

TEST REPORT

Applicant:	Starlink SYS Inc.		
Address:	451 W Lambert Road Ste 211 Brea, CA 92821		
Equipment Type:	4G Wireless Data Terminal		
Model Name:	X1271		
Brand Name:	Skylink global		
FCC ID:	2BBUT-X1271		
Test Standard:	47 CFR Part 15 Subpart C (refer to section 3.1)		
Sample Arrival Date:	Nov. 06, 2023		
Test Date:	Dec. 04, 2023 - Jan. 06, 2024		
Date of Issue:	Jan. 15, 2024		

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Julie Zhu

Checked by: Ye Hongji

Approved by: Liao Jianming (Technical Director)

Julie zhu Yesta

min

	Revision History				
	Version Issue Date Revisions				
	<u>Rev. 01</u>	<u>Jan. 15, 2024</u>	Initial Issue		
		TABLE	OF CONTENTS		
1 GE	ENERAL INFO	ORMATION		4	
1.1	Test La	aboratory		4	
1.2	Test Lo	ocation		4	
2 PF		ORMATION		5	
2.1	Applica	ant Information		5	
2.2	Manufa	acturer Information		5	
2.3	Genera	al Description for Equipr	nent under Test (EUT)	5	
2.4	Technie	cal Information		6	
3 SL	JMMARY OF	TEST RESULTS		9	
3.1	Test St	andards		9	
3.2	Test Ve	erdict		9	
4 G	ENERAL TES	T CONFIGURATIONS		10	
4.1	Test Er	nvironments		10	
4.2	Test Ec	quipment List		10	
4.3	Test So	oftware List		11	
4.4	Measur	rement Uncertainty		12	
4.5	4.5 Description of Test Setup12			12	
4.6	4.6 Measurement Results Explanation Example15				
5 TE	5 TEST ITEMS				
5.1	5.1 Antenna Requirements16				
5.2	Output	Power			
5.3	Occupi	ed Bandwidth		20	
5.4	5.4 Conducted Spurious Emission				
5.5	5.5 Band Edge (Authorized-band band-edge)23				

Report No.: BL-SZ23B0294-601

TiGroup

5.6	Conducted Emission	25
5.7	Radiated Spurious Emission	26
5.8	Band Edge (Restricted-band band-edge)	31
5.9	Power Spectral density (PSD)	32
ANNEX A	TEST RESULT	33
A.1	Output Power	33
A.2	Occupied Bandwidth	40
A.3	Conducted Spurious Emissions	50
A.4	Band Edge (Authorized-band band-edge)	73
A.5	Conducted Emissions	90
A.6	Radiated Emission	92
A.7	Band Edge (Restricted-band band-edge)1	24
A.8	Power Spectral Density (PSD)14	44
ANNEX B	TEST SETUP PHOTOS1	54
ANNEX C	EUT EXTERNAL PHOTOS1	54
ANNEX D	EUT INTERNAL PHOTOS1	54

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.	
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road,	
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China	
Phone Number	+86 755 6685 0100	

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.		
	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi		
	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Location	□ 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park,		
	No. 1008, Songbai Road, Yangguang Community, Xili Sub-district,		
	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Accorditation Cartificate	The laboratory is a testing organization accredited by FCC as a		
Accreditation Certificate	accredited testing laboratory. The designation number is CN1196.		

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Starlink SYS Inc.	
Address	451 W Lambert Road Ste 211 Brea, CA 92821	

2.2 Manufacturer Information

Manufacturer	Starlink SYS Inc.
Address	451 W Lambert Road Ste 211 Brea, CA 92821

2.3 General Description for Equipment under Test (EUT)

EUT Name	4G Wireless Data Terminal
Model Name Under Test	X1271
Series Model Name	N/A
Description of Model	
name differentiation	N/A
Hardware Version	V1.0
Software Version	CS_C6343R_HW6041_R80_MT7621A_SPI_16M256M_V9.1.0u.684
Soltware version	4_0d6f45d_B20231018 6.web
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Technical Information

		4G Network FDD LTE Band 2/4/5/7/12/13/14/25/26/30/66/71	
		TDD LTE Band 41/48	
Network	and Wireless	LTE CA Uplink (UL): CA_7C, CA_41C, CA_5B	
connectivity		2.4G WIFI 802.11b, 802.11g, 802.11n(HT20/40)	
		5G WIFI 802.11a, 802.11n(HT20/40), 802.11ac(VHT20/40/80)	
		U-NII-1/2A/2C/3	
ne requireme	ent for the followi	ng technical information of the EUT was tested in this report:	
		802.11b/g/n(20 MHz): 2.412 GHz - 2.462 GHz	
		f _c = 2412 MHz + (N-1)*5 MHz, where	
		- f_c = "Operating Frequency" in MHz,	
F		- N = "Channel Number" with the range from 1 to 11.	
Frequence	cy Range	802.11n(40 MHz): 2.422 GHz - 2.452 GHz	
		f _c = 2412 MHz + (N-1)*5 MHz, where	
		- f_c = "Operating Frequency" in MHz,	
		- N = "Channel Number" with the range from 3 to 9.	
Modulatio	on Type	DSSS, OFDM	
Product 7	Гуре		
		\boxtimes Fix Location	
Antenna	System (eg.,	Cyclic Delay Diversity (CDD) for 802.11b/g	
	mart Antenna)	Multi Input Multi Output (MIMO) for 802.11n	
Categoriz	zation as		
Correlate	ed or	Categorization as Correlated for 802.11b/g	
Complete	ely Uncorrelated	Categorization as Uncorrelated for 802.11n	
	SISO-		
Antenn	Antenna 0		
а Туре	SISO-	IFA Antenna	
51	Antenna 1		
	SISO- SISO-		
Antenn	Antenna 0		
a Gain	SISO- SISO-	3 dBi	
	Antenna 1		
		Correlated:	
	For power	6.01 dBi	
	spectral	Formulas: Directional gain = $GANT$ + 10 log(NANT) dBi	
	density(PSD)	Uncorrelated:	
Total measurement		3.00 dBi	
directio	S	Formulas: Directional gain = $GANT$	
nal gain		Correlated:	
	For power	6.01 dBi	
	measurement		
	s	Formulas: Directional gain = $GANT$ + 10 log($NANT$) dBi	
		Uncorrelated:	

		3.00 dBi	
		Formulas: Directional gain = GANT	
	For	Correlated:	
	Conducted	6.01 dBi	
	Out-of-Band	nd Formulas: Directional gain = <i>GANT</i> + 10 log(<i>NANT</i>) dBi	
	and Spurious Uncorrelated:		
	Measurement	3.00 dBi	
	S	Formulas: Directional gain = GANT	
About the Product		Only the WIFI 802.11b, 802.11g, 802.11n (HT20/40) was tested in	
		this report.	

Mode	Antenna		
Mode	SISO-Antenna 0	SISO-Antenna 1	MIMO
802.11b		\checkmark	
802.11g	\checkmark		
802.11n20	\checkmark		\checkmark
802.11n40			
Note: All the configurations were tested, but only the worst data was shown in this report.			

Tel: +86-755-66850100E-mail: qc@baluntek.comPage No.7 / 155Web: www.titcgroup.comTemplate No.: TRP-FCC Part 15.247 (2022-01-12)Add: Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China

Modulation technology	Modulation Type	Transfer Rate (Mbps)(Single RF path)
	DBPSK	1
DSSS (802.11b)	DQPSK	2
	CCK	5.5/11
	BPSK	6/9
OFDM (802.11g)	QPSK	12/18
	16QAM	24/36
	64QAM	48/54
	BPSK	6.5/7.2
OFDM	QPSK	13/19.5/14.4/21.7
(802.11n-20 MHz)	16QAM	26/39/28.9/43.3
	64QAM	52/58.5/65/57.8/65/72.2
	BPSK	13.5/15
OFDM	QPSK	27/40.5/30/45
(802.11n-40 MHz)	16QAM	54/81/60/90
	64QAM	108/121.5/135/120/150

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode Data Rate		Cha	nnel
Output Power	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
	110/119/11120/11140	Mbps	1/0/11	
Occupied Bandwidth	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
	110/119/11120/11140	Mbps	1/0/11	3/0/9
Conducted Spurious Emission	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
Conducted Spanous Emission	110/119/11120/11140	Mbps	1/0/11	
Conducted Emission	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
Conducted Emission		Mbps		
Radiated Spurious Emission	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
Radiated Spurious Emission	110/119/11120/11140	Mbps	1/0/11	
Rand Edge	$\frac{11b}{11a}$	1/6/6.5/13.5	1/6/11	3/6/9
Band Edge	11b/11g/11n20/11n40	Mbps	1/0/11	3/0/9
Power spectral density (PSD)	11b/11g/11n20/11n40	1/6/6.5/13.5	1/6/11	3/6/9
Fower spectral density (FSD)	11b/11g/11fi20/11fi40	Mbps	1/6/11	3/0/9

Note: The above EUT information in section 2.4 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Intentional radiators of radio frequency equipment
2	KDB Publication	Emissions Testing of Transmitters with Multiple Outputs in the Same
2	662911 D01v02r01	Band (e.g., MIMO, Smart Antenna, etc)
3		American National Standard of Procedures for Compliance Testing of
3 ANSI C63.10-2013		Unlicensed Wireless Devices
		GUIDANCE FOR COMPLIANCE MEASUREMENTS ON
4	KDB Publication 558074	DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING
4	D01v05r02	SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES
		OPERATING UNDER SECTION 15.247 OF THE FCC RULES

3.2 Test Verdict

No.	Description	FCC PART No.	Test Result	Verdict	
1	Antenna Requirement	15.203	N/A	Pass ^{Note 1}	
2	Output Power	15.247 (b)	ANNEX A.1	Pass	
3	Occupied Bandwidth	15.247 (a)	ANNEX A.2	Pass	
4	Conducted Spurious Emission	15.247 (d)	ANNEX A.3	Pass	
5	Band Edge(Authorized-band	15 047 (d)	ANNEX A.4	Pass	
5	band-edge)	15.247 (d)	AININEA A.4	Pass	
6	Conducted Emission	15.207	ANNEX A.5	Pass	
7	Radiated Spurious Emission	15.209; 15.247 (d)	ANNEX A.6	Pass	
8 Band Edge(Restricted-band		15 200: 15 247 (d)	ANNEX A.7	Pass	
0	band-edge)	15.209; 15.247 (d)	ANNEA A.7	Pass	
9 Power spectral density (PSD) 15.247 (e)		15.247 (e)	ANNEX A.8	Pass	
Note ¹ : The EUT has a permanently and irreplaceable attached antenna, which complies with the					
requir	requirement FCC 15.203.				

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% to 55%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22.1℃ to +22.9℃
Working Voltage of the EUT	NV (Normal Voltage)	12V

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	KEYSIGHT	N9020A	MY50330200	2023.05.16	2024.05.15
Power Sensor	KEYSIGHT	U2063XA	MY58000251	2023.07.12	2024.07.11
Spectrum Analyzer	KEYSIGHT	N9020A	MY50531259	2023.09.05	2024.09.04
Test Antenna-Horn	SCHWARZBECK	BBHA 9120D	02460	2021.05.20	2024.05.19
Test Antenna-Horn	A-INFO	LB- 180400KF	J211060273	2021.07.02	2024.07.01
Anechoic Chamber	RAINFORD	9m*6m*6m	140	2022.02.19	2024.08.15
Amplifier	COM-MV	LSCX_LNA 1-12G-01	7210214	2023.09.05	2024.09.04
Amplifier	COM-MV	XKu_LNA7- 18G-01	7210209	2023.09.05	2024.09.04
A manalifi a m		KA LNA18	10050001	2022.12.07	2023.12.06
Amplifier	er COM-MV 40G-01 18		18050001	2023.12.06	2024.12.05
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2023.09.05	2024.09.04
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2021.04.16	2024.04.15
Amplifier	COM-MV	ZT30- 1000M	B2018054558	2023.12.05	2024.12.04
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	130	2021.08.15	2024.08.14
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2023.09.05	2024.09.04
Test Antenna-Bi-Log	SCHWARZBECK	VULB 9163	9163-624	2021.08.20	2024.08.19
Amplifier	COM-MV	ZT30- 1000M	B2017119082	2023.12.05	2024.12.04
Anechoic Chamber	RAINFORD	9m*6m*6m	101	2023.03.04	2026.03.03
EMI Receiver	KEYSIGHT	N9010B	MY57110309	2023.09.05	2024.09.04
LISN	SCHWARZBECK	NSLK 8127	8127-687	2023.05.16	2024.05.15
Shielded Enclosure	YiHeng Electronic Co., Ltd	3.5m*3.1m* 2.8m	112	2022.02.19	2025.02.18

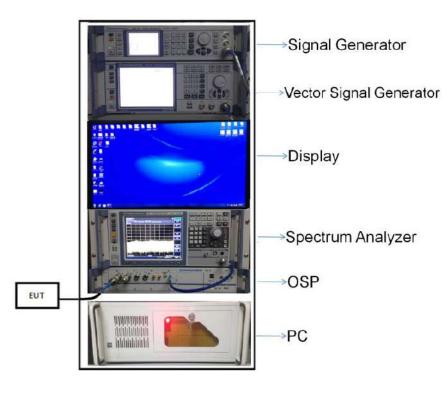
4.3 Test Software List

Description	Manufacturer	Software Version	Serial No.	Applicable test Setup
BL410R	BALUN	V2.1.1.488	N/A	The section 4.5.1
BL410E	BALUN	V22.930	N/A	The section 4.5.2&4.5.3&4.5.4&4.5.5

4.4 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

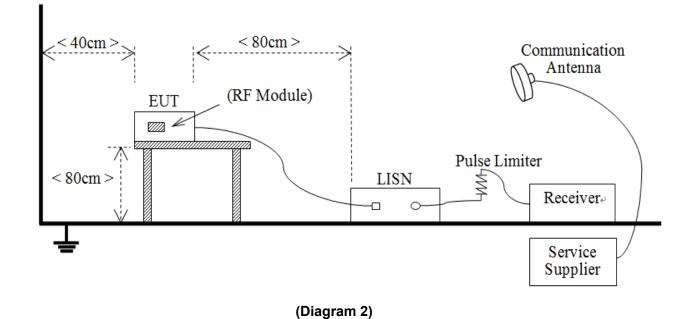
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

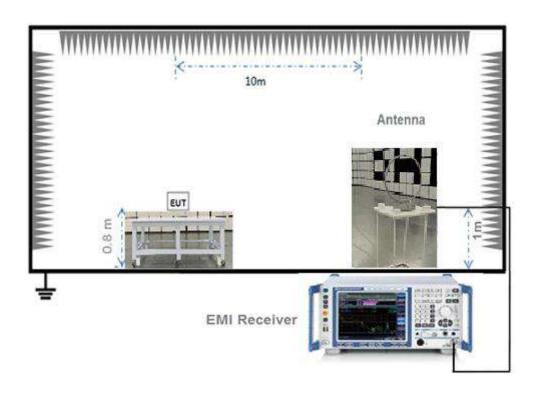

Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.8°C
Humidity	4%

4.5 Description of Test Setup

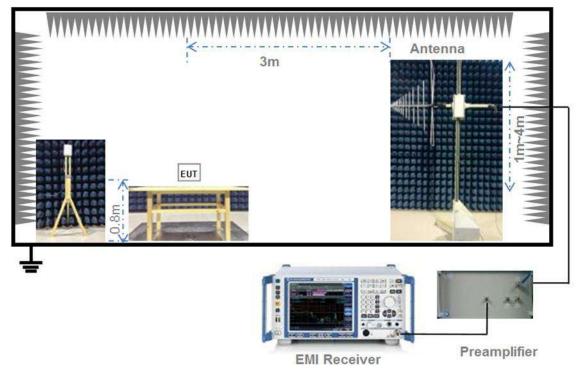
4.5.1 For Antenna Port Test

Conducted value (dBm) = Measurement value (dBm) + cable loss (dB)

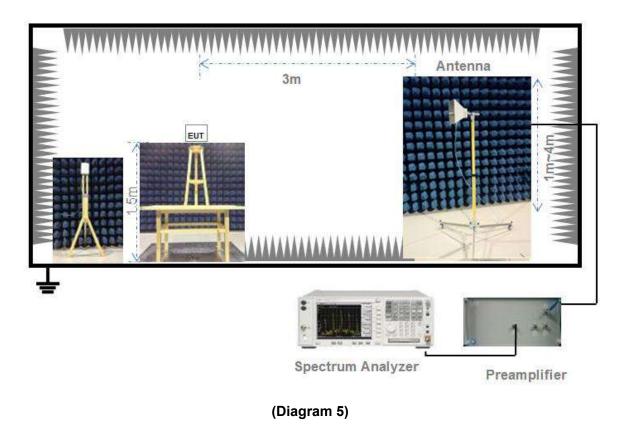

For example: the measurement value is 10 dBm and the cable 0.5dBm used, then the final result of EUT: Conducted value (dBm) = 10 dBm + 0.5 dB = 10.5 dBm


(Diagram 1)

4.5.2 For AC Power Supply Port Test


4.5.3For Radiated Test (Below 30 MHz)

(Diagram 3)



4.5.4 For Radiated Test (30 MHz-1 GHz)

(Diagram 4)

4.5.5 For Radiated Test (Above 1 GHz)

4.6 Measurement Results Explanation Example

4.6.1 For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

4.6.2For radiated band edges and spurious emission test:

E = EIRP – 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

EIRP= Measure Conducted output power Value (dBm) + Maximum transmit antenna gain (dBi) + the appropriate maximum ground reflection factor (dB)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
Compliance with 15.203, use of a	
standard antenna jack or electrical	The antenna is the unique connector with a wire antenna.
connector is prohibited.	

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

Protected Method	Description
The antenna is embedded in the	An embedded-in antenna design is used.
product.	

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.1.3Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5.2 Output Power

5.2.1 Test Limit

FCC § 15.247(b)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements.

5.2.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Maximum peak conducted output power

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Maximum conducted (average) output power (Reporting Only)

a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be perfor med

using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.

3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a

factor of five.

b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output si gnal as

described in Section 6.0.

c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement r esult.

Measurements of duty cycle

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal.

Set the center frequency of the instrument to the center frequency of the transmission.

Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.

Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

5.2.4 Test Result

Please refer to ANNEX A.1.

5.3 Occupied Bandwidth

5.3.1 Limit

FCC §15.247(a)

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.

5.3.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3Test Procedure

Use the following spectrum analyzer settings:

Set RBW = 100 kHz.

Set the video bandwidth (VBW) \geq 3 RBW.

Detector = Peak.

Trace mode = max hold.

Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Conducted Spurious Emission

5.4.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.4.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3Test Procedure

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).

c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.

The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Band Edge (Authorized-band band-edge)

5.5.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.5.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \geq 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

Standard method(The 99% OBW of the fundamental emission is without 2 MHz of the authorized band):

Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.

Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

Attenuation: Auto (at least 10 dB preferred).

Sweep time: Coupled.

Resolution bandwidth: 100 kHz.

Video bandwidth: 300 kHz.

Detector: Peak.

Trace: Max hold.

5.5.4 Test Result

Please refer to ANNEX A.4.

5.6 Conducted Emission

5.6.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60	50	

5.6.2 Test Setup

See section 4.5.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.6.3Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.6.4 Test Result

Please refer to ANNEX A.5.

5.7 Radiated Spurious Emission

5.7.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.7.2 Test Setup

See section 4.5.3 to 4.5.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.7.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 1.
- b) VBW \geq 3 x RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be

longer for low duty cycle applications).

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Table 1—RBW as a function of frequency

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle \geq 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

 i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

5.7.4 Test Result

Please refer to ANNEX A.6.

5.8 Band Edge (Restricted-band band-edge)

5.8.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

5.8.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.8.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

For transmitters operating above 1 GHz repeat the measurement with an average detector.

5.8.4 Test Result

Please refer to ANNEX A.7.

5.9 Power Spectral density (PSD)

5.9.1 Limit

FCC §15.247(e)

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

5.9.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.9.3 Test Procedure

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

Set the VBW \geq 3 RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.9.4 Test Result

Please refer to ANNEX A.8.

ANNEX A TEST RESULT

A.1 Output Power

Note: The Average Power has considered the Duty Factor.

Duty Cycle

Test Mode	On Time (ms)	On+Off time (ms)	Duty Cycle	Duty Factor
802.11b	50	50	100.00%	0.00
802.11g	50	50	100.00%	0.00
802.11n-20 MHz	50	50	100.00%	0.00
802.11n-40 MHz	50	50	100.00%	0.00

SISO-Antenna 0

Peak Power Test Data

802.11b Mode:

Channel	Measured Output Peak Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	verdict
Low	19.46	88.31	30		Pass
Middle	19.24	83.95		1000	Pass
High	19.50	89.13			Pass

802.11g Mode:

Channel	Measured Output Peak Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	17.98	62.81	30		Pass
Middle	18.06	63.97		1000	Pass
High	18.63	72.95			Pass

802.11n-20 MHz Mode:

Channel	Measured Output Peak Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	17.59	57.41	30) 1000	Pass
Middle	17.49	56.10			Pass
High	17.65	58.21			Pass

Channel	Measured Output Peak Power		Limit		Verdict			
Channel	dBm	mW	dBm	mW	verdict			
Low	17.91	61.80	30					Pass
Middle	17.85	60.95		1000	Pass			
High	16.52	44.87			Pass			

Average Power Test Data

802.11b Mode:

Channel	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdici
Low	16.56	45.29	30		Pass
Middle	16.28	42.46		1000	Pass
High	16.58	45.50			Pass

802.11g Mode:

Channel	Measured Output Average Power		Limit		Verdict	
Channel	dBm	mW	dBm	mW	Verdici	
Low	12.21	16.63	30			Pass
Middle	12.27	16.87		1000	Pass	
High	12.88	19.41			Pass	

802.11n-20 MHz Mode:

Channel	Measured Output Average Power		Limit		Verdict			
Channel	dBm	mW	dBm	mW	Verdici			
Low	11.83	15.24	30					Pass
Middle	11.74	14.93		1000	Pass			
High	11.87	15.38			Pass			

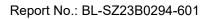
Channel	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	12.05	16.03	30		Pass
Middle	11.95	15.67		1000	Pass
High	10.66	11.64			Pass

SISO-Antenna 1

Peak Power Test Data

802.11b Mode:

Channel Measured (put Peak Power	Lir	nit	Vordiot
Channel	dBm	mW	dBm	mW	Verdict
Low	19.33	85.70	30	0 1000	Pass
Middle	19.63	91.83			Pass
High	19.16	82.41			Pass


802.11g Mode:

Channel	Measured Output Peak Power		Limit		Verdict
	dBm	mW	dBm	mW	verdici
Low	19.27	84.53			Pass
Middle	19.11	81.47	30	1000	Pass
High	18.47	70.31			Pass

802.11n-20 MHz Mode:

Channel	Measured Output Peak Power		Limit		Verdict
	dBm	mW	dBm	mW	verdict
Low	17.97	62.66			Pass
Middle	17.96	62.52	30	1000	Pass
High	17.85	60.95			Pass

Channel	Measured Output Peak Power		Limit		Verdict
	dBm	mW	dBm	mW	Verdict
Low	17.61	57.68			Pass
Middle	17.86	61.09	30	1000	Pass
High	17.28	53.46			Pass

Average Power Test Data

802.11b Mode:

Channel	Measured Output Average Power		Limit		Vardiat
	dBm	mW	dBm	mW	Verdict
Low	16.61	45.81			Pass
Middle	16.32	42.85	30	1000	Pass
High	16.43	43.95			Pass

802.11g Mode:

Channel	Measured Output Average Power		Limit		Verdict
	dBm	mW	dBm	mW	verdict
Low	12.83	19.19			Pass
Middle	12.67	18.49	30	1000	Pass
High	12.02	15.92			Pass

802.11n-20 MHz Mode:

Channel	Measured Output Average Power		Limit		Verdict
	dBm	mW	dBm	mW	verdici
Low	11.61	14.49			Pass
Middle	11.54	14.26	30	1000	Pass
High	11.44	13.93			Pass

Channel	Measured Output Average Power		Limit		Verdict
	dBm	mW	dBm	mW	verdict
Low	11.06	12.76			Pass
Middle	11.33	13.58	30	1000	Pass
High	10.73	11.83			Pass

MIMO-Antenna 0

Peak Power Test Data

802.11n-20 MHz Mode:

Channel	Measured Output Peak Power		Limit		Verdict
Channer	dBm	mW	dBm	mW	Verdict
Low	14.46	27.93			Pass
Middle	13.99	25.06	30	1000	Pass
High	14.04	25.35			Pass

802.11n-40 MHz Mode:

Channel	Measured Out	Measured Output Peak Power		nit	Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	14.23	26.49			Pass
Middle	14.21	26.36	30	1000	Pass
High	14.35	27.23			Pass

Average Power Test Data

802.11n-20 MHz Mode:

Channel	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	verdict
Low	8.71	7.43			Pass
Middle	8.20	6.61	30	1000	Pass
High	8.36	6.85			Pass

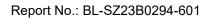
Channel	Measured Outp	ed Output Average Power		nit	Verdict
Channel	dBm	mW	dBm	mW	Verdici
Low	8.40	6.92			Pass
Middle	8.41	6.93	30	1000	Pass
High	8.54	7.14			Pass

MIMO-Antenna 1

Peak Power Test Data 802.11n-20 MHz Mode:

Measured Output Peak Power Limit Channel Verdict dBm dBm mW mW Low 16.32 42.85 Pass Middle 14.81 30.27 Pass 30 1000 14.45 27.86 Pass High

802.11n-40 MHz Mode:


Channal	Measured Output Peak Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	14.37	27.35			Pass
Middle	15.01	31.70	30	1000	Pass
High	15.18	32.96			Pass

Average Power Test Data

802.11n-20 MHz Mode:

Channel	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	verdict
Low	10.01	10.02			Pass
Middle	8.46	7.01	30	1000	Pass
High	8.06	6.40			Pass

Channal	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	7.87	6.12			Pass
Middle	8.49	7.06	30	1000	Pass
High	8.67	7.36			Pass

MIMO Antenna

Peak Power Test Data 802.11n-20 MHz Mode:

Channal	Measured Output Peak Power		Limit		Verdict	
Channel	dBm	mW	dBm	mW	verdict	
Low	18.50	70.78	30		Pass	
Middle	17.43	55.33		1000	Pass	
High	17.26	53.21			Pass	

802.11n-40 MHz Mode:

Channel	Measured Out	easured Output Peak Power		nit	Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	17.31	53.84			Pass
Middle	17.64	58.06	30	1000	Pass
High	17.80	60.19			Pass

Average Power Test Data

802.11n-20 MHz Mode:

Channel	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	verdict
Low	12.42	17.45			Pass
Middle	11.34	13.62	30	1000	Pass
High	11.22	13.25			Pass

Channal	Measured Output Average Power		Limit		Verdict
Channel	dBm	mW	dBm	mW	Verdict
Low	11.15	13.04			Pass
Middle	11.46	14.00	30	1000	Pass
High	11.62	14.51			Pass

A.2 Occupied Bandwidth

<u>Test Data</u>

SISO-Antenna 0

802.11b Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channer	(MHz)	(MHz)	Limits (kHz)
Low	9.150000	14.480000	≥500
Middle	10.150000	15.127000	≥500
High	9.100000	13.893000	≥500

802.11g Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	15.550000	16.932000	≥500
Middle	16.500000	17.416000	≥500
High	13.500000	16.582000	≥500

802.11n-20MHz Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	16.150000	17.869000	≥500
Middle	17.700000	18.253000	≥500
High	14.250000	17.533000	≥500

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	26.250000	35.438000	≥500
Middle	36.450000	36.516000	≥500
High	26.350000	35.659000	≥500

SISO-Antenna 1

802.11b Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	10.150000	15.682000	≥500
Middle	9.600000	14.262000	≥500
High	9.150000	14.199000	≥500

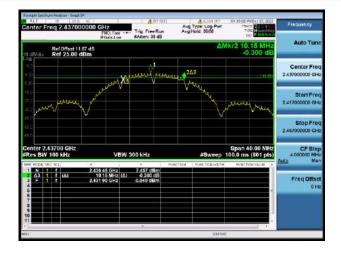
802.11g Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	16.450000	17.628000	≥500
Middle	15.750000	16.556000	≥500
High	15.100000	16.600000	≥500

802.11n-20MHz Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Charmer	(MHz)	(MHz)	Limits (kHz)
Low	17.650000	18.122000	≥500
Middle	16.050000	17.571000	≥500
High	15.750000	17.613000	≥500

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	35.700000	36.009000	≥500
Middle	24.450000	35.395000	≥500
High	36.450000	36.182000	≥500


Test Plots SISO-Antenna 0 6 dB Bandwidth 802.11b LOW CHANNEL

802.11b HIGH CHANNEL

802.11b MIDDLE CHANNEL

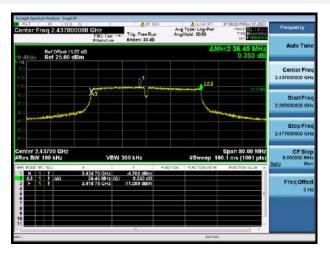
802.11g LOW CHANNEL

802.11g MIDDLE CHANNEL

802.11g HIGH CHANNEL

802.11n-20 MHz LOW CHANNEL

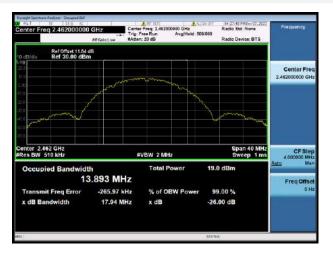
802.11n-20 MHz HIGH CHANNEL


802.11n-20 MHz MIDDLE CHANNEL

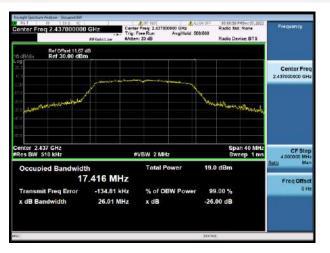
802.11n-40 MHz LOW CHANNEL

802.11n-40 MHz MIDDLE CHANNEL


802.11n-40 MHz HIGH CHANNEL

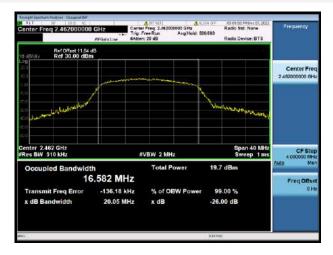


99% Bandwidth

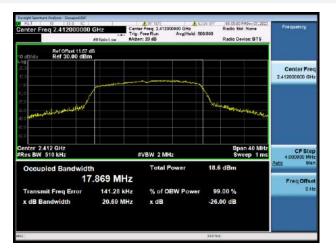

802.11b LOW CHANNEL

802.11b HIGH CHANNEL

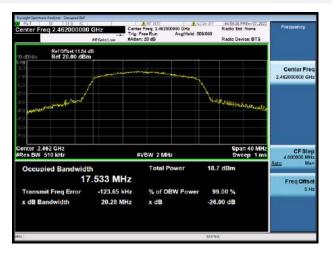
802.11g MIDDLE CHANNEL

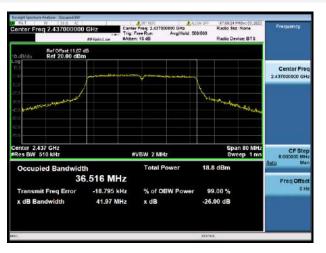

802.11b MIDDLE CHANNEL

802.11g LOW CHANNEL



802.11g HIGH CHANNEL



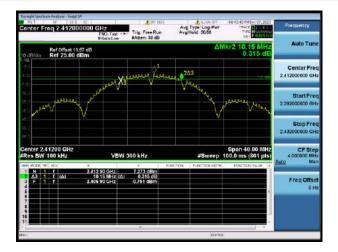

802.11n-20 MHz LOW CHANNEL

802.11n-20 MHz HIGH CHANNEL

802.11n-40 MHz MIDDLE CHANNEL

802.11n-20 MHz MIDDLE CHANNEL

802.11n-40 MHz LOW CHANNEL



802.11n-40 MHz HIGH CHANNEL

SISO-Antenna 1 6 dB Bandwidth 802.11b LOW CHANNEL

802.11b HIGH CHANNEL

802.11b MIDDLE CHANNEL

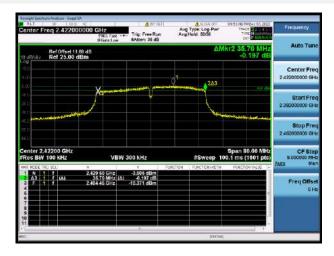
802.11g LOW CHANNEL

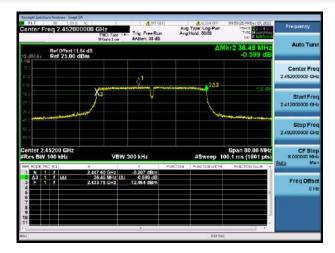
802.11g MIDDLE CHANNEL

802.11g HIGH CHANNEL

802.11n-20 MHz LOW CHANNEL

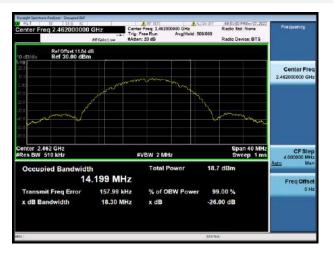
802.11n-20 MHz HIGH CHANNEL


802.11n-40 MHz MIDDLE CHANNEL

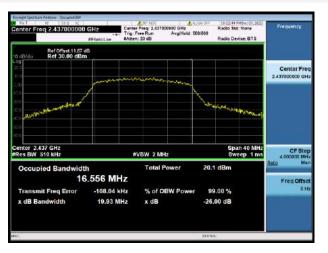

802.11n-20 MHz MIDDLE CHANNEL

802.11n-40 MHz LOW CHANNEL

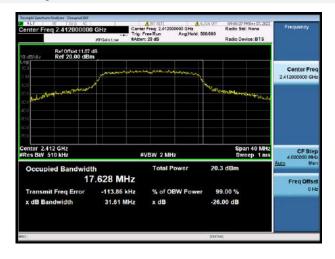
802.11n-40 MHz HIGH CHANNEL

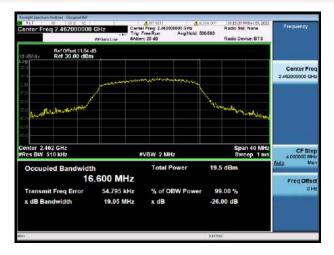


99% Bandwidth

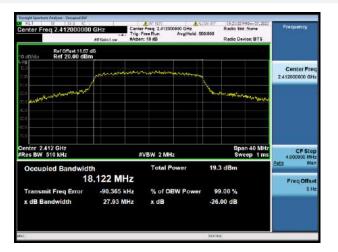

802.11b LOW CHANNEL

802.11b HIGH CHANNEL

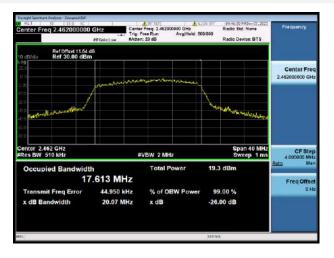

802.11g MIDDLE CHANNEL

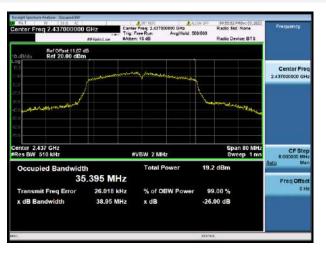

802.11b MIDDLE CHANNEL

802.11g LOW CHANNEL



802.11g HIGH CHANNEL




802.11n-20 MHz LOW CHANNEL

802.11n-20 MHz HIGH CHANNEL

802.11n-40 MHz MIDDLE CHANNEL

802.11n-20 MHz MIDDLE CHANNEL

802.11n-40 MHz LOW CHANNEL

802.11n-40 MHz HIGH CHANNEL

A.3 Conducted Spurious Emissions

Note: All the configurations were pre tested, only the worst configuration has been reported in this report. <u>Test Data</u>

SISO-Antenna 0

802.11b Mode:

	Measured Max.	Limit	(dBm)	
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Lever	dBc Limit	
Low	-36.71	7.87	-12.13	Pass
Middle	-34.27	8.06	-11.95	Pass
High	-36.27	8.15	-11.85	Pass

802.11g Mode:

	Measured Max.	Limit	(dBm)	
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Camer Lever	dBc Limit	
Low	-36.80	0.23	-19.77	Pass
Middle	-36.20	-0.05	-20.05	Pass
High	-37.09	-0.36	-20.36	Pass

802.11n-20MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low	-35.67	-0.69	-20.69	Pass
Middle	-37.12	-1.17	-21.17	Pass
High	-37.07	-0.92	-20.92	Pass

	Measured Max.	Limit	(dBm)	
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Camer Lever	dBc Limit	
Low	-36.69	-3.95	-23.95	Pass
Middle	-37.04	-3.63	-23.63	Pass
High	-37.01	-2.66	-22.66	Pass

SISO-Antenna 1

802.11b Mode:

	Measured Max.	Limit	(dBm)	
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Camer Lever	dBc Limit	
Low	-36.54	7.33	-12.67	Pass
Middle	-37.54	7.51	-12.49	Pass
High	-35.23	7.56	-12.44	Pass

802.11g Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)		dBc Limit	
Low	-36.96	3.42	-16.59	Pass
Middle	-37.38	2.96	-17.04	Pass
High	-36.64	2.87	-17.13	Pass

802.11n-20MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Lever	dBc Limit	
Low	-36.45	1.92	-18.08	Pass
Middle	-36.49	2.49	-17.51	Pass
High	-34.61	2.48	-17.52	Pass

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Lever	dBc Limit	
Low	-35.77	-0.94	-20.94	Pass
Middle	-36.96	-0.02	-20.02	Pass
High	-36.47	-1.88	-21.88	Pass

MIMO-Antenna 0

802.11n-20MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low	-37.54	-3.42	-23.42	Pass
Middle	-37.11	-4.21	-24.21	Pass
High	-34.79	-4.73	-24.73	Pass

802.11n-40MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Lever	dBc Limit	
Low	-37.44	-7.66	-27.66	Pass
Middle	-37.03	-7.38	-27.38	Pass
High	-36.35	-6.12	-26.12	Pass

MIMO-Antenna 1

802.11n-20MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Out of Band	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low	-35.61	-1.73	-21.73	Pass
Middle	-37.04	-1.08	-21.08	Pass
High	-36.70	-0.81	-20.81	Pass

	Measured Max.	Limit (dBm)			
Channel	Out of Band	Carrier Level	Calculated 20	Verdict	
	Emission (dBm)	Carrier Lever	dBc Limit		
Low	-36.42	-3.14	-23.14	Pass	
Middle	-36.84	-2.12	-22.12	Pass	
High	-35.91	-4.15	-24.15	Pass	

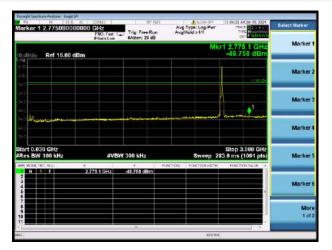
Test Plots


SISO-Antenna 0

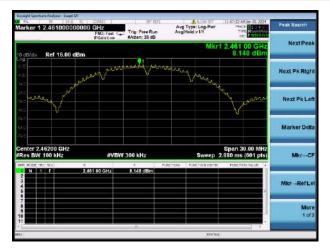
802.11b LOW CHANNEL CARRIER LEVEL

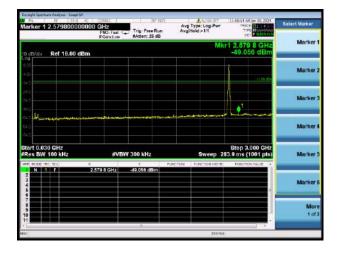
802.11b LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz 802.11b LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

PND: Fast / IFGala/Low	Trig: Free Rue #Atten: 26 dB	Avg Avg	Type: Log-Pwr Hold > 1/1		Select Marker
(Bm			Mk	r1 2.666 4 GHz -48.182 dBm	Marker
				an a	Marker
					Marker
		1. a. bay - pri - ano 100		**************************************	Marker
#VE	3W 300 kHz				Marker
2,665 4 GHz	-48,182 dBm	PUNCTION	PUNCTICIN WETH	PONCTION VALUE +	Marker
					Mor 1 of
	FND) face Finder Low	FIGURATION CONTRACTOR OF THE RANGE OF THE RA	TRUE TAX CONT THE PERCENT And	PGoil Low Children Line Chile	Interation With 12.666 4 GHz Em -48.192 dBm -49.192 dBm -49.192 dBm -40.192 dBm



802.11b MIDDLE CHANNEL CARRIER LEVEL




802.11b MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11b HIGH CHANNEL CARRIER LEVEL

802.11b HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11b MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

802.11b HIGH CHANNEL, SPURIOUS

2 GHz ~ 25 GHz

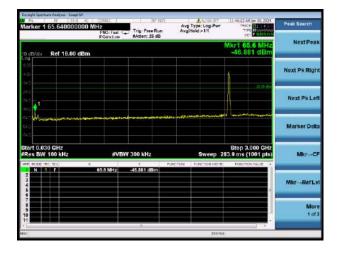
802.11g LOW CHANNEL CARRIER LEVEL

802.11g LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz 802.11g LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

AL IF 19.8 AC Marker 1 2,47966000000	O GHz PND: Fast C IFGela/Low	Trig: Free Run #Atten: 26 dB	Avg Type: Log-Pwr Avg Hold > 1/1	111 26 22 AM Jan 15, 2024 TRACE 2 2 4 A ST TINC MARKING DET 2 4 AM	Select Marker
o dB/div Ref 16.00 dBm			Mk	r1 2.479 7 GHz -48.862 dBm	Marker
6.00					Marker
140 240				-11/1 66	Marker
510 410 410 Mary	-		مىسىلىپ، يەرىيەت يالدېرورىلەرىم.	2 million and the	Marker
64 D 74 D					Marker
Start 0.030 GHz Res BW 100 kHz	#VB	W 300 kHz	Sweep 2	Stop 3.000 GHz 83.9 ms (1001 pts)	Marker
2	4797 GHz	-48.862 dBm	PUNCTION PUNCTION WOTH	PUNCTION VALUE +	_
3 4 5 6					Marker
8 9 10					Mor 1 of
				-	

0000 GHz		Avg Type: Log-Pwr Avg Hold > 1/1	TINCE STATES	Peak Search
m		Mkr1	21.101 60 GHz -36.798 dBm	NextPeak
				Next Pk Righ
			L'anne	Next Pk Lef
				Marker Delta
#VB	W 300 kHz	Sweep	Stop 25.00 GHz 2.198 s (4001 pts)	MkrC
21.101 50 GHz	-36.798 dBm	INCTION	PURCTION VIALUE +	MkrRefLy
				Mor 1 of
	FRO.Fac C FGalaLow m	D000 GHZ FROTAL Constraints FROTAL Constraints Attack 28 dB m #VBW 300 kH2 5 0 0 kH2	Aug Type: Log Per Aug Type: Log Per	Microsoft True: Free Run AvgHold's VI True: Bit State (True) True: Bit State (True) Bit State (True) True: Bit State (True) Bit State (True)

802.11g MIDDLE CHANNEL CARRIER LEVEL

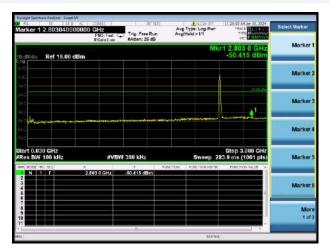

802.11g MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

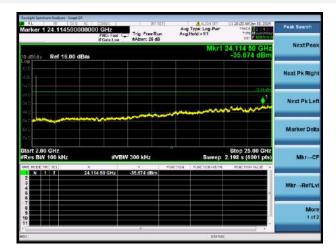
802.11g HIGH CHANNEL CARRIER LEVEL

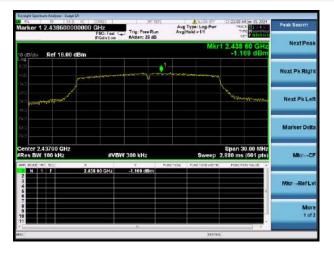
802.11g HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11g MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

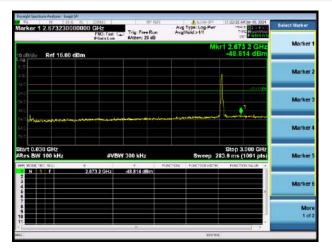
802.11g HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



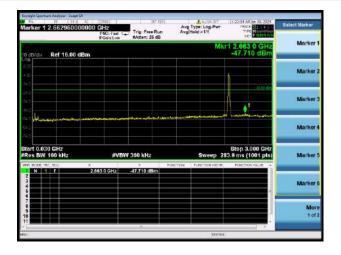

802.11n-20 MHz LOW CHANNEL CARRIER LEVEL


802.11n-20 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



802.11n-20 MHz MIDDLE CHANNEL CARRIER LEVEL

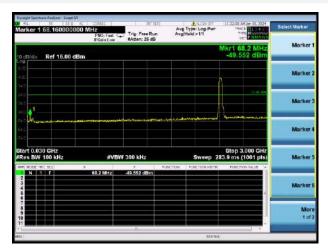

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-20 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

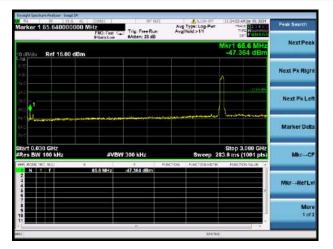
802.11n-20 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



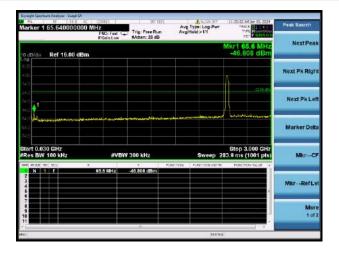
802.11n-40 MHz LOW CHANNEL CARRIER LEVEL

802.11n-40 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



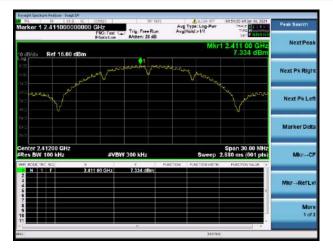
802.11n-40 MHz MIDDLE CHANNEL CARRIER LEVEL


802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

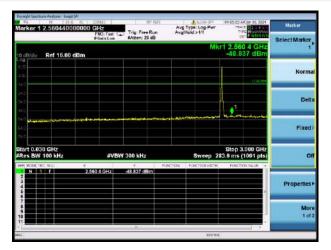

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

SISO-Antenna 1

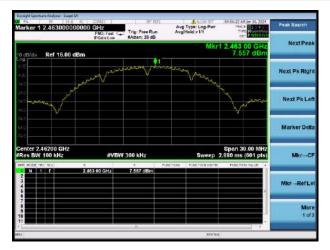
802.11b LOW CHANNEL CARRIER LEVEL

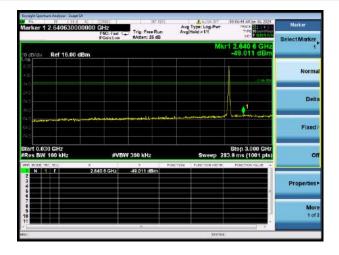
802.11b LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz 802.11b LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

Marker	199.00:160 AM Jen 56, 2024	Type: Log-Pwr Hold > 1/1		Trig: Free R	HIZ PND: Fast C	0000000 0		arker 1
Select Marker	1 2.669 4 GHz	Mkr		#Atten: 26	FGela:Low	_		_
	-48.311 dBm					00 dBm	Ref 16.0	dB/div
Norm								.00
	-0.07 600							40
Delt								4.D
	and a strange							
Fixed			naania)	(and a second	10.140 million (1942)	All the second sec	Parameter	40
COARSE -								
o	Stop 3.000 GHz 3.9 ms (1001 pts)	Sweep 28		/ 300 kHz	#VB		30 GHz 100 kHz	tart 0.03 Res BW
_	PUNCTION VALUE +	PUNCTION WORK	PLOCT	-48.311 dBn	94 GHz	×		N NODE 17
Properties				960.211.500				2
								6
Mor								8
1 of								1
		STATUS.	_					a l



802.11b MIDDLE CHANNEL CARRIER LEVEL




802.11b MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11b HIGH CHANNEL CARRIER LEVEL

802.11b HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11b MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

802.11b HIGH CHANNEL, SPURIOUS

2 GHz ~ 25 GHz

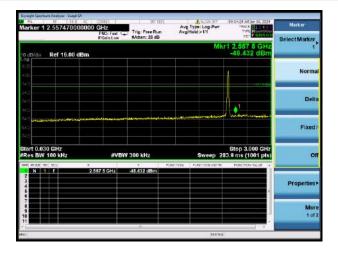
802.11g LOW CHANNEL CARRIER LEVEL

802.11g LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz 802.11g LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

arker 1 2.57529000000	PND: Fast Ca	Trig FreeRun	Avg Type: Log-Pwr Avg Hold > 1/1	109 09:13 AMJen 10, 2024	Marker
Bef 16.00 dBm	IFGein:Low	#Atten: 26 dB	M	r1 2.575 3 GHz -48.226 dBm	Select Marker
					Norma
40					Deli
	-1	popular and the contra	a	Mainlass printer	Fixed
tart 0.030 GHz Res BW 100 kHz	#VBN	/ 300 kHz		Stop 3.000 GHz 83.9 ms (1001 pts)	o
	575 3 GHz	-48.226 dBm	PUNCTION PUNCTION WOTH	PONCTION VALUE	Properties
6 7 9 0					Mor 1 of
		N	kTA'SU	1 C	

arker 1 21.113000000	PND: Fast C IFGala Low	Trig: Free Run AAtten: 26 dB	Anian are pe: Log-Pwr Id > 1/1	TNA TNA TV	M.3er 86, 2024	Peak Search
dE/div Ref 16.00 dBm			Mkr1	21.113	00 GHz 55 dBm	NextPeak
						Next Pk Righ
0 0 0				Annual I		Next Pk Let
					A COLUMN TWO IS NOT	
	*****	ميەم ت ەستىرىنىيە				Marker Delt
art 2.00 GHz tes BW 100 kHz	#VB	W 300 kHz			5.00 GHz (4001 pts)	Marker Dela MkrCP
art 2.00 GHz tes BW 100 kHz	#VB		Sweep		25.00 GHz (4001 pts) CRVMLIR +	

802.11g MIDDLE CHANNEL CARRIER LEVEL

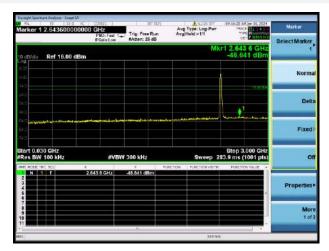

802.11g MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11g HIGH CHANNEL CARRIER LEVEL


802.11g HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11g MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

802.11g HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

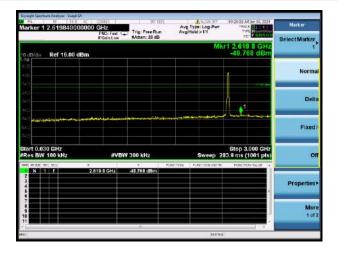


802.11n-20 MHz LOW CHANNEL CARRIER LEVEL

802.11n-20 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

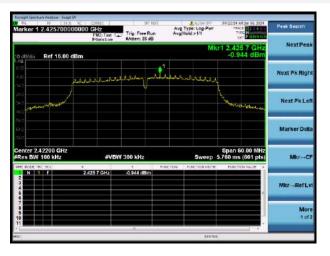
802.11n-20 MHz MIDDLE CHANNEL CARRIER LEVEL

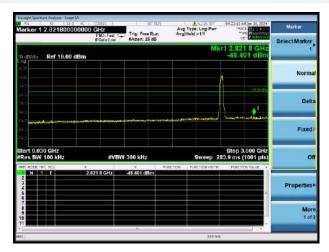

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz HIGH CHANNEL CARRIER LEVEL

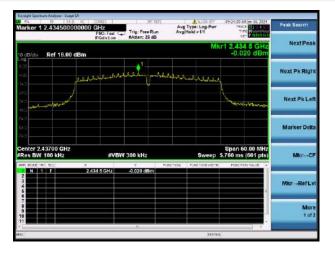
802.11n-20 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

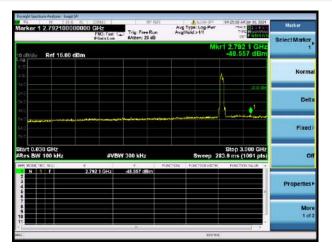

802.11n-20 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz


Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 66 / 155 Web: www.titcgroup.com Template No.: TRP-FCC Part 15.247 (2022-01-12) 66 / 155 Add: Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China R. China

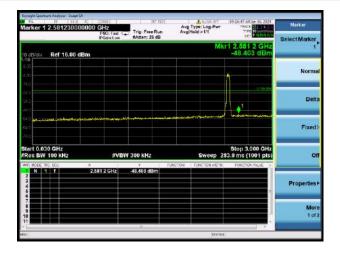
802.11n-40 MHz LOW CHANNEL CARRIER LEVEL


802.11n-40 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



802.11n-40 MHz MIDDLE CHANNEL CARRIER LEVEL

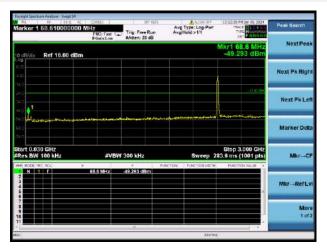

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

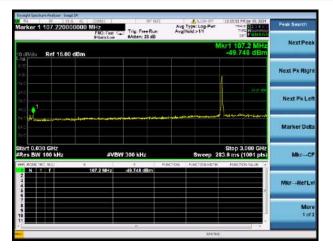


MIMO-Antenna 0

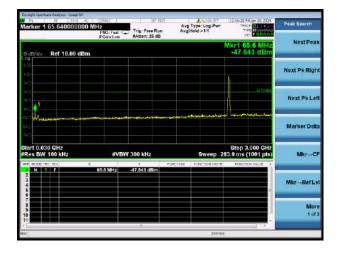
802.11n-20 MHz LOW CHANNEL CARRIER LEVEL

802.11n-20 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz MIDDLE CHANNEL CARRIER LEVEL


Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 69 / 155 Web: www.titcgroup.com Template No.: TRP-FCC Part 15.247 (2022-01-12) Page No. 69 / 155

802.11n-20 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

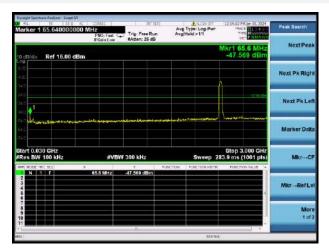

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-20 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

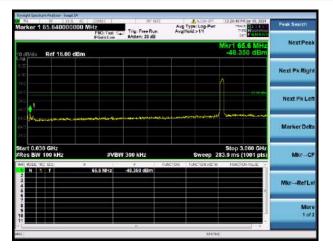
802.11n-20 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



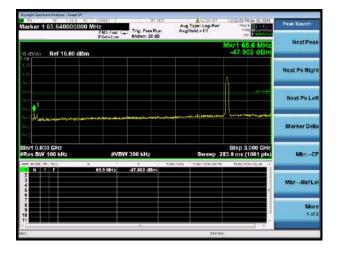
802.11n-40 MHz LOW CHANNEL CARRIER LEVEL

802.11n-40 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



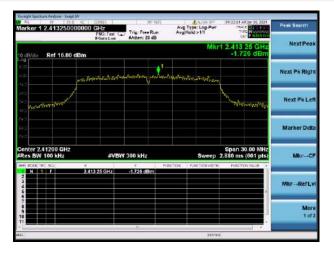
802.11n-40 MHz MIDDLE CHANNEL CARRIER LEVEL

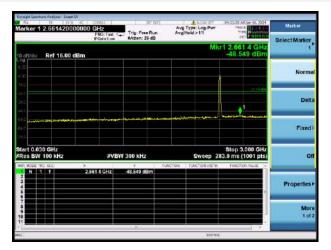

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz


802.11n-40 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



MIMO-Antenna 1

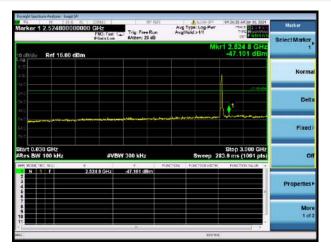
A.4 802.11n-20 MHz LOW CHANNEL CARRIER LEVEL

802.11n-20 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

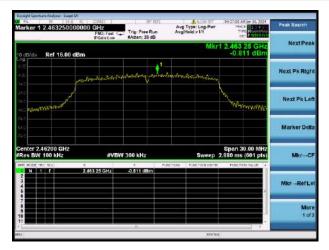
802.11n-20 MHz MIDDLE CHANNEL CARRIER LEVEL

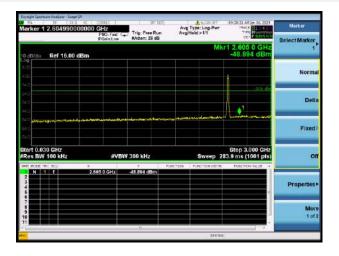
Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 73 / 155

 Web: www.titcgroup.com
 Template No.: TRP-FCC Part 15.247 (2022-01-12)


 Add: Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China

802.11n-20 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

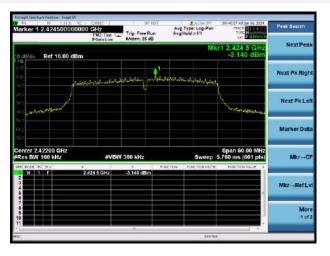



802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

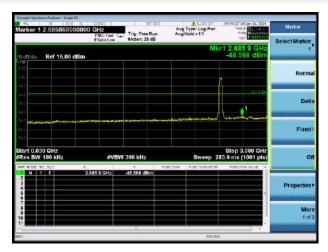
802.11n-20 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-20 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

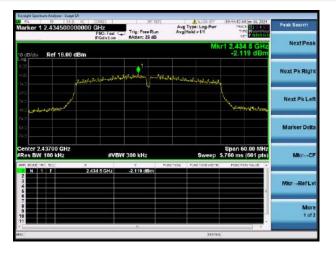
802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



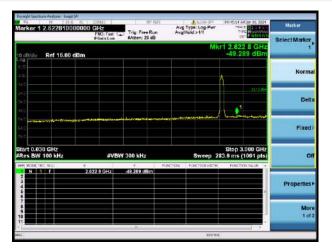
802.11n-20 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



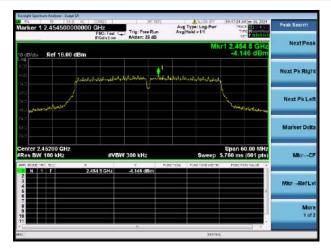
802.11n-40 MHz LOW CHANNEL CARRIER LEVEL

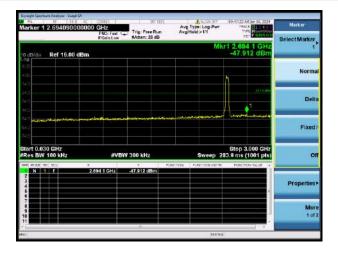

802.11n-40 MHz LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



802.11n-40 MHz MIDDLE CHANNEL CARRIER LEVEL




802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz HIGH CHANNEL CARRIER LEVEL

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 76 / 155 Web: www.titcgroup.com Template No.: TRP-FCC Part 15.247 (2022-01-12) Page No. 76 / 155

Add: Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China

A.5 Band Edge (Authorized-band band-edge)

Note 1: The 99% OBW of the fundamental emission is without 2 MHz of the authorized band. <u>Test Data</u>

SISO-Antenna 0

802.11b Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Lever	dBc Limit	
Low Channel	-31.70	7.87	-12.13	Pass
High Channel	-45.67	8.15	-11.85	Pass

802.11g Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-32.95	0.23	-19.77	Pass
High Channel	-44.13	-0.36	-20.36	Pass

802.11n-20 MHz Mode:

	Measured Max.	Limit	(dBm)	
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-33.46	-0.69	-20.69	Pass
High Channel	-43.34	-0.92	-20.92	Pass

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-35.42	-3.95	-23.95	Pass
High Channel	-41.34	-2.66	-22.66	Pass

SISO-Antenna 1

802.11b Mode:

	Measured Max.		Limit (dBm)	
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-24.96	7.33	-12.67	Pass
High Channel	-44.65	7.56	-12.44	Pass

802.11g Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-24.84	3.42	-16.59	Pass
High Channel	-44.38	2.87	-17.13	Pass

802.11n-20 MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-28.89	1.92	-18.08	Pass
High Channel	-43.73	2.48	-17.52	Pass

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Carrier Level	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-33.54	-0.94	-20.94	Pass
High Channel	-37.87	-1.88	-21.88	Pass

MIMO-Antenna 0

802.11n-20 MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-40.82	-3.42	-23.42	Pass
High Channel	-46.13	-4.73	-24.73	Pass

802.11n-40 MHz Mode:

	Measured Max.	Limit	(dBm)	
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-42.19	-7.66	-27.66	Pass
High Channel	-45.13	-6.12	-26.12	Pass

MIMO-Antenna 1

802.11n-20 MHz Mode:

	Measured Max.	Limit (dBm)		
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict
	Emission (dBm)	Carrier Level	dBc Limit	
Low Channel	-35.35	-1.73	-21.73	Pass
High Channel	-45.77	-0.81	-20.81	Pass

	Measured Max.	Limit			
Channel	Band Edge	Corrier Lovel	Calculated 20	Verdict	
	Emission (dBm)		dBc Limit		
Low Channel	-39.12	-3.14	-23.14	Pass	
High Channel	-43.05	-4.15	-24.15	Pass	

Test Plots

SISO-Antenna 0

802.11b LOW CHANNEL, CARRIER LEVEL

802.11b HIGH CHANNEL, CARRIER LEVEL

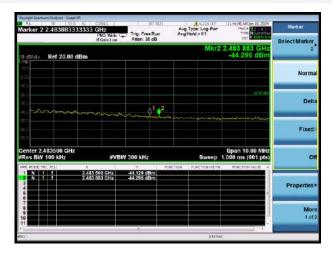
802.11g LOW CHANNEL, CARRIER LEVEL

802.11b LOW CHANNEL, BAND EDGE

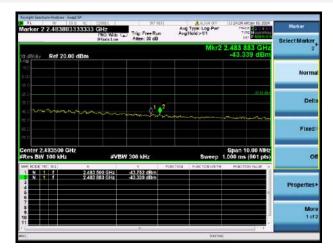
802.11b HIGH CHANNEL, BAND EDGE

802.11g LOW CHANNEL, BAND EDGE

802.11g HIGH CHANNEL, CARRIER LEVEL


802.11n-20 MHz LOW CHANNEL, CARRIER LEVEL

802.11n-20 MHz HIGH CHANNEL, CARRIER LEVEL


802.11g HIGH CHANNEL, BAND EDGE

802.11n-20 MHz LOW CHANNEL, BAND EDGE

802.11n-20 MHz HIGH CHANNEL, BAND EDGE

802.11n-40 MHz LOW CHANNEL, CARRIER LEVEL

802.11n-40 MHz HIGH CHANNEL, CARRIER LEVEL

Prak Search Next Peak Next Pk Right Next Pk Left	TNACE 12 3 4 3 1 TNACE 12 3 4 3 1 TNACE 12 3 4 3 1	Type: Log-Pwr Hold > 1/1	Ave	rig: Free Rue Atten: 26 dB		CINEC CINE PND: Fast IFGala Low	00000 0	\$10000	2,454	cer 1
	1 2.454 1 GHz -2.658 dBm	Mk				POSILOS		16. 0 0 d	Ref	vaiv
Next Pk Righ			1	لمرجب	and the second s	and the state of the				
Next Pk Lef	- marine and marine							1	البنجير	t man
Marker Delta										
MkrCF	enter 2.45200 GHz Span 60.00 MHz Res BW 100 kHz #VBW 300 kHz Sweep 5.760 ms (601 pts)									
Mkr→RefLy	POINCTION VALUE +	PUNCTION WIDTH	PUNCTION	7 1658 dBm		41.GHZ	× 2.45		5, 5CL)	
Mon 1 of 3										
		STA'NO		11						_

802.11n-40 MHz LOW CHANNEL, BAND EDGE

802.11n-40 MHz HIGH CHANNEL, BAND EDGE

11 04:00 AM 3er 15, 2024 TNACE 2 2 4 9 T TNACE 2 2 4 9 T	Type: Log-Pwr	A	Trig FreeRun	PNO: Wide C			ker 2		
Foculture Atten: 30 dB Mkr2 2.434 117 GHz uo utblau Mkr2 2.434 217 GHz -41.342 dBm									
33 45 KM		2	Q'	10-1		A	-		
Manager and State									
					t	100 kHz	s BW		
PONCTION VALUE +	PUNCTEIN WETH	PUNCTION	-42.750 dBm -41.342 dBm	3 500 GHz	2.483	1 7 1			
	2.484 117 GHz -41.342 dBm = 0.00 ms (801 pts)	Mkr2 2.484 117 GHz -41.342 dBm -2 mer Span 10.00 MHz Sweep 1.000 ms (001 pts)	Mkr2 2.484 117 GHz -41.342 dBm	Mkr2 2.484 117 GHz -41.342 dBm	Mkr2 2,484 117 GHz -41.342 dBm	Mkr2 2.4.84 117 GHz -41.342 dBm -41.342 dB	Mkr2 2.484 117 GHz Ref 20.00 dBm -41.342 dBm -41.342		