Specified B lower than the limit uses of the EUT would be margin would be reschod as specified and then						
	i. The radiation measurem Transmitting mode, and fo j. Repeat above procedure Remark:	nents are performed in X, Y, Z ax bund the X axis positioning which es until all frequencies measured Hz, through pre-scan found the	kis positioning for n it is the worst case. d was complete.						
. [0	. ,								

Report No.: DACE240927001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 95

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: DACE240927001RF001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.9.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.4 °C	_ >	Humidity:	50 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	TM1,	TM2		. 6					
Final test mode:			TM2		270				

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 95

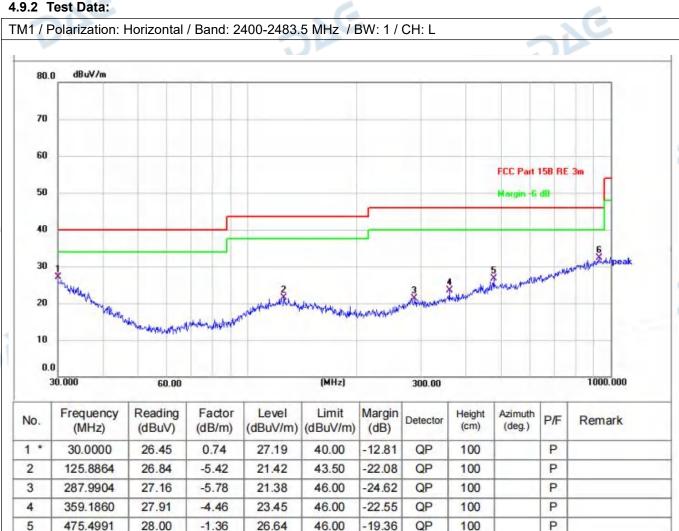
5.24

27.08

32.32

46.00

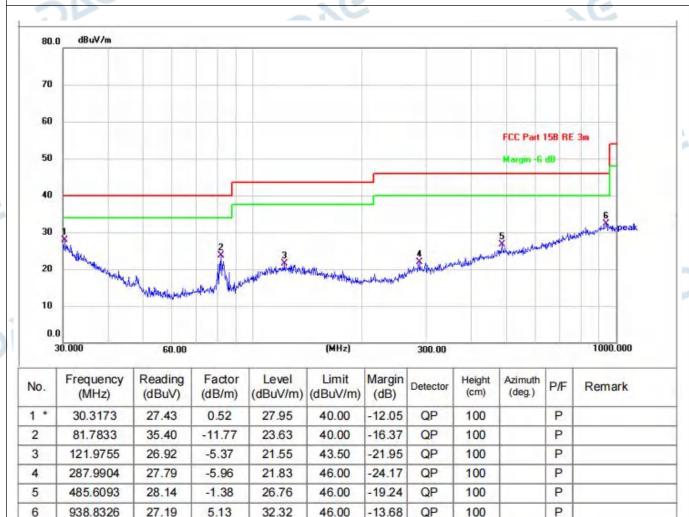
-13.68


QP

100

6

929.0082


Report No.: DACE240927001RF001

P

Page 30 of 95 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Report No.: DACE240927001RF001

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 95

4.10 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in §								
	15.205(a), must also comp 15.209(a)(see § 15.205(c))	ly with the radiated emission limi .`	ts specified in §						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	The emission limits shown employing a CISPR quasi-110–490 kHz and above 10	e, the tighter limit applies at the b in the above table are based on peak detector except for the freq 000 MHz. Radiated emission limi its employing an average detector	measurements uency bands 9–90 kHz, ts in these three bands						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02								
Procedure:	above the ground at a 3 or 360 degrees to determine to b. For above 1GHz, the EU above the ground at a 3 modegrees to determine the pc. The EUT was set 3 or 10 which was mounted on the d. The antenna height is varied determine the maximum varied polarizations of the antenna e. For each suspected emit the antenna was tuned to below 30MHz, the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum I g. If the emission level of the specified, then testing coul reported. Otherwise the entested one by one using pereported in a data sheet. h. Test the EUT in the lower in the shower in the radiation measurement.	ne EUT in peak mode was 10dB d be stopped and the peak value hissions that did not have 10dB neak, quasi-peak or average metherst channel, the middle channel, the tents are performed in X, Y, Z axis	er. The table was rotated on. ating table 1.5 meters table was rotated 360 mee-receiving antenna, tower. ers above the ground to rizontal and vertical ent. its worst case and then (for the test frequency of nd the rotatable table mum reading. In and Specified so the EUT would be nargin would be reported as specified and then the Highest channel.						
	j. Repeat above procedure Remark:	und the X axis positioning which is until all frequencies measured. Hz, through pre-scan found the w	was complete.						

Report No.: DACE240927001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 32 of 95

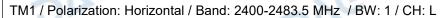
channel. Only the worst case is recorded in the report.

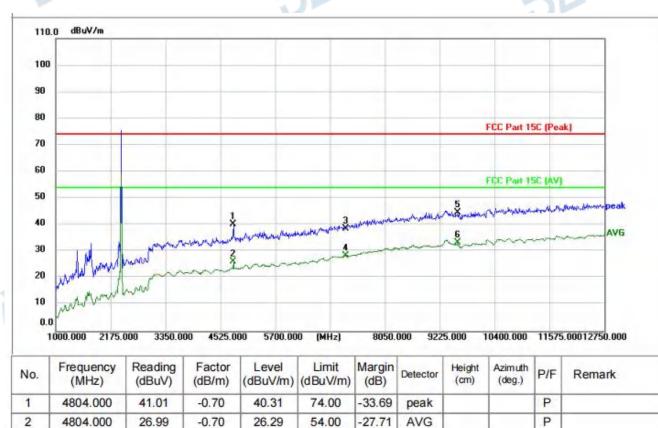
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: DACE240927001RF001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

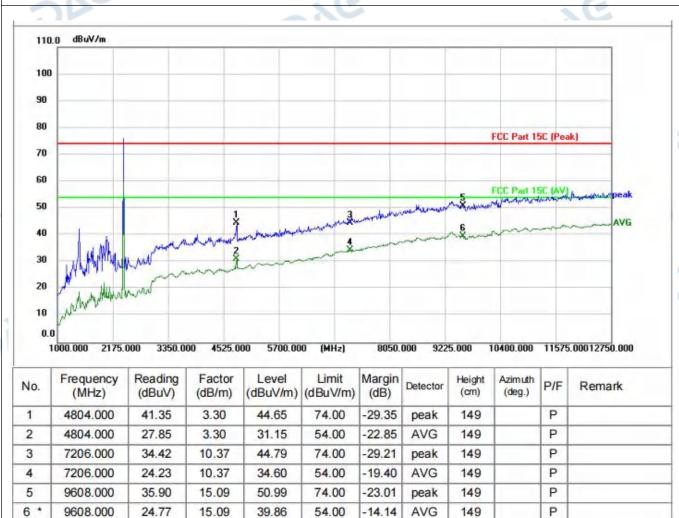
4.10.1 E.U.T. Operation:


DAG


Operating Environment:									
Temperature:	22.4 °C	_ >	Humidity:	50 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	TM1,	TM2		. 6					
Final test mode:			TM2		270				

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 33 of 95

4.10.2Test Data:


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	41.01	-0.70	40.31	74.00	-33.69	peak			P	
2	4804.000	26.99	-0.70	26.29	54.00	-27.71	AVG			Р	
3	7206.000	34.20	4.37	38.57	74.00	-35.43	peak			Р	
4	7206.000	24.08	4.37	28.45	54.00	-25.55	AVG			Р	
5	9608.000	36.56	8.09	44.65	74.00	-29.35	peak			Р	
6 *	9608.000	25.26	8.09	33.35	54.00	-20.65	AVG			Р	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 34 of 95

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 95

5

6

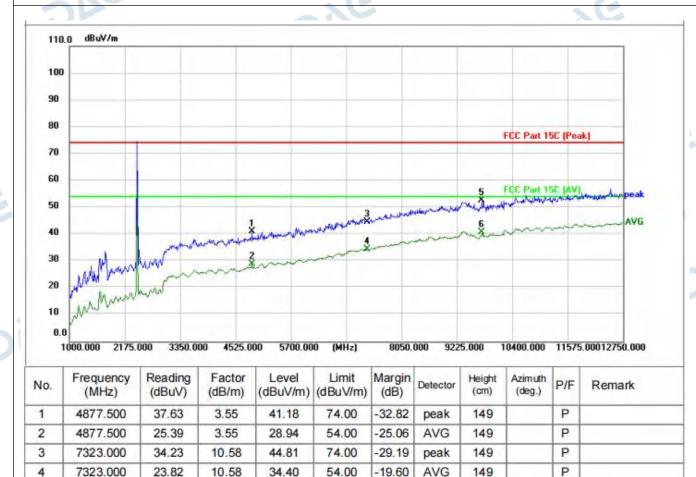
9764.000

9764.000

37.61

25.80

15.09


15.09

52.70

40.89

Report No.: DACE240927001RF001

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

74.00

54.00

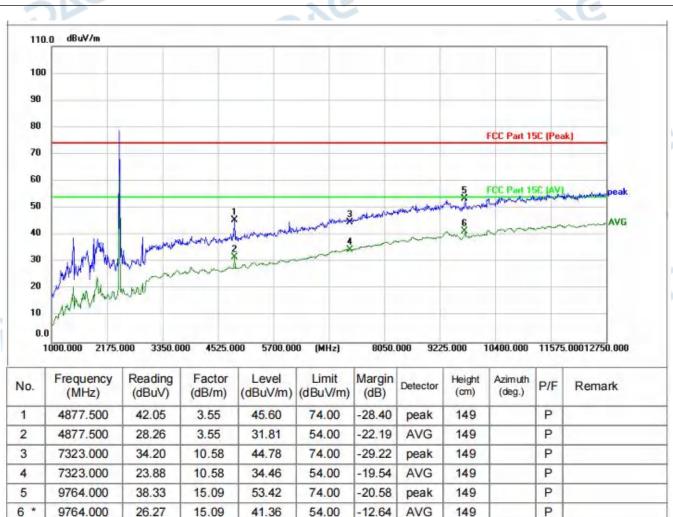
-21.30

-13.11

peak

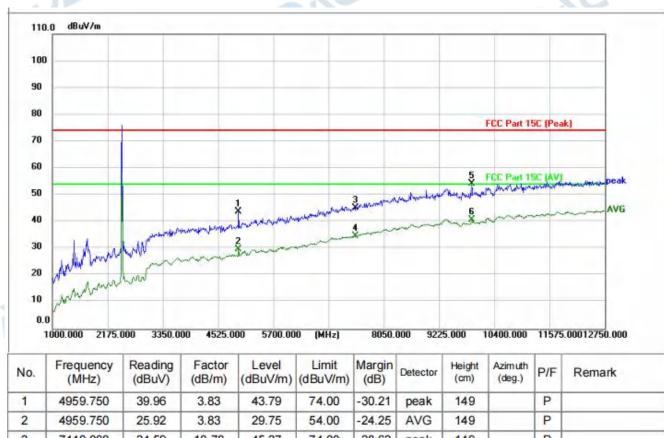
AVG

149

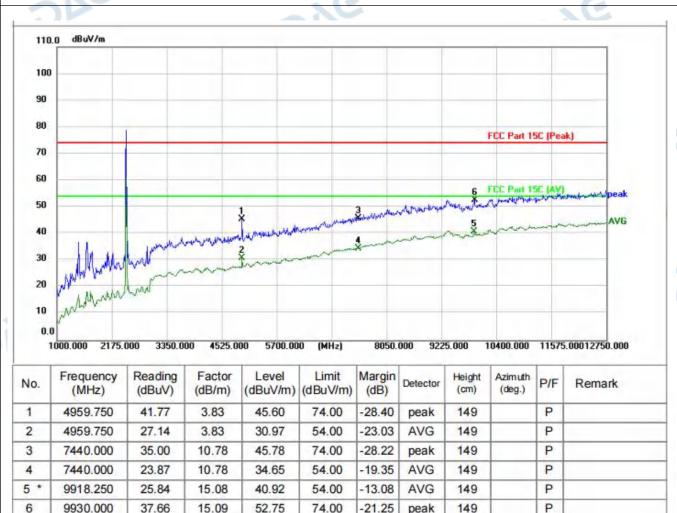

149

P

P


TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

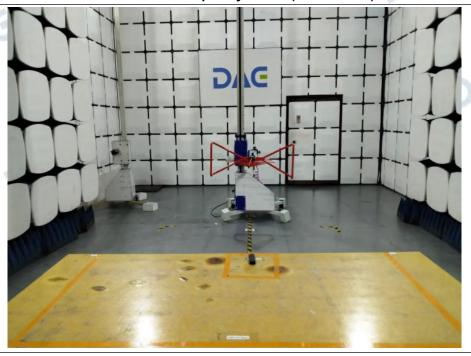
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 37 of 95


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 38 of 95

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 95



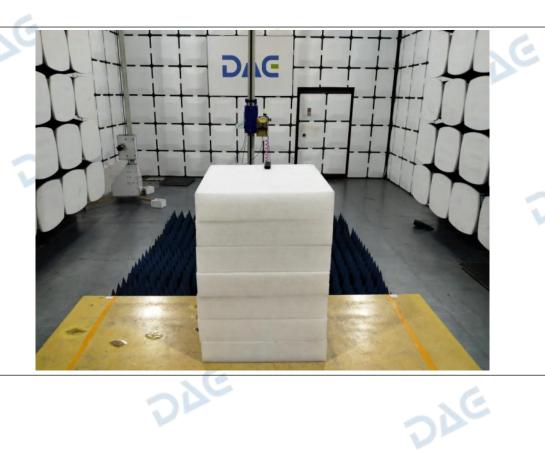
5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 40 of 95



DIG

DAG

DAG

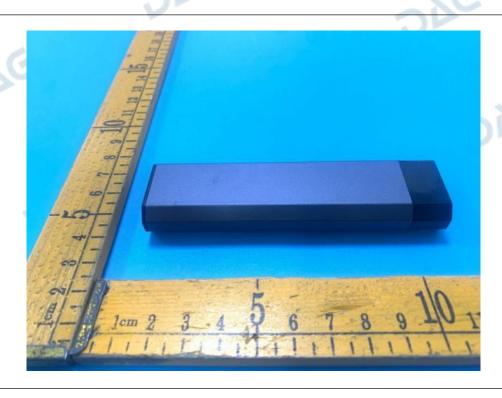
DIE

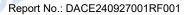
DAG

DAG

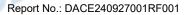
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 95


6 PHOTOS OF THE EUT





Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 95

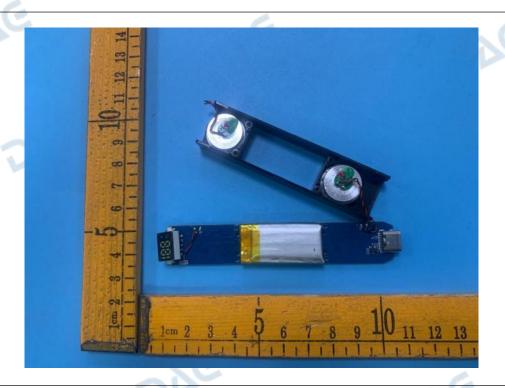

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

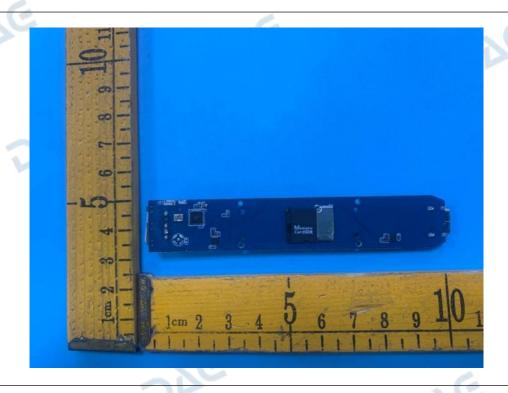
Tel: +86-755-23010613

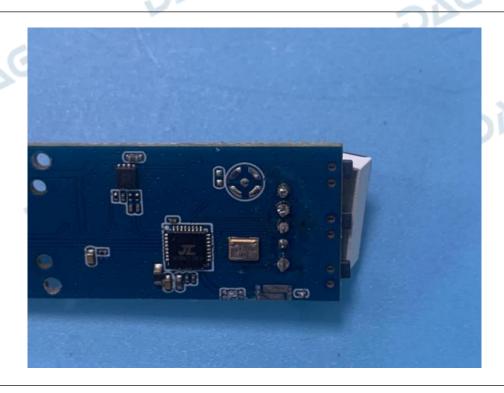
E-mail: service@dace-lab.com

Page 45 of 95

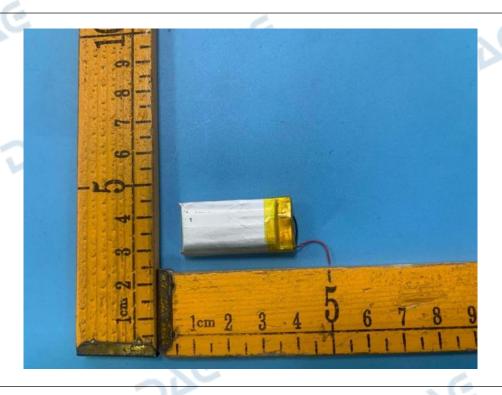

Internal

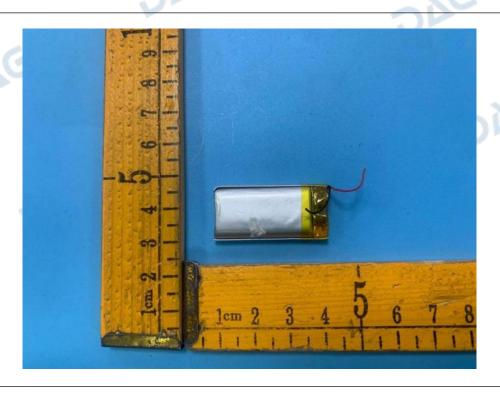
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 95





Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 47 of 95





Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 95

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 95

DAG

DAG

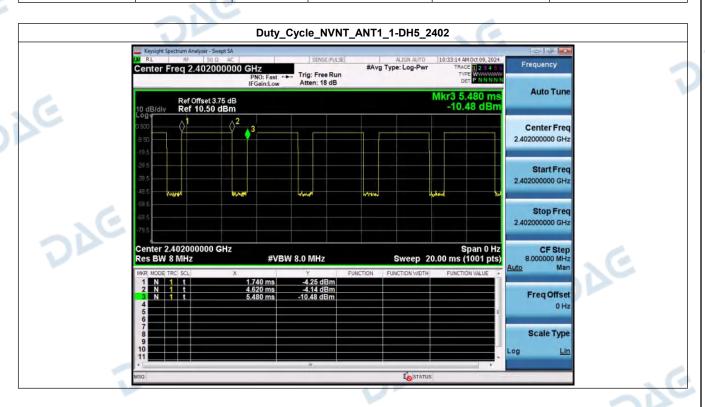
Report No.: DACE240927001RF001

Appendix

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 95

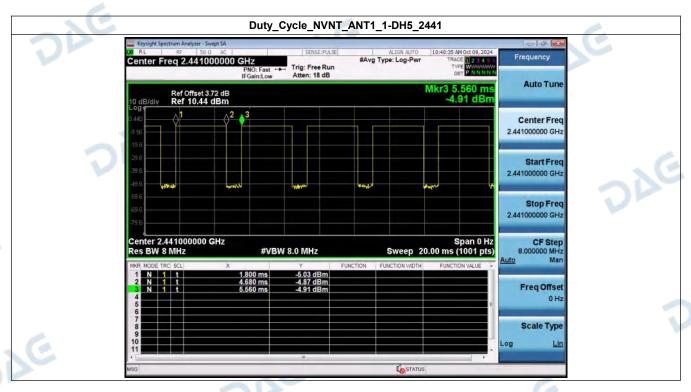
DAG

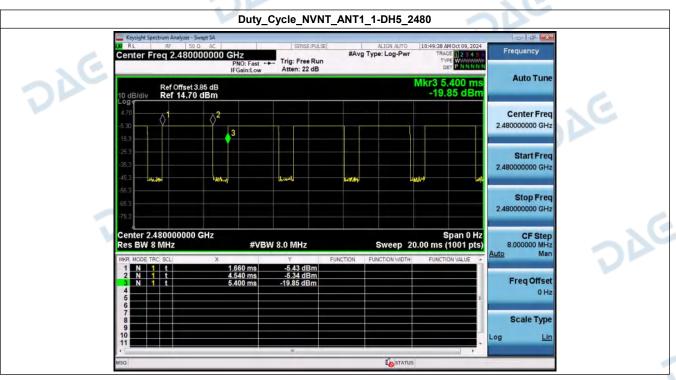


V1.0

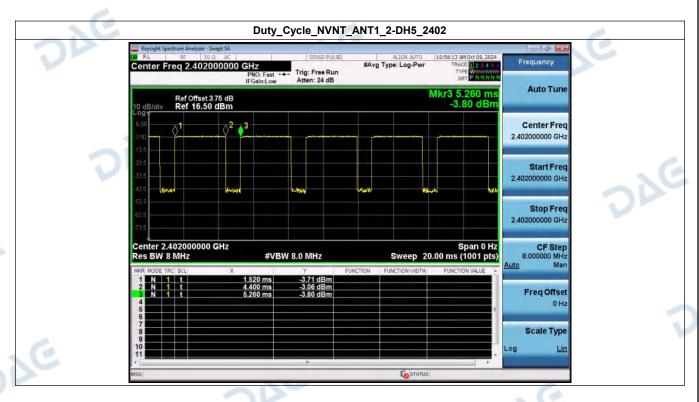
HT240927002--S8--EDR--FCC FCC_BT (Part15.247) Test Data

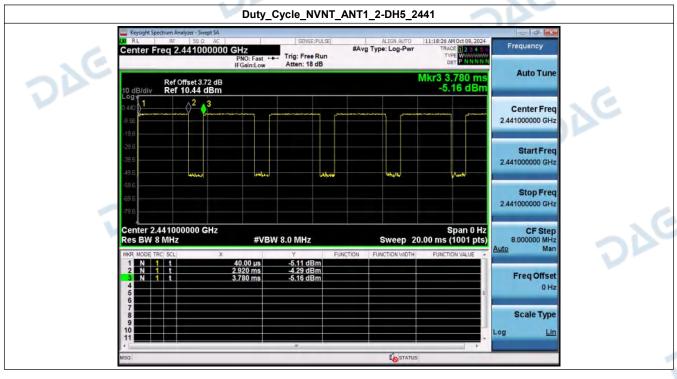
1. Duty Cycle


Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1-DH5	2402.00	77.54	1.10
NVNT	ANT1	1-DH5	2441.00	77.13	1.13
NVNT	ANT1	1-DH5	2480.00	77.54	1.10
NVNT	ANT1	2-DH5	2402.00	77.54	1.10
NVNT	ANT1	2-DH5	2441.00	77.01	1.13
NVNT	ANT1	2-DH5	2480.00	77.54	1.10

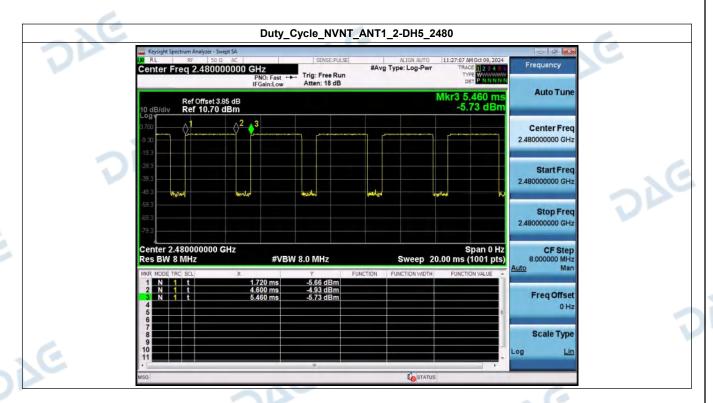


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 95


V1.0



V1.0



DAG

DAG

DAG

V1.0

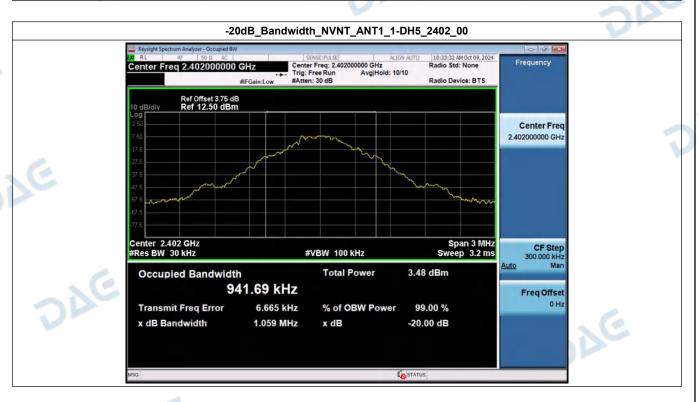
DAG

DAG

DAG

DAG

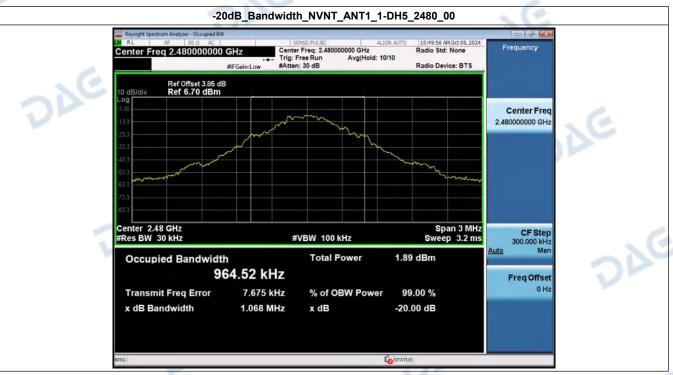
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 95

2. -20dB Bandwidth

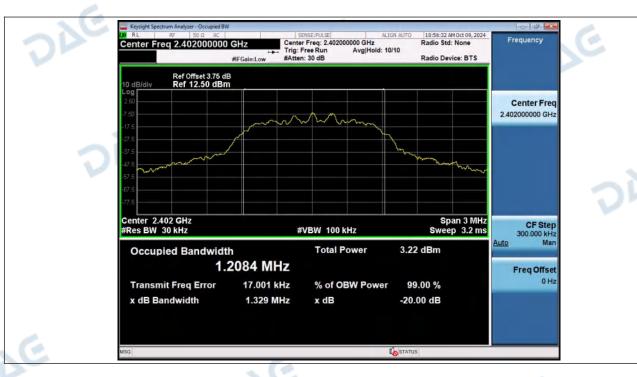
V1.0

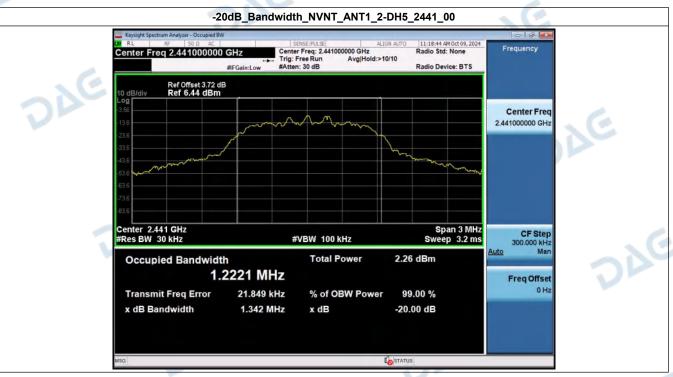
Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.059	Yes
NVNT	ANT1	1-DH5	2441.00	1.067	Yes
NVNT	ANT1	1-DH5	2480.00	1.068	Yes
NVNT	ANT1	2-DH5	2402.00	1.329	Yes
NVNT	ANT1	2-DH5	2441.00	1.342	Yes
NVNT	ANT1	2-DH5	2480.00	1.339	Yes



-20dB_Bandwidth_NVNT_ANT1_1-DH5_2441_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 95

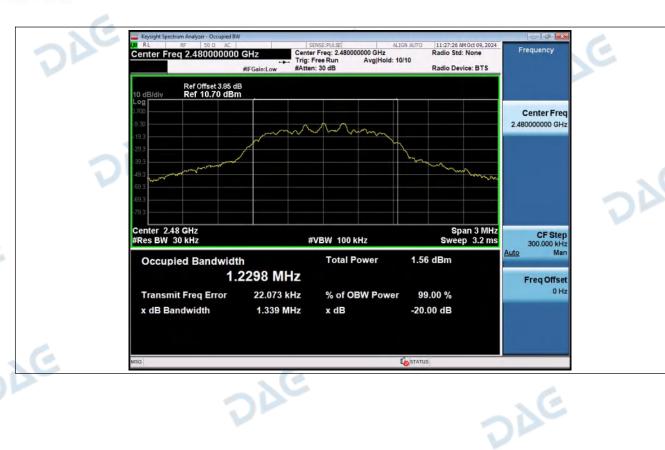




-20dB_Bandwidth_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 95

-20dB_Bandwidth_NVNT_ANT1_2-DH5_2480_00


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 95

DAG

DAG

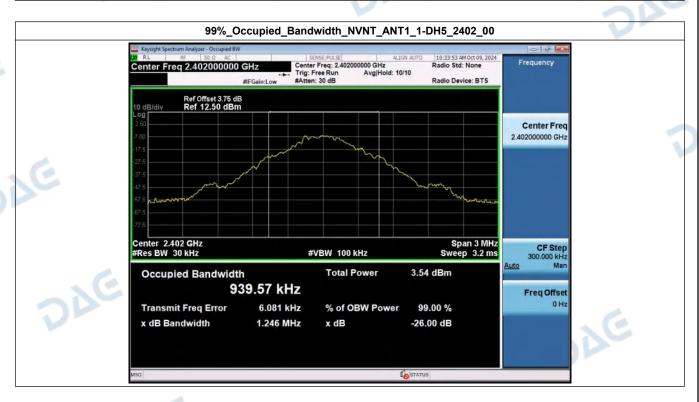
V1.0

DAG

DAG

DAG

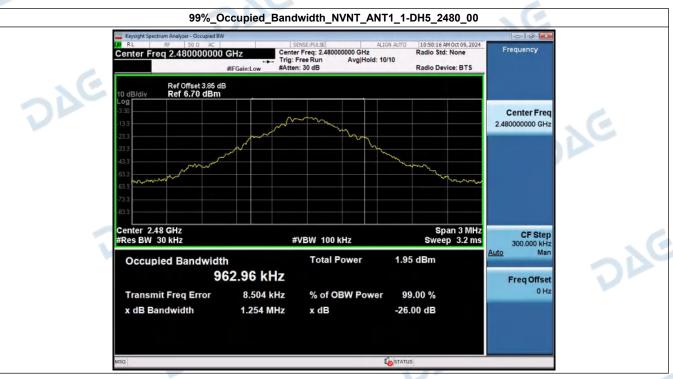
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 95

3. 99% Occupied Bandwidth

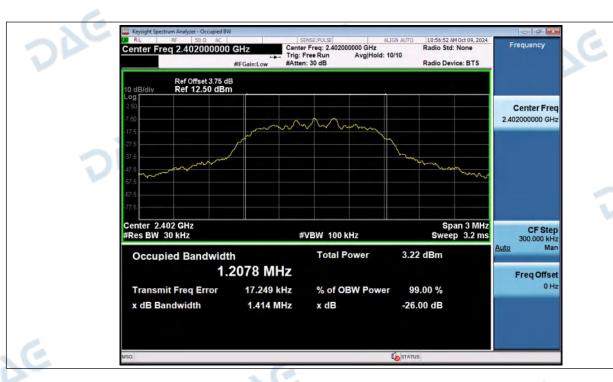
V1.0

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.940
NVNT	ANT1	1-DH5	2441.00	0.955
NVNT	ANT1	1-DH5	2480.00	0.963
NVNT	ANT1	2-DH5	2402.00	1.208
NVNT	ANT1	2-DH5	2441.00	1.219
NVNT	ANT1	2-DH5	2480.00	1.228


99%_Occupied_Bandwidth_NVNT_ANT1_1-DH5_2441_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 95

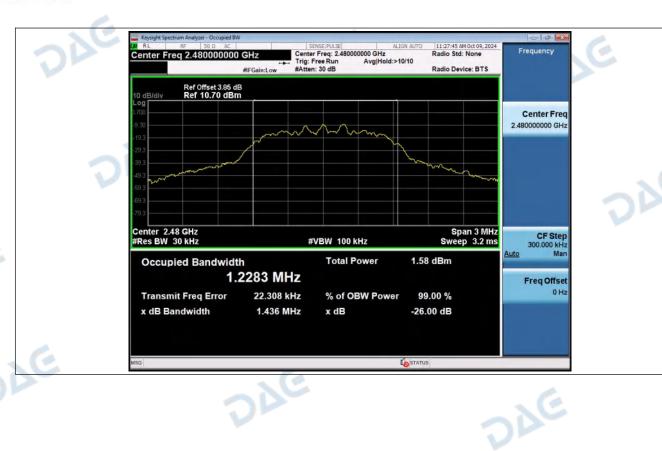
V1.0



99%_Occupied_Bandwidth_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 95

99%_Occupied_Bandwidth_NVNT_ANT1_2-DH5_2480_00


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 95

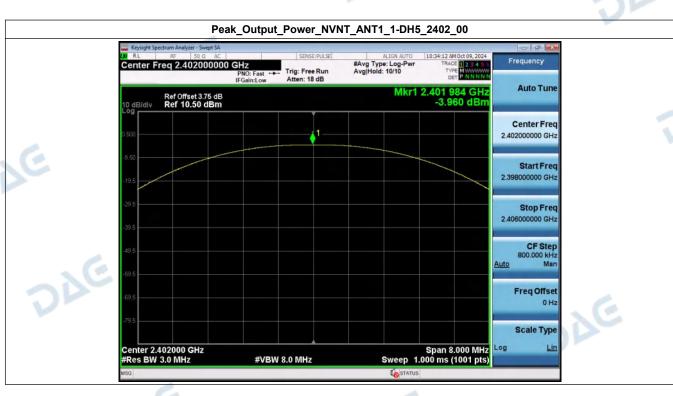
DAG

DAG

V1.0

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 95

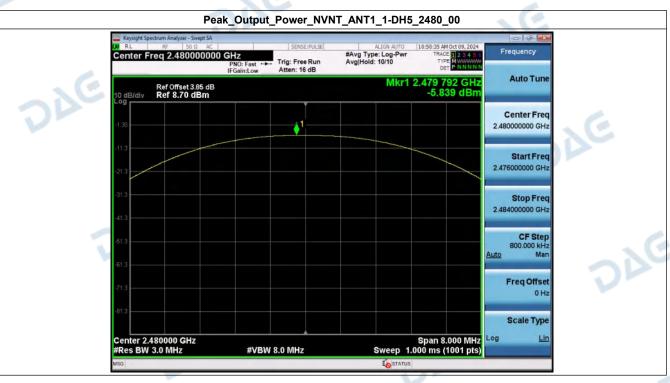
DAG


DAG

4. Peak Output Power

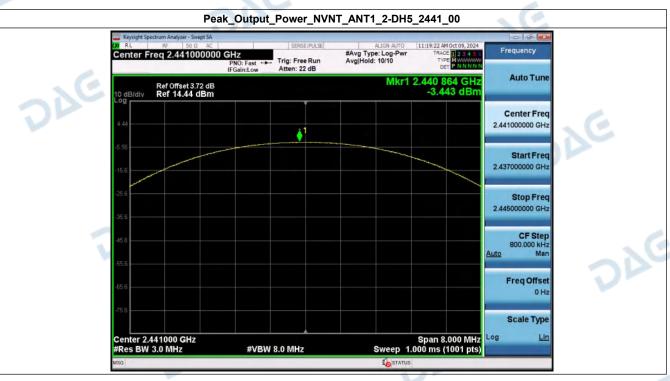
V1.0

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-3.96	0.40	125	Pass
NVNT	ANT1	1-DH5	2441.00	-4.36	0.37	125	Pass
NVNT	ANT1	1-DH5	2480.00	-5.84	0.26	125	Pass
NVNT	ANT1	2-DH5	2402.00	-3.17	0.48	125	Pass
NVNT	ANT1	2-DH5	2441.00	-3.44	0.45	125	Pass
NVNT	ANT1	2-DH5	2480.00	-4.85	0.33	125	Pass


Peak_Output_Power_NVNT_ANT1_1-DH5_2441_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 95

V1.0


Peak_Output_Power_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 95

V1.0

Peak_Output_Power_NVNT_ANT1_2-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 65 of 95

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

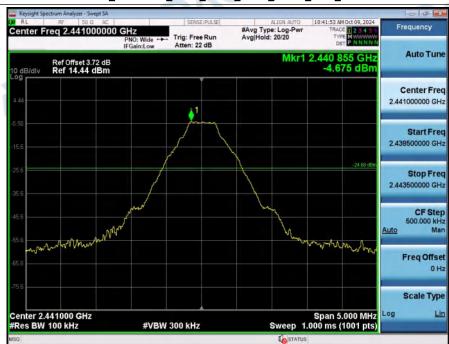
DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 66 of 95

5. Spurious Emissions

V1.0

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-51.557	-23.915	Pass
NVNT	ANT1	1-DH5	2441.00	-52.196	-24.675	Pass
NVNT	ANT1	1-DH5	2480.00	-54.982	-26.189	Pass
NVNT	ANT1	2-DH5	2402.00	-52.470	-23.920	Pass
NVNT	ANT1	2-DH5	2441.00	-52.542	-24.671	Pass
NVNT	ANT1	2-DH5	2480.00	-57.098	-26.134	Pass


2 Spurious Emissions NVNT ANT1 1-DH5 2402 00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 67 of 95

2_Spurious_Emissions_NVNT_ANT1_1-DH5_2441_00

1_Reference_Level_NVNT_ANT1_1-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 68 of 95

2_Spurious_Emissions_NVNT_ANT1_1-DH5_2480_00

1_Reference_Level_NVNT_ANT1_2-DH5_2402_00

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 69 of 95

2_Spurious_Emissions_NVNT_ANT1_2-DH5_2402_00



1_Reference_Level_NVNT_ANT1_2-DH5_2441_00

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 70 of 95

2_Spurious_Emissions_NVNT_ANT1_2-DH5_2441_00

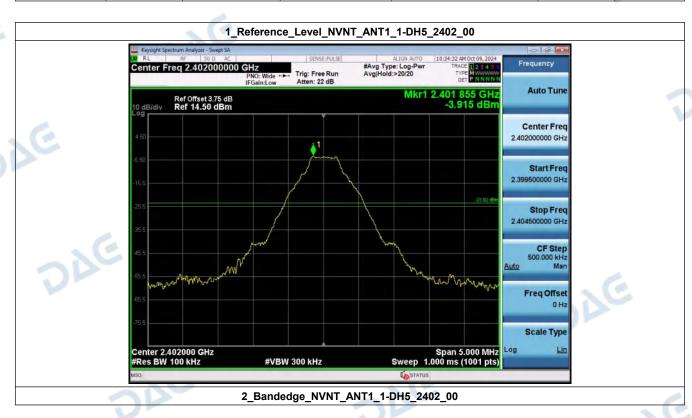
1_Reference_Level_NVNT_ANT1_2-DH5_2480_00

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 71 of 95

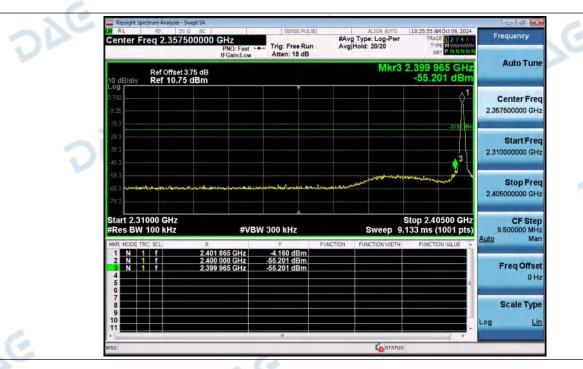
V1.0

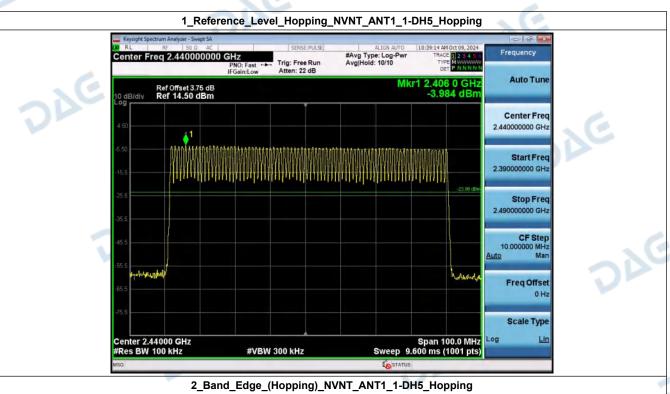
2_Spurious_Emissions_NVNT_ANT1_2-DH5_2480_00


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 72 of 95

DAG

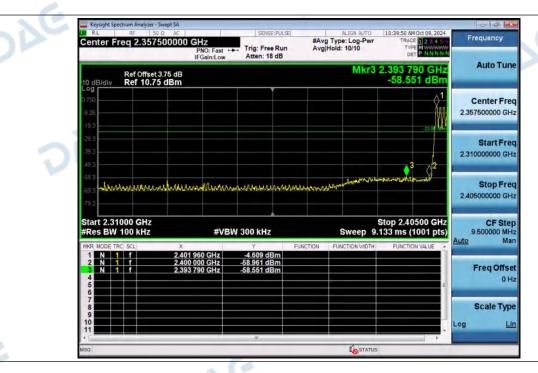
. Banded	ge					
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-55.201	-23.915	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-58.551	-23.984	Pass
NVNT	ANT1	1-DH5	2480.00	-61.151	-26.189	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-60.716	-23.857	Pass
NVNT	ANT1	2-DH5	2402.00	-56.768	-23.920	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-58.074	-23.981	Pass
NVNT	ANT1	2-DH5	2480.00	-61.271	-26.134	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-59.759	-23.980	Pass

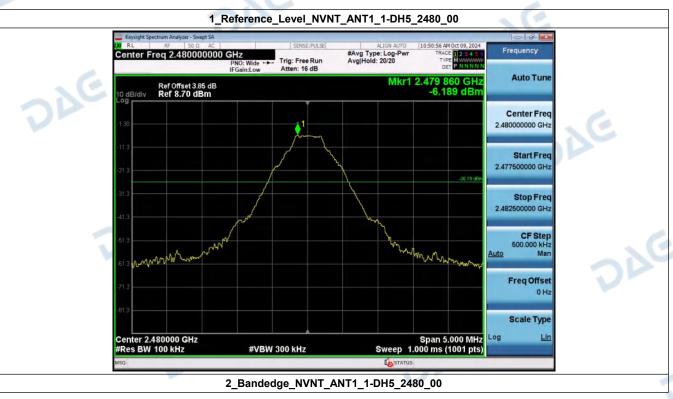

Report No.: DACE240927001RF001



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 73 of 95

4

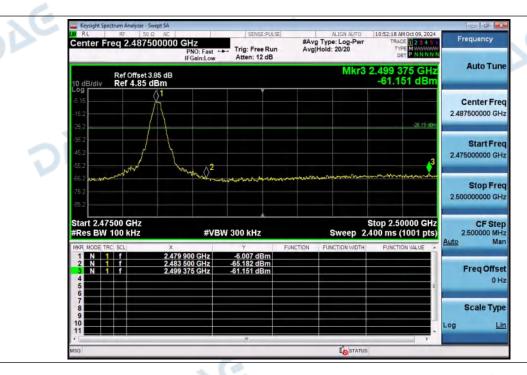


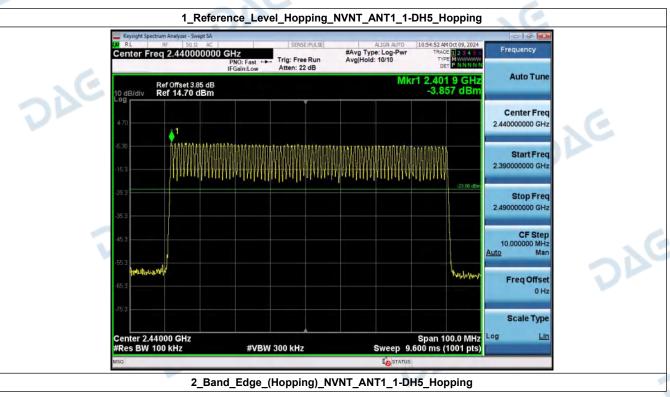


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 74 of 95

4

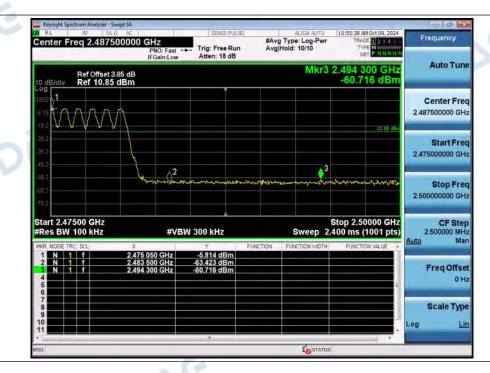


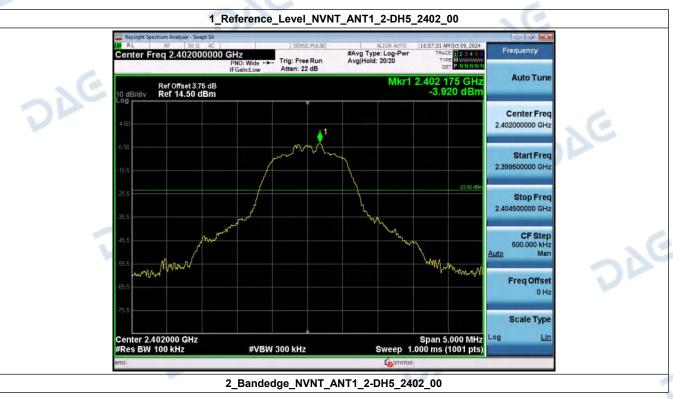

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

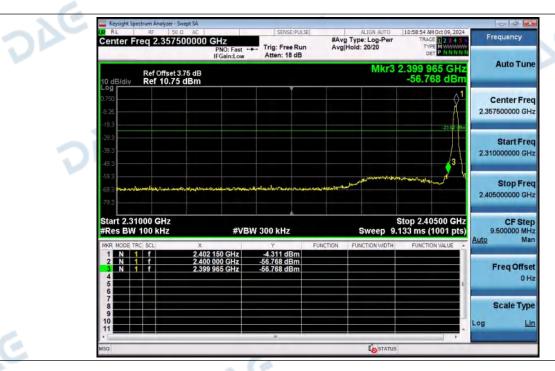
Page 75 of 95

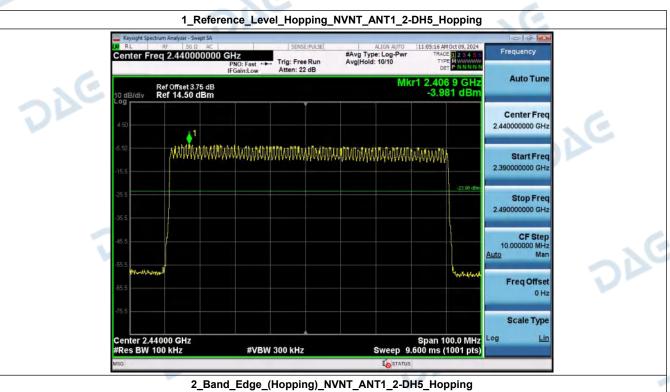

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 76 of 95


DAG

4

V1.0

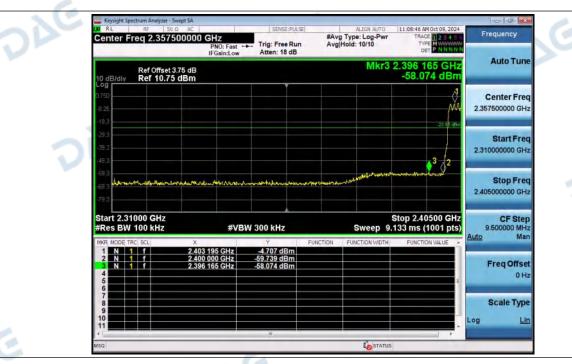




102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

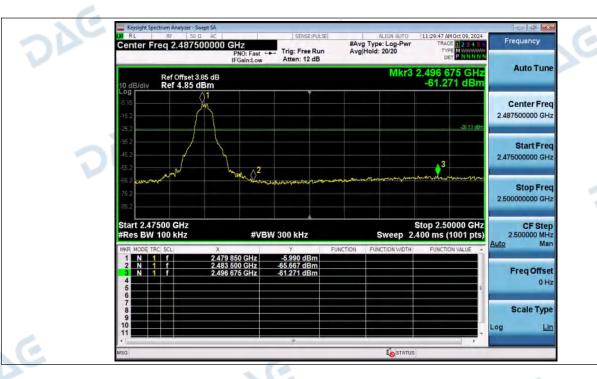
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 77 of 95

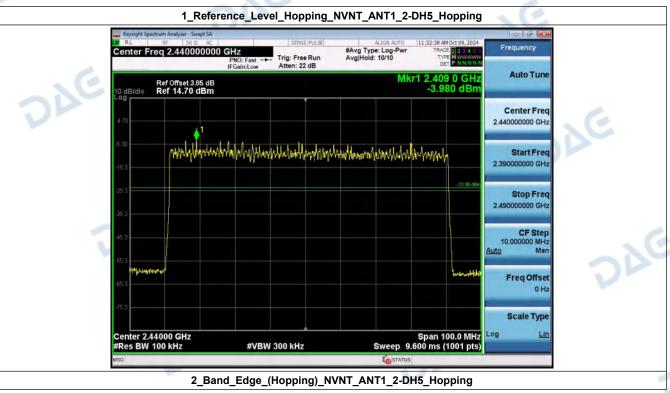
4



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 78 of 95

V1.0




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 79 of 95

DAG

4

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 80 of 95

DAG

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 81 of 95

7. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2402.005	2402.863	0.86	0.706	Pass
NVNT	ANT1	1-DH5	2441.00	2440.855	2442.013	1.16	0.711	Pass
NVNT	ANT1	1-DH5	2480.00	2479.005	2480.004	1.00	0.712	Pass
NVNT	ANT1	2-DH5	2402.00	2401.855	2402.854	1.00	0.886	Pass
NVNT	ANT1	2-DH5	2441.00	2440.861	2442.025	1.16	0.895	Pass
NVNT	ANT1	2-DH5	2480.00	2478.885	2480.004	1.12	0.893	Pass

Report No.: DACE240927001RF001

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_1-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 82 of 95

V1.0

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 83 of 95

V1.0

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 84 of 95

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

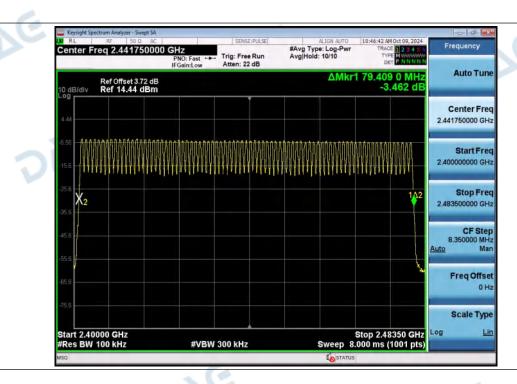
DAG

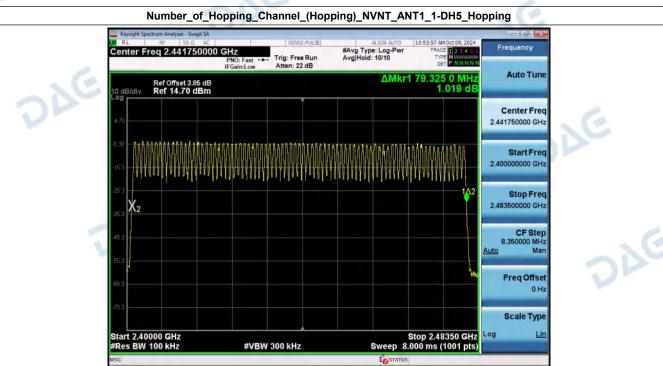
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 85 of 95

8. Number of Hopping Channel (Hopping)

V1.0

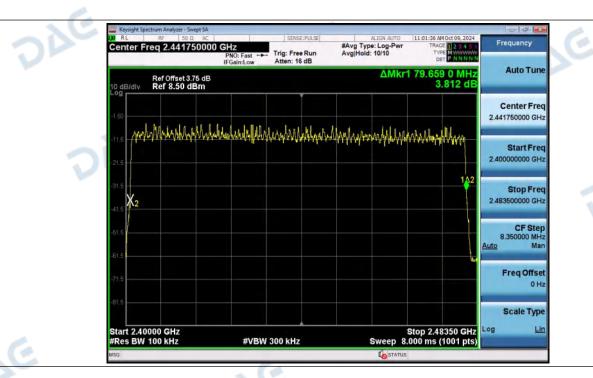
Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

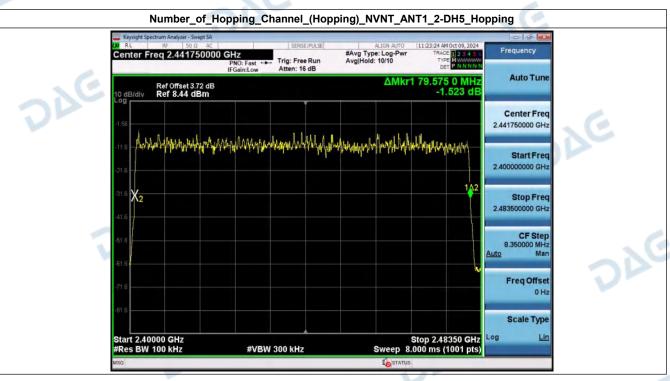



Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_1-DH5_Hopping

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 86 of 95

V1.0



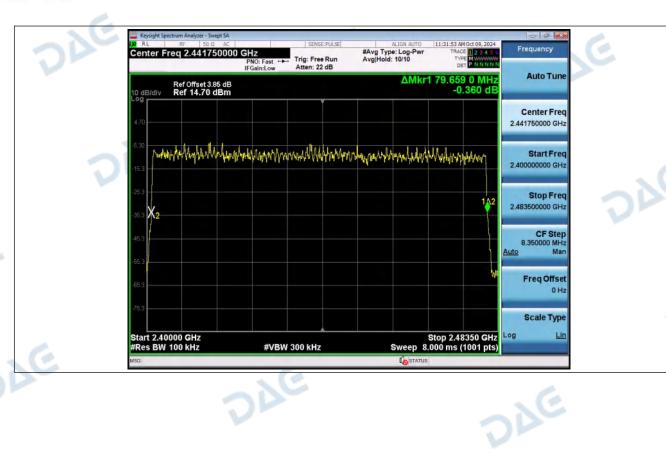

 ${\bf Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2\text{-}DH5_Hopping}$

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 87 of 95

V1.0

Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2-DH5_Hopping

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 88 of 95

DAG

DAG

V1.0

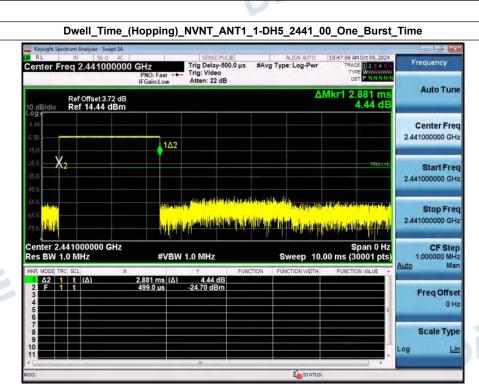
DAG

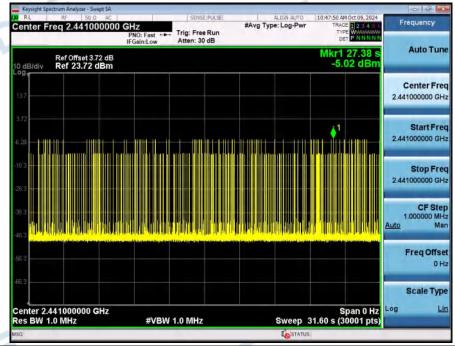
DAG

DAG

DAG

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 89 of 95

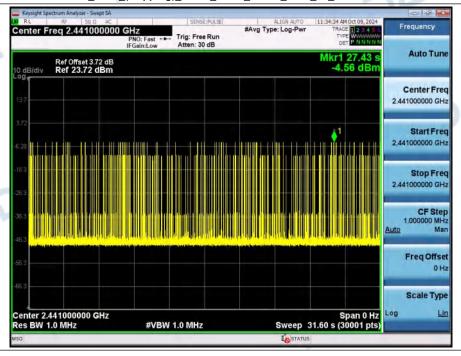

9. Dwell Time (Hopping)

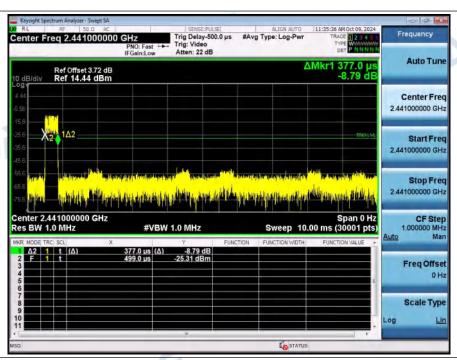
V1.0

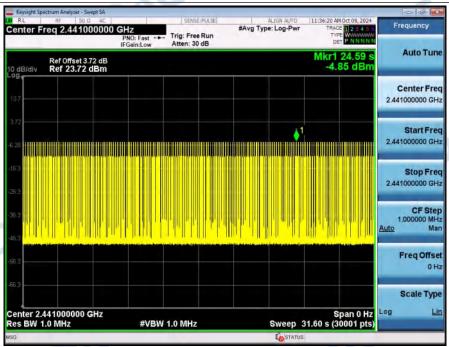
Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.881	97.00	279.457	0.40	Pass
NVNT	ANT1	2-DH5	2.887	103.00	297.361	0.40	Pass
NVNT	ANT1	1-DH1	0.377	318.00	119.886	0.40	Pass
NVNT	ANT1	1-DH3	1.633	162.00	264.546	0.40	Pass
NVNT	ANT1	2-DH1	0.387	319.00	123.453	0.40	Pass
NVNT	ANT1	2-DH3	1.639	152.00	249.128	0.40	Pass

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH5_2441_00_Accumulated

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

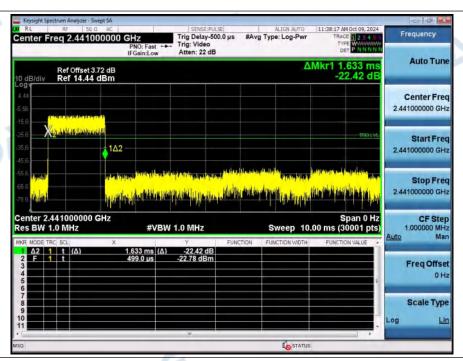

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 90 of 95


Dwell_Time_(Hopping)_NVNT_ANT1_2-DH5_2441_00_Accumulated

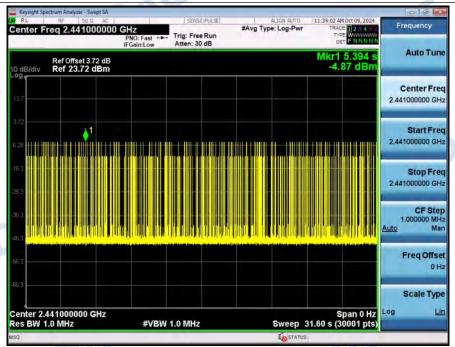

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH1_2441_00_One_Burst_Time

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 91 of 95

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH1_2441_00_Accumulated

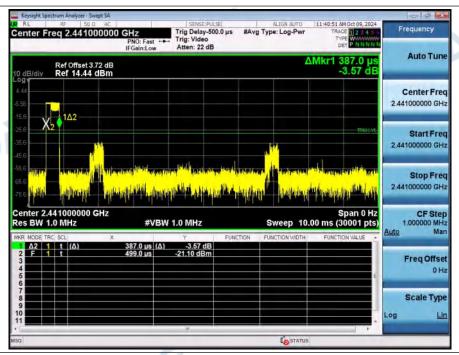


Dwell_Time_(Hopping)_NVNT_ANT1_1-DH3_2441_00_One_Burst_Time

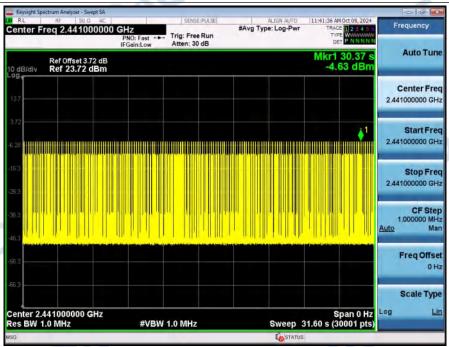

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 92 of 95

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH3_2441_00_Accumulated

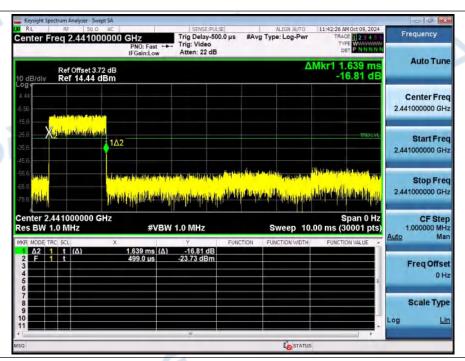


Dwell_Time_(Hopping)_NVNT_ANT1_2-DH1_2441_00_One_Burst_Time

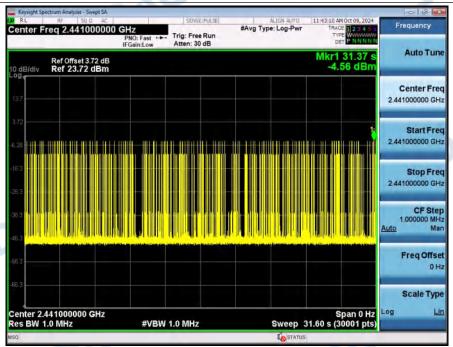

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 93 of 95

Dwell_Time_(Hopping)_NVNT_ANT1_2-DH1_2441_00_Accumulated



Dwell_Time_(Hopping)_NVNT_ANT1_2-DH3_2441_00_One_Burst_Time


DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 94 of 95

Dwell_Time_(Hopping)_NVNT_ANT1_2-DH3_2441_00_Accumulated

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 95 of 95