

Address:

HAC T-Coil Test Report

For

Applicant Name: Zhejiang Lianyong Intelligent Technology Co., Ltd.

No. 1, First Street, Eastern New Area, Wenling, Taizhou,

Zhejiang, China

EUT Name: Mobile phone

Brand Name: MAZE SPEED, SOHO STYLE

Model Number: MS5614G

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230613R00402

Test Standards: ANSI C63.19-2011 FCC 47 CFR §20.19 KDB 285076 D01v06

KDB 285076 D02v04 KDB 285076 D03v01r05

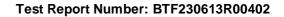
FCC ID: 2BBW3-MS5614G

Test Conclusion: Pass

Test Date: 2023-06-30 Date of Issue: 2023-06-30

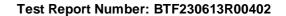
Prepared By: Monta Zhou

Monica Zhou / Project Enginee


Date: 2023-06-30

Approved By:

Ryan.CJ / EMC Manager


Date: 2023-06-30

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

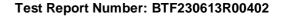

	Revision History				
Version Issue Date Revisions Content					
R_V0	2023-06-30	Original			
Note:	Once the revision has k	een made, then previous versions reports are invalid			

Table of Contents

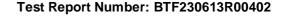
1. Introduction	
1.1 Identification of Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	4
1.3 Laboratory Condition	
1.4 Announcement	4
2. Product Information	5
2.1 Application Information	5
2.2 Manufacturer Information	
2.3 Factory Information	5
2.4 General Description of Equipment under Test (EUT)	5
2.5 Equipment under Test Ancillary Equipment	5
2.6 Technical Information	
2.7 Air Interfaces / Bands Indicating Operating Modes	6
3. Summary of Test Results	
3.1 Test Standards	
3.2 Attestation of Testing Summary	7
4. Test Uncertainty	
5. Measurement System	
5.1 Definition of Hearing Aid Compatibility (HAC)	9
5.2 MVG HAC System	
5.3 T-Coil Measurement Set-up	
5.4 System Calibration	
6. HAC (T-Coil) Measurement	
6.1 T-Coil Performance Requirements	
6.2 T-Coil measurement points and reference plane	
6.3 T-Coil Measurement Procedure	
7. Max. Conducted RF Output Power	
8. T-Coil Test Result	
9. Test Equipment List	
ANNEX A System Validation Result	24
ANNEX B Test Data	
ANNEX C Test Setup Photo	
ANNEX D EUT External & Internal Photos	
ANNEX E Calibration Information	51

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location


Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
FCC Registration Number	518915
Designation Number	CN1330

1.3 Laboratory Condition

Ambient Temperature:	21 ℃ to 25 ℃
Ambient Relative Humidity:	48% to 59%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

2.1 Application Information

Company Name:	Zhejiang Lianyong Intelligent Technology Co., Ltd.
Address:	No. 1, First Street, Eastern New Area, Wenling, Taizhou, Zhejiang, China

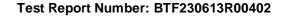
2.2 Manufacturer Information

Company Name:	Zhejiang Lianyong Intelligent Technology Co., Ltd.
Address:	No. 1, First Street, Eastern New Area, Wenling, Taizhou, Zhejiang, China

2.3 Factory Information

Company Name:	Zhejiang Lianyong Intelligent Technology Co., Ltd.
Address:	No. 1, First Street, Eastern New Area, Wenling, Taizhou, Zhejiang, China

2.4 General Description of Equipment under Test (EUT)


EUT Name	Mobile phone
Under Test Model Name	MS5614G
Series Model Name	SS5614G
Description of Model name di fferentiation	Only the model name and brand name are different, others are the same.
Sample No.	BTFSN230612E007-1/5

2.5 Equipment under Test Ancillary Equipment

	Rechargeable Battery		
Ancillary Equipment 1	Capacity	2100mAh	
	Rated Voltage	3.7V	

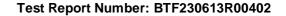
2.6 Technical Information

	2G Network GSM/GPRS/EGPRS 850/1900
	3G Network WCDMA/HSDPA/HSUPA Band 2/4/5
Network and Wireless	4G Network FDD LTE Band 2/4/5/12/17/30/66/71
connectivity	2.4G WIFI 802.11b, 802.11g, 802.11n(HT20/HT40)
•	5G WIFI 802.11a, 802.11n(HT20/HT40)
	BT (EDR+BLE)

2.7 Air Interfaces / Bands Indicating Operating Modes

Air Interface	Band	Туре	Simultaneous Transmitter	Name of Service
GSM	850	VO	WLAN & BT	CMRS Voice
	1900	VO	WLAN & BT	CMRS Voice
	GPRS/EGPRS	DT	N/A	N/A
WCDMA	Band II	VO	WLAN & BT	CMRS Voice
	Band IV	VO	WLAN & BT	CMRS Voice
	Band V	VO	WLAN & BT	CMRS Voice
	HSPA	DT	N/A	N/A
	Band 2	VD	WLAN & BT	VoLTE
	Band 4	VD	WLAN & BT	VoLTE
	Band 5	VD	WLAN & BT	VoLTE
LTE	Band 12	VD	WLAN & BT	VoLTE
LTE .	Band 17	VD	WLAN & BT	VoLTE
	Band 30	VD	WLAN & BT	VoLTE
	Band 66	VD	WLAN & BT	VoLTE
	Band 71	VD	WLAN & BT	VoLTE
WLAN	2.4g & 5g	DT	WWAN	N/A
ВТ	2450	DT	WWAN	N/A

NA: Not Applicable

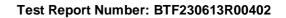

VO: Voice Only
VD: CMRS and IP Voice Service over Digital Transport
DT: Digital Transport Only

* HAC Rating was not based on concurrent voice and data modes; Noncurrent mode was found to represent worst case rating for both M and T rating

3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title
1	ANSI C63.19-2011	American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids
2	FCC 47 CFR §20.19	Hearing Aid Compatible Mobile Headsets
3	KDB 285076 D01v06	Equipment Authorization Guidance for Hearing Aid Compatibility
4	KDB 285076 D02v04	Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services
5	KDB 285076 D03v01r05	Hearing aid compatibility frequently asked questions


3.2 Attestation of Testing Summary

Frequency Band	T-rating
GSM 850	T4
GSM 1900	T4
WCDMA II	T4
WCDMA IV	Т3
WCDMA V	T3
LTE Band 2	T3
LTE Band 4	T3
LTE Band 5	T3
LTE Band 12	T4
LTE Band 17	T4
LTE Band 30	T4
LTE Band 66	T4
LTE Band 71	T4
HAC Rate Categ	gory:

Notes:

^{1.} It is compliance with HAC limits for this device that specified in FCC 47 CFR Part 20.19 and ANSI C63.19.

^{2.} When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.

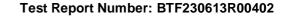
4. Test Uncertainty

UNCERTAINTY EVALUATION FOR AUDIO HAC MEASUREMENT								
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Uncertainty (dB)	Uncertainty (%)			
	Measurement Sy	stem						
RF reflections	0.1	R	√3	0.06				
Acoustic noise	0.1	R	√3	0.06				
Probe coil sensitivity	0.49	R	√3	0.28				
Reference signal level	0.25	R	√3	0.14				
Positioning accuracy	0.4	R	√3	0.23				
Cable loss	0.1	N	2	0.05				
Frequency analyzer	0.15	R	√3	0.09				
System repeatability	0.2	N	1	0.20				
Repeatability of the WD	0.4	N	1	0.40				
Combined Standard Uncertainty		N	1	0.61				
Expanded uncertainty (confidence level of 95 %, k = 2)		N	K=2	1.22	15.05			
REPORTED Expanded uncertainty (confidence level of 95%, k = 2)		Z	K=2	1.20	15.00			

Test Report Number: BTF230613R00402

5. Measurement System

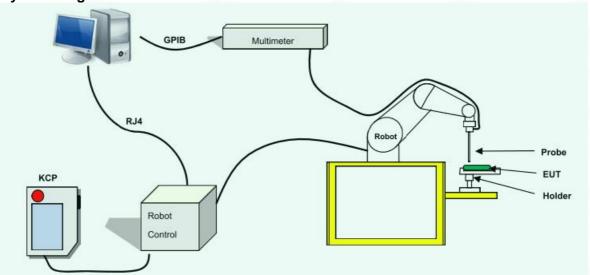
5.1 Definition of Hearing Aid Compatibility (HAC)


The purpose of this standard is to establish categories for hearing aids and for WD (wireless communications devices) that can indicate to health care practitioners and hearing aid users which hearing aids are compatible with which WD, and to provide tests that can be used to assess the electromagnetic characteristics of hearing aids and WD and assign them to these categories. The various parameters required, in order to demonstrate compatibility and accessibility are measured. The design of the standard is such that when a hearing aid and WD achieve one of the categories specified, as measured by the methodology of this standard, the indicated performance is realized.

In order to provide for the usability of a hearing aid with a WD, several factors must be coordinated:

- a) Radio frequency (RF) measurements of the near-field electric and magnetic fields emitted by a WD to categorize these emissions for correlation with the RF immunity of a hearing aid.
- b) Magnetic field measurements of a WD emitted via the audio transducer associated with the T-coil mode of the hearing aid, for assessment of hearing aid performance.
- c) Measurements with the hearing aid and a simulation of the categorized WD T-coil emissions to assess the hearing aid RF immunity in the T-coil mode.

The WD radio frequency (RF) and audio band emissions are measured. Hence, the following are measurements made for the WD:


- a) RF E-Field emissions
- b) T-coil mode, magnetic signal strength in the audio band
- c) T-coil mode, magnetic signal and noise articulation index
- d) T-coil mode, magnetic signal frequency response through the audio band Corresponding to the WD measurements, the hearing aid is measured for:
- a) RF immunity in microphone mode
- b) RF immunity in T-coil mode

5.2 MVG HAC System

MVG HAC System Diagram

5.2.1 Robot

A standard high precision 6-axis robot (Denso) with te aches pendant with Scanning System

- · It must be able to scan all the volume of the phanto m to evaluate the tridimensional distribution of SAR.
- · Must be able to set the probe orthogonal of the surface of the phantom (±30°).
- Detects stresses on the probe and stop itself if nece ssary to keep the integrity of the probe.

Test Report Number: BTF230613R00402

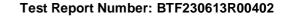
5.2.2 T-coil Probe

Figure 1 – MVG COMOHAC T-coil Probe

Coil Dimension	6.55 mm length * 2.29 mm diameter
DC resistance	860.6 Ω
Wire size	51AWG
Inductance at 1 kHz	132.1 mH at 1 kHz

Device Under Test							
Device Type	COMOHAC T-COIL PROBE						
Manufacturer	MVG						
Model	STCOIL						
Serial Number	SN 07/17 TCP38						
Product Condition (new / used)	New						
Frequency Range of Probe	200-5000 Hz						

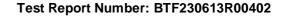
This probe is designed to fulfill ANSI recommendations for the measurement of audio frequency magnetic fields radiated by mobile phones. The T-Coil probe has two connectors:


the 6 male wires connector enables to fix the probe on the robot the BNC connector enables to link the probe to the audio DAQ

This probe was designed for a 6-axis robot. The coil is oriented with a 45 degree angle so that used with a 6-axis robot, both radial and axial measurements can be performed with one probe.

5.2.3 TMFS

MVG COMOHAC Magnetic Simulator


Device Under Test								
Device Type	COMOHAC Magnetic Field Simulator							
Manufacturer	MVG							
Model	STMFS							
Serial Number	SN 13/22 TMFS30							
Product Condition (new / used)	New							
Frequency Range	200-5000 Hz							

All methods used to perform the measurements and calibrations comply with the ANSI C63.19. All measurements were performed with the TMFS in the standard device test configuration, with the TMFS in free space, 10 mm below the coil center.

5.2.4 Device Holder/DUT positioner

During test, use DUT positioner to check if the Speaker is aligned with the positioner center.

5.3 T-Coil Measurement Set-up

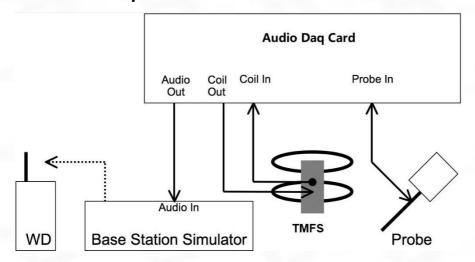
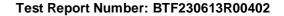
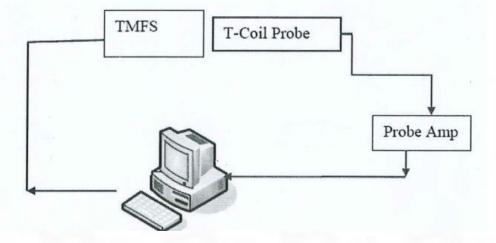



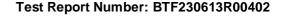
Fig. 2. T-coil signal measurement test setup

The sequence of the measurement is T-Coil testing procedure over a wireless communication device:

- 1. Confirm Geometry & signal check. Probe phantom alignment and check of accuracy.
- 2. Background noise measurement in the area of the WD.
- Perform 50x50mm area scan with narrow band signal to determine ABM1, ABM2 and SNR for axial and radial orientation positions.
- 4. For Axial position, perform optimal SNR point measurement with a broadband signal determine Frequency Response
- 5. Define the all applicable input audio level according to ANSI C63.19-2011 and KDB 285076 D02v03. Note:
- #. The EUT do not use the special HAC SW.
- #. Setting the maximum volume for EUT during the measurement.
- #. For the measurement, it don't use the "post-test measurement processing of results".
- #. Per KDB 285076 D01v05, handsets that that have the ability to support concurrent connections using simultaneous transmissions shall be independently tested for each air interface/band given in ANSI C63.19-2011. At the present time ANSI C63.19 does not provide simultaneous transmission test procedures.

5.4 System Calibration


For correct and calibrated measurement of the voltages and ABM field, Denso will perform a calibration job as below.


for cable loss calibration:

- a) Use Audio Generator to determine the loss between Audio Generator and TMFS
- b) Audio output power to TMFS: 1025Hz, 500mV.
- c) adjust the audio signal output power to check the cable loss, and use front panel of Multimeter to show target level: 1025Hz, 500mW. (for example, set the audio output power to TMFS: 1025Hz, 0.5924V)

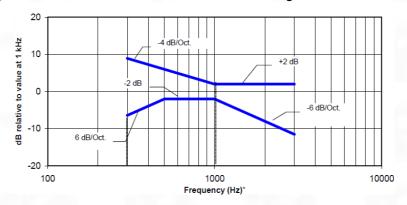
for system verification:

- a) Place TMFS properly—the distance between the center of TMFS and T-coil probe is 10mm.
- b) send the signal to TMFS, and use probe to measure the ABM1 over the TMFS.

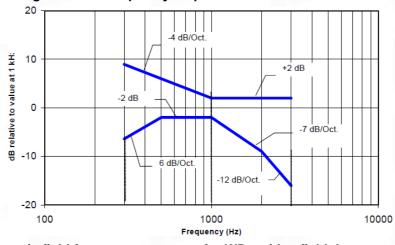
6. HAC (T-Coil) Measurement

6.1 T-Coil Performance Requirements

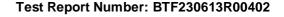
In order to be rated for T-Coil use, a WD shall meet the requirements for signal level and signal quality contained in this part.


1) T-Coil coupling field intensity

When measured as specified in ANSI C63.19, the T-Coil signal shall be ≥ -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.

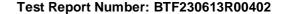

2) Frequency response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 1 and Figure 2 provide the boundaries for the specified frequency.


These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.

Magnetic field frequency response for WDs with a field ≤ -15 dB (A/m) at 1 kHz

Magnetic field frequency response for WDs with a field that exceeds -15dB(A/m) at 1 kHz


3) Signal quality

This part provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels.

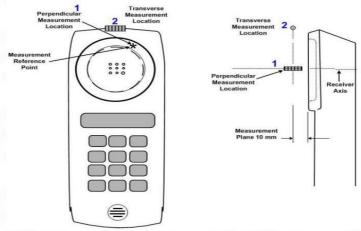
The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per Table 3

Category	Telephone parameters WD signal quality [(signal + noise) – to – noise ratio in decibels]			
Category T1	0 dB to 10 dB			
Category T2	10 dB to 20 dB			
Category T3	20 dB to 30 dB			
Category T4	> 30 dB			

Table 3: T-Coil signal quality categories

6.2 T-Coil measurement points and reference plane

Figure 3 illustrate the references and reference plane that shall be used in a typical EUT emissions measurement. The principle of this section is applied to EUT with similar geometry. Please refer to Appendix C for the setup photographs.


The area is 5 cm by 5 cm.

The area is centered on the audio frequency output transducer of the EUT.

The area is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of

the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear.

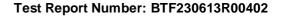
The measurement plane is parallel to, and 10 mm in front of, the reference plane.

Axis and planes for WD audio frequency magnetic field measurements

Test Report Number: BTF230613R00402

6.3 T-Coil Measurement Procedure

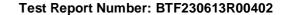
According to ANSI C63.19-2011, section 7.4:


This section describes the procedures used to measure the ABM (T-Coil) performance of the WD. In addition to measuring the absolute signal levels, the A-weighted magnitude of the unintended signal shall also be determined. To assure that the required signal quality is measured, the measurement of the intended signal and the measurement of the unintended signal must be made at the same location for each measurement position. In addition, the RF field strength at each measurement location must be at or below that required for the assigned category.

Measurements shall not include undesired properties from the WD's RF field; therefore, use of a coaxial connection to a base station simulator or nonradiating load might be necessary. However, even with a coaxial connection to a base station simulator or nonradiating load, there might still be RF leakage from the WD, which can interfere with the desired measurement. Premeasurement checks should be made to avoid this possibility. All measurements shall be performed with the WD operating on battery power with an appropriate normal speech audio signal input level given in ANSI C63.19-2011 Table 7.1. If the device display can be turned off during a phone call, then that may be done during the measurement as well.

Measurements shall be performed at two locations specified in ANSI C63.19-2011 A.3, with the correct probe orientation for a particular location, in a multistage sequence by first measuring the field intensity of the desired T-Coil signal (ABM1) that is useful to a hearing aid T-Coil. The undesired magnetic components (ABM2) shall be examined for each probe orientation to determine the possible effects from the WD display and battery current paths that might disrupt the desired T-Coil signal. The undesired magnetic signal (ABM2) must be measured at the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired ABM signals must be calculated. For the perpendicular field location, only the ABM1 frequency response shall be determined in a third measurement stage.

The following steps summarize the basic test flow for determining ABM1 and ABM2. These steps assume that a sine-wave or narrowband 1/3 octave signal can be used for the measurement of ABM1.


- a) A validation of the test setup and instrumentation may be performed using a TMFS or Helmholtz coil. Measure the emissions and confirm that they are within the specified tolerance.
- b) Position the WD in the test setup and connect the WD RF connector to a base station simulator or a nonradiating load as shown in ANSI C63.19-2011 Figure 7.1 or Figure 7.2. Confirm that the equipment that requires calibration has been calibrated and that the noise level meets the requirements of ANSI C63.19-2011 clause 7.3.1.
- c) The drive level to the WD is set such that the reference input level specified in ANSI C63.19-2011 Table 7.1 is input to the base station simulator (or manufacturer's test mode equivalent) in the 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (ABM1) at f = 1 kHz. Either a sine wave at 1025 Hz or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as defined in C63.19-2011 clause 7.4.2, shall be used for the reference audio signal. If interference is found at 1025 Hz, an alternative nearby reference audio signal frequency may be used.47 The same drive level shall be used for the ABM1 frequency response measurements at each 1/3 octave band center frequency. The WD volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload.
- d) Determine the magnetic measurement locations for the WD device (A.3), if not already specified by the manufacturer, as described in C63.19-2011 clause 7.4.4.1.1 and 7.4.4.2.
- e) At each measurement location, measure and record the desired T-Coil magnetic signals (ABM1 at fi) as specified in C63.19-2011 clause 7.4.4.2 in each ISO 266-1975 R10 standard 1/3 octave band. The desired audio band input frequency (fi) shall be centered in each 1/3 octave band maintaining the same drive level as determined in item c) and the reading taken for that band.
- f) Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input—output comparison using simulated speech. The full-band integrated or half-band integrated probe output, as specified in D.9, may be used, as long as the

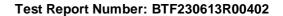
appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB A/m.)

- g) All measurements of the desired signal shall be shown to be of the desired signal and not of an undesired signal. This may be shown by turning the desired signal ON and OFF with the probe measuring the same location. If the scanning method is used, the scans shall show that all measurement points selected for the ABM1 measurement meet the ambient and test system noise criteria in C63.19-2011 clause 7.3.1.
- h) At the measurement location for each orientation, measure and record the undesired broadband audio magnetic signal (ABM2) as specified in C63.19-2011 clause 7.4.4.4 with no audio signal applied (or digital zero applied, if appropriate) using A-weighting49 and the half-band integrator. Calculate the ratio of the desired to undesired signal strength (i.e., signal quality).
- i) Determine the category that properly classifies the signal quality, based on C63.19-2011 Table 8.5.

7. Max. Conducted RF Output Power

2G

	Mode: GSM850 Maximum Tune-up(dBm)		Burst Average Power (dBm)			
Mode: GSM850			CH190	CH251		
		824.2MHz	836.6MHz	848.8MHz		
GSM	32.50	32.18	32.26	32.14		
		Burst Average Power (dBm)				
Mode: GSM1900	Maximum Tune-up(dBm)	CH512	CH661	CH810		
		1850.2MHz	1880.0MHz	1909.8MHz		
GSM	28.00	26.73	27.52	27.76		

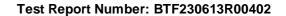

3G

		WCDMA Band II Conducted Power (dBm)			
Mode	Maximum Tuna un(dDm)				
wiode	Maximum Tune-up(dBm)	CH9262	CH9400	CH9538	
		1852.4	1880.0	1907.6	
RMC 12.2K	20.00	20.00 19.39			
		WCDMA Band IV			
Mode	Maximum Tune-up(dBm)	Conducted Power (dBm)			
Wiode		CH1312	CH1413	CH1513	
		1712.4	1732.6	1752.6	
RMC 12.2K	17.00	16.69	13.56	10.65	
		WCDMA Band V			
Mode	Maximum Tune-up(dBm)	Conducted Power (dBm)			
Wiode	waxiiiuiii Tune-up(dBm)	CH4132	CH4183	CH4233	
		826.4	836.6	846.6	
RMC 12.2K	22.00	21.80	21.80	21.74	

4G

	LTE-FDD B	and 2			Conducted Power(dBm)			
Bandwidth	Modulation	RB allocation	RB offset	Maximum Tune-up(dBm)	18700 1860.0MHz	18900 1880.0MHz	19100 1900.0MHz	
			0	20.50	19.50	19.67	20.18	
		1	49	21.00	19.96	20.50	20.32	
			99	20.50	19.61	20.22	19.93	
20MHz	QPSK		0	19.50	18.73	19.13	19.42	
		50	25	19.50	18.84	19.31	19.22	
			50	19.50	18.74	19.48	19.21	
				100	0	19.50	18.75	19.36

	LTE-FDD B	and 4			Conducted Power(dBm)		
Bandwidth	Modulation	RB	RB offset	Maximum Tune-up(dBm)	20070	20175	20300
Danuwium	Modulation	allocation	KD Oliset		1722.0MHz	1732.5MHz	1745.0MHz
			0	17.50	17.42	15.05	13.05
		1	49	16.50	16.01	14.06	12.09
			99	15.00	14.70	14.70 12.31 10.77 15.72 13.56 11.61	10.77
20MHz	QPSK		0	16.00	15.72		11.61
		50	50 25 15.00 14.99 12.92	12.92	10.97		
			50	14.50	14.26 12.27	10.40	
			100	0	15.50	15.09	12.92


LTE-FDD Band 5					Conducted Power(dBm)			
Bandwidth	Modulation	RB	RB offset	Maximum Tune-up(dBm)	20450	20525	20600	
	Modulation	allocation	RD Ollset		829.0MHz	836.5MHz	844.0MHz	
			0	22.50	22.03	21.91	21.85	
		1	24	22.50	22.24	22.01	21.94	
			49	22.00	21.96	21.83	21.82	
10MHz	QPSK		0	21.50	21.07 21.00 20.97	20.97		
		25	12	12 21.50 21.04 20.95	20.95			
			25	21.50	21.06	20.94	20.90	
		50	0	21.50	21.06	20.98	20.94	

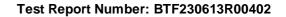
	LTE-FDD Ba	ind 12				Conducted Power(dB	m)
Bandwidth	Modulation	RB	RB offset	Maximum Tune-up(dBm)	23060	23095	23130
Danuwiutii	Modulation	allocation	KB oliset		704.0MHz	707.5MHz	711.0MHz
		1	0	22.00	21.53	21.55	21.72
			1	24	22.00	21.83	21.81
			49	22.00 21.80	21.70	21.84	
10MHz	QPSK	PSK	0	21.00	20.75	20.66	20.67
	50	25	12	21.00	20.64	20.74	20.83
			25	21.00	20.78	20.84	20.79
		50	0	21.00	20.76	20.78	20.71

LTE-FDD Band 17				Conducted Power(dBm)			
Bandwidth	Modulation	RB allocation	RB offset	Maximum Tune-up(dBm)	23780	23790	23800
		allocation			709.0MHz	710.0MHz	711.0MHz
			0	22.00	21.75	21.71	21.79
		1	24	22.50	22.03	21.97	21.96
			49	22.00	21.91	21.87	21.94
10MHz	QPSK		0	21.00	20.80	20.73	20.78
		25	12	21.00	20.94	20.89	20.91
		25	21.50	21.02	20.89	20.85	
		50	0	21.00	20.90	20.85	20.81

	LTE-FDD B	and 30			Conducted Power(dBm)
Bandwidth	Madulation	RB	RB offset	Maximum Tune-up(dBm)	27710
bandwidth	th Modulation	allocation	KD Oliset		2310MHz
			0	22.00	21.56
		1	24	21.50	21.22
			49	21.50	21.00
10MHz	QPSK		0	20.50	20.00
		25	12	20.00	19.97
			25	20.00	19.88
		50	0	20.00	19.97

LTE-FDD Band 66				Conducted Power(dBm)			
Bandwidth	Modulation	RB allocation	RB offset	Maximum Tune-up(dBm)	132072 1720.0MHz	132322 1745.0MHz	132572 1770.0MHz
			0	22.50	22.41	22.24	21.91
	QPSK	1	50	23.00	22.77	22.53	22.27
			99	22.50	22.34	22.04	21.84
20MHz		PSK	0	22.00	21.74	21.40	21.22
		50	25	22.00	21.64	21.43	21.20
			50	22.00	21.61	21.34	21.17
		100	0	22.00	21.67	21.39	21.19

	LTE-FDD Band 71				Conducted Power(dBm)							
Bandwidth	Modulation	RB	RB offset	Maximum Tune-up(dBm)	133222	133322	133372					
Dandwidth	Wodulation	allocation	IND Oliset		673.0MHz	683.0MHz	688.0MHz					
			0	21.50	21.39	21.27	21.26					
	20MHz QPSK	1	50	22.00	21.70	21.55	21.57					
			99	21.50	21.29	21.27	21.36					
20MHz		QPSK	QPSK	QPSK	QPSK	QPSK		0	21.00	20.70	20.41	20.55
		50	25	21.00	20.59	20.47	20.47					
			50	21.00	20.72	20.44	20.51					
		100	0	21.00	20.73	20.44	20.49					


8. T-Coil Test Result

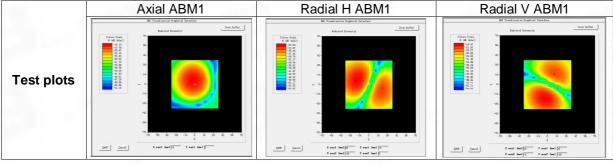
Plot No.	Mode	Channel/Freq.	Probe Position	ABM1 (dB A/m)	ABM2 (dB A/m)	SNR (dB)	T Rating
	0014050	400/000 CMIL-	Axial(Z)	-3.77	-39.85	36.08	T4
1	GSM850	190/836.6MHz	Transversal(Y)	-10.91	-41.50	30.59	T4
2	PCS1900	810/1909.8MHz	Axial(Z)	-3.83	-38.94	35.11	T4
2	PCS1900	610/1909.6MHZ	Transversal(Y)	-10.29	-40.60	30.31	T4
3	MCDMA Dead II	0400/4000 00411-	Axial(Z)	-4.25	-40.01	35.76	T4
3	WCDMA Band II	9400/1880.0MHz	Transversal(Y)	-9.86	-40.82	30.96	T4
	MODALA D. LIV	4040/4740 48411	Axial(Z)	-7.30	-39.41	32.11	T4
4	WCDMA Band IV	1312/1712.4MHz	Transversal(Y)	-10.43	-39.33	28.90	Т3
_	WCDMA Band V	4420/000 4141-	Axial(Z)	-9.89	-38.41	28.52	Т3
5	WCDMA Band V	4132/826.4MHz	Transversal(Y)	-11.23	-38.13	26.90	Т3
	LTE EDD D I O	10000/1000 01411	Axial(Z)	-4.11	-34.39	30.28	T4
6	LTE FDD Band 2	18900/1880.0MHz	Transversal(Y)	-12.49	-34.93	22.44	Т3
-	1.TE EDD D	00050/4700 01411	Axial(Z)	-4.25	-34.39	30.14	T4
7	LTE FDD Band 4	20050/1720.0MHz	Transversal(Y)	-12.39	-34.93	22.54	Т3
	1.TE EDD D 1.E	00.450/000.0141.1	Axial(Z)	-9.31	-34.39	25.08	Т3
8	LTE FDD Band 5	20450/829.0MHz	Transversal(Y)	-10.69	-34.93	24.24	Т3
	1.TE EDD D 1.40	00400/744 01411	Axial(Z)	-9.78	-39.90	30.12	T4
9	LTE FDD Band 12	23130/711.0MHz	Transversal(Y)	-7.43	-39.09	31.66	T4
40	1.TE EDD D 1.47	00700/700 0141	Axial(Z)	-9.33	-40.03	30.70	T4
10	LTE FDD Band 17	23780/709.0MHz	Transversal(Y)	-7.41	-40.75	33.34	T4
		0==10/00100111	Axial(Z)	-4.18	-39.13	34.95	T4
11	LTE FDD Band 30	27710/2310.0MHz	Transversal(Y)	-9.98	-40.20	30.22	T4
40	1.TE EDD D 100	400070/4700 01411	Axial(Z)	-9.37	-39.85	30.48	T4
12	LTE FDD Band 66	132072/1720.0MHz	Transversal(Y)	-10.95	-41.20	30.25	T4
		100000/070 0111	Axial(Z)	-9.63	-40.85	31.22	T4
13	LTE FDD Band 71	133222/673.0MHz	Transversal(Y)	-7.25	-37.57	30.32	T4

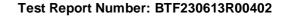
Remark:

1. There is special HAC mode software on this EUT.

2. The volume was adjusted to maximum level and the backlight turned off during T-Coil testing

9. Test Equipment List


Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
Test Software	MVG	N/A	OpenHAC V5.1.3	N/A	N/A
6 1/2 Multimeter	Keithley	DMM6500	4527164	2022/11/24	2023/11/23
Audio Card	National Instruments	NI PCI-4461	01C4B4EB	N/A	N/A
VIDEBAND RADIO COMMUNICATION T ESTER	ROHDE&SCHWARZ	CMW500	161997	2022/11/24	2023/11/23
COMOHAC T-Coil Probe	MVG	STCOIL	07/17 TCP38	2023/02/06	2024/02/05
TMFS	MVG	STMFS	SN 13/22 TMFS30	N/A	N/A
Antenna network emulator	MVG	ANT A 74	07/22 ANT A 74	/	1



ANNEX A System Validation Result

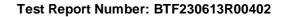
Input Level (mV)	Axial Description	Location	Magnetic Field(dBA/m)
	Axial	Max	-15.22
	Dadial II	Right	-22.32
500	Radial H	Left	-20.21
	Radial V	Upper	-22.50
	Radiai V	Lower	-19.66

Note: Target value was referring to the Measurement value in the calibration certificate of reference TMFS.

ANNEX B Test Data

Measurement at GSM850 Date of measurement: 30/6/2023

Experimental Conditions

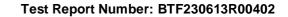

icital conditions	
Probe	SN_0717_TCP38
Signal	GSM
Band	GSM850
Channels	Middle
Channels Number	190
Frequency (MHz)	836.60

Results

Device compliant	Yes
Measurement status	Complete

Requirement verification

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict													
7.3.1.1			Intensity, Axial	-18	Max	-3.77	<u>-</u>	PASS													
7.3.1.2			Intensity, RadialH	-18	Right side	-10.58	-	PASS													
		GSM 850		-18	Left side	-10.91	-	PASS													
7.3.1.2				Intensity, RadialV	-18	Upper side	-10.35	_	PASS												
																	-18	Lower side	-11.05	-	PASS
7.3.3	GSM				Signal to noise/noise , Axial	20	Max	36.08	T4	PASS											
7.3.3	GSIVI				850	850	Signal to noise/noise , RadialH	20	Right side	30.99	T4	PASS									
				20	Left side	30.59	T4	PASS													
7.3.3			Signal to noise/noise , RadialV	20	Upper side	31.22	T4	PASS													
				20	Lower side	30.16	T4	PASS													
7.3.2			Frequency reponse, Axial	0	_	2.00	-	PASS													



Frequency response (field that exceeds -15 dB)

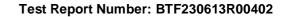
Raw data result

	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-3.77	-10.91	-10.58	-10.35	-11.05
ABM2 dB(A/m)	-39.85	-41.5	-41.57	-41.57	-41.21
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse //argin (dB)	2	-	-	-	-
S+N/N(dB)	36.08	30.59	30.99	31.22	30.16
S+N/N per prientation (dB)	36.08	30	.59	30	.16
	Axial ABM1	Radial I	H ABM1	Radial \	√ ABM1
Test plots	10 Area (1)		# 64 Area # 250 # 250 # 251 #		- 110 APA - 110

Measurement at GSM1900

Date of measurement: 30/6/2023

Experimental Conditions

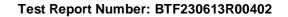

Probe	SN_0717_TCP38
Signal	GSM
Band	GSM1900
Channels	High
Channels Number	810
Frequency (MHz)	1909.80

Results

Device compliant	Yes
Measurement status	Complete

Requirement verification

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict						
7.3.1.1			Intensity, Axial	-18	Max	-3.83	-	PASS						
7.3.1.2			Intensity, RadialH	-18	Right side	-10.29	-	PASS						
				-18	Left side	-9.69	-	PASS						
7.3.1.2			Intensity, RadialV	-18	Upper side	-10.13	-	PASS						
				-18	Lower side	-10.00	_	PASS						
7.3.3	CCM	GSM 1900	: C N /	GSM	GSM	GSM	GSM	GSM	Signal to noise/noise , Axial	20	Max	35.11	T4	PASS
7.3.3	GSIVI			Signal to noise/noise , RadialH	20	Right side	30.31	T4	PASS					
				20	Left side	30.82	T4	PASS						
7.3.3			Signal to noise/noise , RadialV	20	Upper side	30.52	T4	PASS						
				20	Lower side	30.23	T4	PASS						
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS						



Frequency response (field that exceeds -15 dB)

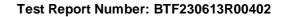
Raw data result

	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-3.83	-9.69	-10.29	-10.13	-10.00
ABM2 dB(A/m)	-38.94	-40.51	-40.6	-40.65	-40.23
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	35.11	30.82	30.31	30.52	30.23
S+N/N per orientation (dB)	35.11	30	.31	30	.23
	Axial ABM1	Radial I	H ABM1	Radial \	√ ABM1
Test plots	7 M post 427 427 427 427 428 400 300 300 330		4 (d pers) 4 (d p		7 (8 (00)) - 10 (10) - 21 (10) - 21 (10) - 21 (10) - 21 (10) - 21 (10)

Measurement at WCDMA Band 2 (1900)

Date of measurement: 30/6/2023

Experimental Conditions

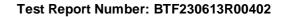

Probe	SN_0717_TCP38
Signal	W-CDMA
Band	Band 2 (1900)
Channels	Middle
Channels Number	9400
Frequency (MHz)	1880.00

Results

Device compliant	Yes
Measurement status	Complete

Requirement verification

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-4.25	1	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-9.86	-	PASS
				-18	Left side	-8.19	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-9.11	<u>-</u>	PASS
				-18	Lower side	-8.00	<u>-</u>	PASS
7.3.3	WCD	Band 2_W CDM	Signal to noise/noise , Axial	20	Max	35.76	T4	PASS
7.3.3	MA	A190 0	Signal to noise/noise , RadialH	20	Right side	30.96	T4	PASS
				20	Left side	32.88	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	31.62	T4	PASS
				20	Lower side	32.38	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



Frequency response (field that exceeds -15 dB)

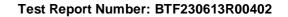
Raw data result

	Axial	Rad	ial H	Radi	al V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-4.25	-8.19	-9.86	-9.11	-8.00
ABM2 dB(A/m)	-40.01	-41.07	-40.82	-40.73	-40.38
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	35.76	32.88	30.96	31.62	32.38
S+N/N per orientation (dB)	35.76	30	.96	31.	62
	Axial ABM1	Radial I	H ABM1	Radial V	ABM1
Test plots	10 Sect. 4 274 4 177 4 1		100 project 100 p		# 148 person of prices of or prices of or prices of or prices of or prices of prices of or prices of or prices of prices of or prices of prices of or prices of prices of prices of or prices of prices of prices of or prices of prices of prices of prices of or prices of prices of prices of prices of prices of or prices of prices of prices of prices of prices of prices of prices of or prices of p

Measurement at WCDMA Band 4 (1700)

Date of measurement: 30/6/2023

Experimental Conditions

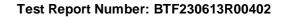

Probe	SN_0717_TCP38
Signal	W-CDMA
Band	Band 4 (1700)
Channels	Low
Channels Number	1312
Frequency (MHz)	1712.40

Results

Device compliant	Yes
Measurement status	Complete


Requirement verification

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-7.30	1	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-10.04	-	PASS
				-18	Left side	-10.43	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-10.65	<u>-</u>	PASS
				-18	Lower side	-10.78	<u>-</u>	PASS
7.3.3	WCD	Band 4_W CDM	Signal to noise/noise , Axial	20	Max	32.11	T4	PASS
7.3.3	MA	A170 0	Signal to noise/noise , RadialH	20	Right side	29.09	Т3	PASS
				20	Left side	28.90	T3	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	28.63	Т3	PASS
				20	Lower side	28.82	Т3	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



Frequency response (field that exceeds -15 dB)

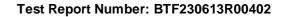
Raw data result

	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-7.30	-10.43	-10.04	-10.65	-10.78
ABM2 dB(A/m)	-39.41	-39.33	-39.13	-39.28	-39.60
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	32.11	28.90	29.09	28.63	28.82
S+N/N per orientation (dB)	32.11	28.90		28.63	
Test plots	Axial ABM1	Radial	## ABM1	Radial	V ABM1

Measurement at WCDMA Band 5 (850)

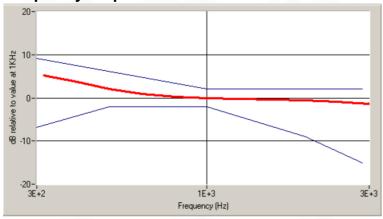
Date of measurement: 30/6/2023

Experimental Conditions

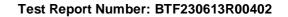

Probe	SN_0717_TCP38				
Signal	W-CDMA				
Band	Band 5 (850)				
Channels	Low				
Channels Number	4132				
Frequency (MHz)	826.40				

Results

Device compliant	Yes
Measurement status	Complete


Requirement verification

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-9.89	-	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-11.23	-	PASS
				-18	Left side	-11.03	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-12.07	-	PASS
				-18	Lower side	-11.29	_	PASS
7.3.3	WCD	Band 5_W CDM A850	Signal to noise/noise , Axial	20	Max	28.52	Т3	PASS
7.3.3	MA		Signal to noise/noise , RadialH	20	Right side	26.90	Т3	PASS
				20	Left side	27.30	T3	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	26.21	Т3	PASS
				20	Lower side	27.31	Т3	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



Frequency response (field that exceeds -15 dB)

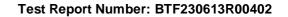
Raw data result

	Axial	Rad	ial H	Radial V		
	Max	Left	Right	Up	Down	
ABM1 dB(A/m)	-9.89	-11.03	-11.23	-12.07	-11.29	
ABM2 dB(A/m)	-38.41	-38.33	-38.13	-38.28	-38.60	
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50	
Freq Reponse Margin (dB)	2	-	-	-	-	
S+N/N(dB)	28.52	27.30	26.90	26.21	27.31	
S+N/N per orientation (dB)	28.52	26.9		26.21		
	Axial ABM1	Radial I	H ABM1	Radial V ABM1		
Test plots	9 60 perce 4 45 cc 4 45 cc 4 5		1 (0) (00) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)		# 10 Miles	

Measurement at LTE Band 2

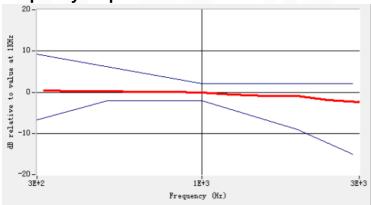
Date of measurement: 30/6/2023

Experimental Conditions

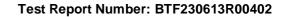

Probe	SN_0717_TCP38				
Signal	LTE FDD				
Band	LTE band 2				
Channels	Middle				
Channels Number	18900				
Frequency (MHz)	1880.00				

Results

Device compliant	Yes
Measurement status	Complete


Requirement verification

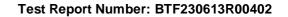
C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-4.11	-	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-12.49	-	PASS
				-18	Left side	-10.98	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-11.38	-	PASS
				-18	Lower side	-11.79	_	PASS
7.3.3	LTE	LTE FDD Band 2	Signal to noise/noise , Axial	20	Max	30.28	T4	PASS
7.3.3	LIE		Signal to noise/noise , RadialH	20	Right side	22.44	Т3	PASS
				20	Left side	24.60	T3	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	24.45	Т3	PASS
				20	Lower side	24.88	Т3	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



Raw data result

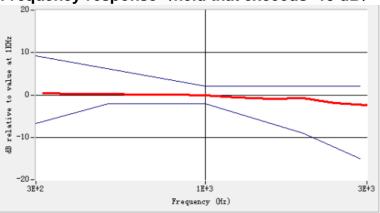
	Axial	Rad	ial H	Radial V		
	Max	Left	Right	Up	Down	
ABM1 dB(A/m)	-4.11	-10.98	-12.49	-11.38	-11.79	
ABM2 dB(A/m)	-34.39	-35.58	-34.93	-35.83	-36.67	
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50	
Freq Reponse Margin (dB)	2	- 1	-	-	-	
S+N/N(dB)	30.28	24.6	22.44	24.45	24.88	
S+N/N per orientation (dB)	30.28	22.44		24.45		
Test plots	Axial ABM1	Radial	Radial H ABM1		Radial V ABM1	

Date of measurement: 30/6/2023

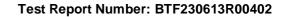

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 4
Channels	Low
Channels Number	20050
Frequency (MHz)	1720.00

Results

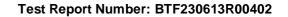

Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict									
7.3.1.1			Intensity, Axial	-18	Max	-4.25	-	PASS									
7.3.1.2			Intensity, RadialH	-18	Right side	-12.39	-	PASS									
				-18	Left side	-10.79	-	PASS									
7.3.1.2			Intensity, RadialV	-18	Upper side	-11.44	-	PASS									
				-18	Lower side	-12.24	-	PASS									
7.3.3	LTE	E FDD Band 4	TE FDD Band									Signal to noise/noise , Axial	20	Max	30.14	T4	PASS
7.3.3	LIE			Signal to noise/noise , RadialH	20	Right side	22.54	Т3	PASS								
				20	Left side	24.79	T3	PASS									
7.3.3			Signal to noise/noise , RadialV	20	Upper side	24.39	Т3	PASS									
				20	Lower side	24.43	T3	PASS									
7.3.2			Frequency reponse, Axial	0	-	2.00	_	PASS									



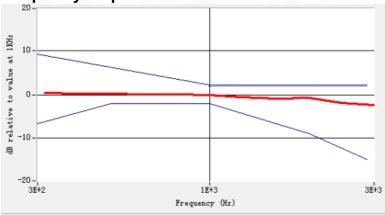
	Axial	Rad	ial H	Rad	ial V	
	Max	Left	Right	Up	Down	
ABM1 dB(A/m)	-4.25	-10.79	-12.39	-11.44	-12.24	
ABM2 dB(A/m)	-34.39	-35.58	-34.93	-35.83	-36.67	
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50	
Freq Reponse Margin (dB)	2	1 - 1	-	-	-	
S+N/N(dB)	30.14	24.79	22.54	24.39	24.43	
S+N/N per orientation (dB)	30.14	22	.54	24	.39	
	Axial ABM1	Radial I	H ABM1	Radial V ABM1		
Test plots	7 of second 4 de 4		7 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		10 Meet 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Date of measurement: 30/6/2023

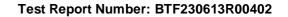

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 5
Channels	Low
Channels Number	20450
Frequency (MHz)	829.00

Results

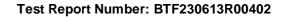

Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict															
7.3.1.1			Intensity, Axial	-18	Max	-9.31		PASS															
7.3.1.2			Intensity, RadialH	-18	Right side	-10.69	-	PASS															
				-18	Left side	-9.05	-	PASS															
7.3.1.2			Intensity, RadialV	-18	Upper side	-9.06	-	PASS															
				-18	Lower side	-10.08	-	PASS															
7.3.3	LTE	LTE FDD Band 5	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	FDD Band	TE FDD Band					Signal to noise/noise , Axial	20	Max	25.08	Т3	PASS
7.3.3	LIE													Signal to noise/noise , RadialH	20	Right side	24.24	Т3	PASS				
				20	Left side	26.53	T3	PASS															
7.3.3			Signal to noise/noise , RadialV	20	Upper side	26.77	Т3	PASS															
				20	Lower side	26.59	Т3	PASS															
7.3.2			Frequency reponse, Axial	0	-	2.00	<u>-</u>	PASS															



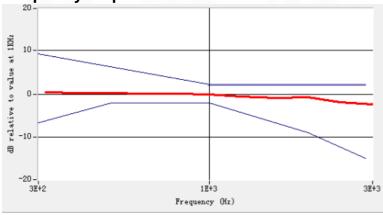
Axial	Rad	ial H	Rad	ial V
Max	Left	Right	Up	Down
-9.31	-9.05	-10.69	-9.06	-10.08
-34.39	-35.58	-34.93	-35.83	-36.67
-50	-50	-50	-50	-50
2	-	-	-	-
25.08	26.53	24.24	26.77	26.59
25.08	24	.24	26	.59
Axial ABM1	Radial	H ABM1	Radial	V ABM1
	Max -9.31 -34.39 -50 2 25.08	Max Left -9.31 -9.05 -34.39 -35.58 -50 -50 2 - 25.08 26.53 25.08 24	Max Left Right -9.31 -9.05 -10.69 -34.39 -35.58 -34.93 -50 -50 -50 2 - - 25.08 26.53 24.24 25.08 24.24	Max Left Right Up -9.31 -9.05 -10.69 -9.06 -34.39 -35.58 -34.93 -35.83 -50 -50 -50 -50 2 - - - 25.08 26.53 24.24 26.77 25.08 24.24 26

Date of measurement: 30/6/2023

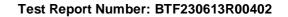

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 12
Channels	High
Channels Number	23130
Frequency (MHz)	711.00

Results

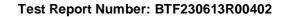

Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-9.78	-	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-7.43	-	PASS
				-18	Left side	-6.29	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-6.06	_	PASS
				-18	Lower side	-7.08	_	PASS
7.3.3	LTE	LTE FDD	Signal to noise/noise, Axial	20	Max	30.12	T4	PASS
7.3.3	LIE	Band 12	Signal to noise/noise , RadialH	20	Right side	31.66	T4	PASS
				20	Left side	32.99	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	33.20	T4	PASS
				20	Lower side	32.47	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



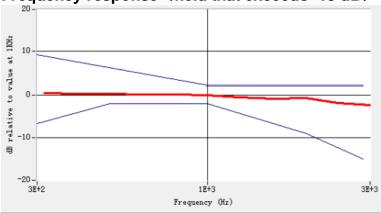
	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-9.78	-6.29	-7.43	-6.06	-7.08
ABM2 dB(A/m)	-39.9	-39.28	-39.09	-39.26	-39.55
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	30.12	32.99	31.66	33.20	32.47
S+N/N per orientation (dB)	30.12	31	.66	32	.47
	Axial ABM1	Radial I	H ABM1	Radial \	V ABM1
Test plots	9 (0) (00%) - 4.000 - 4.000		1 tid poet 4 tid poet 20 77 20 77 20 78 20 78		10 A

Date of measurement: 30/6/2023

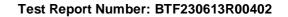

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 17
Channels	Low
Channels Number	23780
Frequency (MHz)	709.00

Results

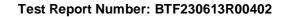

Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-9.33		PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-7.41	-	PASS
				-18	Left side	-6.32	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-8.09	-	PASS
				-18	Lower side	-8.99	-	PASS
7.3.3	LTE	LTE FDD	Signal to noise/noise , Axial	20	Max	30.70	T4	PASS
7.3.3	LIE	Band 17	Signal to noise/noise , RadialH	20	Right side	33.34	T4	PASS
				20	Left side	34.36	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	32.61	T4	PASS
				20	Lower side	30.40	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	<u>-</u>	PASS



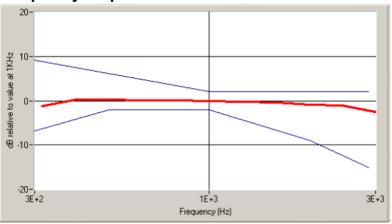
	Axial	Rad	ial H	Rad	lial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-9.33	-6.32	-7.41	-8.09	-8.99
ABM2 dB(A/m)	-40.03	-40.68	-40.75	-40.7	-39.39
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	30.7	34.36	33.34	32.61	30.4
S+N/N per orientation (dB)	30.7	33	.34	30	0.4
	Axial ABM1	Radial I	H ABM1	Radial	V ABM1
Test plots	148 people 2 144 people 2 144 people 2 145 people 3 145 p		4 od over 1		100 mg 10

Date of measurement: 30/6/2023

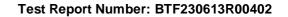

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 30
Channels	Middle
Channels Number	27710
Frequency (MHz)	2310.00

Results


Device compliant	Yes
Measurement status	Complete

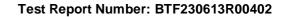
C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-4.18	1	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-9.98	-	PASS
				-18	Left side	-10.6	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-10.18	<u>-</u>	PASS
				-18	Lower side	-10.68	<u>-</u>	PASS
7.3.3	LTE	LTE FDD	Signal to noise/noise , Axial	20	Max	34.95	T4	PASS
7.3.3	LIE	Band 66	Signal to noise/noise , RadialH	20	Right side	30.22	T4	PASS
				20	Left side	30.22	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	30.47	T4	PASS
				20	Lower side	30.41	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	-	PASS



Frequency response (field that exceeds -15 dB)

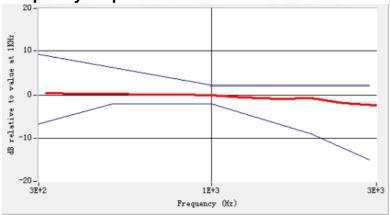
	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-4.18	-10.60	-9.98	-10.18	-10.68
ABM2 dB(A/m)	-39.13	-40.82	-40.2	-40.65	-41.09
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse Margin (dB)	2	-	-	-	-
S+N/N(dB)	34.95	30.22	30.22	30.47	30.41
S+N/N per orientation (dB)	34.95	30.22		30.41	
	Axial ABM1	Radial I	H ABM1	Radial \	√ ABM1
Test plots	10 April 14 April 14 April 14 April 14 April 14 April 15 April 16 April 16 April 16 April 16 April 16 April 16 April 17 April 17 April 17 April 17 April 18		2 (8 Man) 2 (4 A) 4 (3 A)		100 pms. 41202 41203 41404 41404 41404 41404 41404 41404 41404

Date of measurement: 30/6/2023

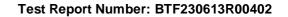

Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 66
Channels	Low
Channels Number	132072
Frequency (MHz)	1720.00

Results

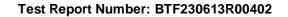

Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-9.37	-	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-10.95	-	PASS
				-18	Left side	-9.37	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-9.01	-	PASS
				-18	Lower side	-10.26	_	PASS
7.3.3	LTE	LTE FDD	Signal to noise/noise , Axial	20	Max	30.48	T4	PASS
7.3.3	LIE	Band 66	Signal to noise/noise , RadialH	20	Right side	30.25	T4	PASS
				20	Left side	32.13	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	32.56	T4	PASS
				20	Lower side	30.24	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2	_	PASS



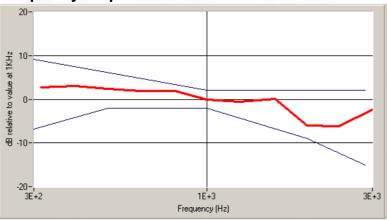
	Axial	Rad	ial H	Rad	ial V
	Max	Left	Right	Up	Down
ABM1 dB(A/m)	-9.37	-9.37	-10.95	-9.01	-10.26
ABM2 dB(A/m)	-39.85	-41.5	-41.2	-41.57	-40.5
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50
Freq Reponse //argin (dB)	2	-	-	-	-
S+N/N(dB)	30.48	32.13	30.25	32.56	30.24
S+N/N per orientation (dB)	30.48	30	.25	30	.24
	Axial ABM1	Radial I	H ABM1	Radial \	√ ABM1
Test plots	148 APG 4 APG		# 100 Person # 4500 # 4500 # 500 Person # 50		10 (200) 1 (200) 1 (200) 2 (200) 2 (200) 2 (200) 2 (200) 2 (200) 2 (200)

Date of measurement: 30/6/2023


Experimental Conditions

Probe	SN_0717_TCP38
Signal	LTE FDD
Band	LTE band 71
Channels	Low
Channels Number	133222
Frequency (MHz)	673.00

Results


Device compliant	Yes
Measurement status	Complete

C63.19	Mode	Band	Test Description	Minimum Limit (dBA/m)	Location	Measured (dBA/m)	Category	Verdict
7.3.1.1			Intensity, Axial	-18	Max	-9.63	-	PASS
7.3.1.2			Intensity, RadialH	-18	Right side	-7.25	-	PASS
				-18	Left side	-6.90	-	PASS
7.3.1.2			Intensity, RadialV	-18	Upper side	-6.37	-	PASS
				-18	Lower side	-7.21	_	PASS
7.3.3	LTE	LTE FDD	Signal to noise/noise , Axial	20	Max	31.22	T4	PASS
7.3.3	LIE	Band 17	Signal to noise/noise , RadialH	20	Right side	30.32	T4	PASS
				20	Left side	31.60	T4	PASS
7.3.3			Signal to noise/noise , RadialV	20	Upper side	32.20	T4	PASS
				20	Lower side	30.00	T4	PASS
7.3.2			Frequency reponse, Axial	0	-	2.00	_	PASS

Frequency response (field that exceeds -15 dB)

	Axial	Rad	ial H	Radial V		
	Max	Left	Right	Up	Down	
ABM1 dB(A/m)	-9.63	-6.90	-7.25	-6.37	-7.21	
ABM2 dB(A/m)	-40.85	-38.5	-37.57	-38.57	-37.21	
Ambient noise, dB(A/m)	-50	-50	-50	-50	-50	
Freq Reponse Margin (dB)	2	-	-	-	-	
S+N/N(dB)	31.22	31.60	30.32	32.20	30.00	
S+N/N per orientation (dB)	31.22	30	30.32		30.00	
	Axial ABM1 Radial H ABM1		H ABM1	Radial V ABM1		
Test plots	10 (400) 10		# 149 person 20		100 per 100 pe	

Test Report Number: BTF230613R00402

ANNEX C Test Setup Photo

ANNEX D EUT External & Internal Photos

Please refer to RF Report.

ANNEX E Calibration Information

Please refer the document "Calibration.pdf".

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT--