

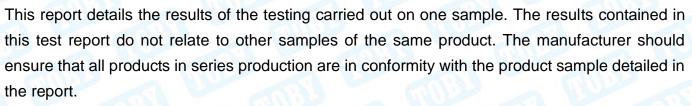
Report No.: TB-FCC186389 Page: 1 of 29

RF Test Report

FCC ID: 2BBQL-DH100

Report No.	:	TB-FCC186389
Applicant		Devicebook Inc.
Equipment Under	· Te	est (EUT)
EUT Name		Devicebook Hub
Model No.	:	DH100
Serial Model No.	R	
Brand Name	-	Devicebook
Sample ID		TBBJ-20210818-13-1#&TBBJ-20210818-13-2#
Receipt Date	2	2022-05-26
Test Date	-	2022-05-26 to 2023-06-13
Issue Date	:	2023-06-17
Standards		FCC Part 15, Subpart C 15.249
Test Method		ANSI C63.10:2013
Conclusions	đ	PASS

In the configuration tested, the EUT complied with the standards specified above,


The EUT technically complies with the FCC requirements

Wade W WAN SV Long Lai.

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

Rav Lai

TB-RF-074-1.0

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	13
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
6.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	16
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	
	5.5 Test Data	
7.	BANDWIDTH TEST	19
	6.1 Test Setup	19
	6.2 Test Procedure	
	6.3 EUT Operating Condition	
	6.4 Test Data	19
8.	ANTENNA REQUIREMENT	20
	7.1 Standard Requirement	20

فلنا

7.2 Antenna Connected Construction	20
7.3 Result	20
ATTACHMENT A CONDUCTED EMISSION TEST DATA	21
ATTACHMENT B RADIATED EMISSION TEST DATA	23
ATTACHMENT CBANDWIDTH TEST DATA	29

Revision History

Report No.	Version	Description	Issued Date
TB-FCC186389	Rev.01	Initial issue of report	2023-06-17
Con Con	60	and a start of the	
	F	TOBU - TUD	F
	ma	TOPY	Contraction of the second
Lund and	3	TOBS TUDS	2
AT US	TONB -	TON A	No.
		The second	
A LUL	and l	TOBY TO	
and and		BY TOW	a last
A LUL	TBI I	TOBU TO	A P
	M B	TOP T	Non and
		MOBY - MUDE	

Report No.: TB-FCC186389 Page: 5 of 29

1. General Information about EUT

1.1 Client Information

TOBY

Applicant	:	Devicebook Inc.	
Address	:	11811 NE 1st St, #A203, Bellevue, WA 98005	
Manufacturer	:	evicebook Inc.	
Address	6	1811 NE 1st St, #A203, Bellevue, WA 98005	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Devicebook Hub		
Model(s)	:	DH100		
Model Difference	:	MAN MODE		
A DUC		Operation Frequency: 916MHz		
		Number of Channel:	1 Channel	
Product	60	Out Power:	66.85dBuV/m@3m Peak	
Description	1	Antenna Gain:	1.38dBi Dipole Antenna	
		Modulation Type:	BPSK	
		Data Rate:	100kbps	
		AC Adapter (DSA-60PF	FE-12 1 120500)	
Power Rating	:	INPUT: 100-240V~50/60Hz 2.0A		
		OUTPUT: 12V/5A		
Software Version	2	1.0.0 Build 495		
Hardware Version		V3		
Connecting I/O		Please refer to the User's Manual		
Port(S)				

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

AND THE	MOB	EUT	ADAPTER	TOWNER O
TOBY			THE LEVE	DET LO
	TUP	al l	MOBI	TOB
idiated Test				

F	U'	Г	

ADAPTER

1.4 Description of Support Units

Equipment Information						
Name	Model FCC ID/SDOC Manufacturer Used "√"					
Adapter	DSA-60PFE-12 1 120500	Comp in the		V		
Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	Yes	NO	1.0M	Accessory		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1 TX Mode(916MHz)				
	For Radiated Test			
Final Test Mode	Description			
Mode 1 TX Mode(916MHz)				

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

(1) According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Test Software Version	PUTTY
Frequency	916MHz
BPSK	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
nous a	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.00 ub
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	±4.20 dB
	Above 1000MHz	14.20 UD

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

	FCC Part 15 Subpa	art C(15.249)		
Standard Section	- Test Item	Test Sample(s)	Judgment	Remar
FCC	rest tem		ouuginent	Keman
15.203	Antenna Requirement	TBBJ-20210818-13-2#	PASS	N/A
15.205	Restricted Bands	TBBJ-20210818-13-1#	PASS	N/A
15.207	AC Power Conducted Emission	TBBJ-20210818-13-1#	PASS	N/A
15.249 &15.209	Radiated Spurious Emission	TBBJ-20210818-13-2#	PASS	N/A
15.215(C)	20dB Bandwidth	TBBJ-20210818-13-2#	PASS	N/A

3. Test Software

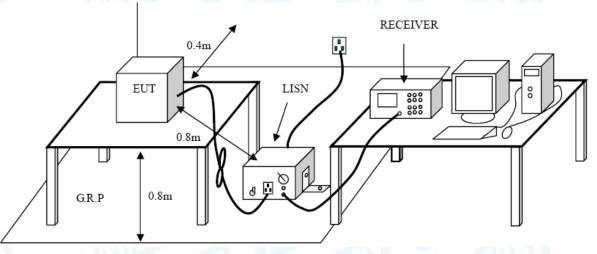
Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120-3	Tonscend	V3.2.22

4. Test Equipment

Conducted Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	Test (A Site)	÷		<u>.</u>	<u>.</u>
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Radiation Emission	Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum	Dahda & Cabuyara		400407	hun 00 0000	hun 00 0000
Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023

Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 01, 2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

5. Conducted Emission Test


- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted	Emission	Test Limit
-----------	----------	-------------------

	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back

and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

6. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

Radiated Emission Limit (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters (at 3m)	
(MHz)	Peak	Average
Above 1000	74	54

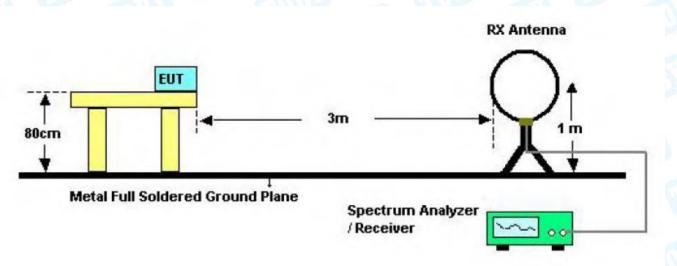
Note:

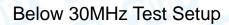
(1) The tighter limit applies at the band edges.

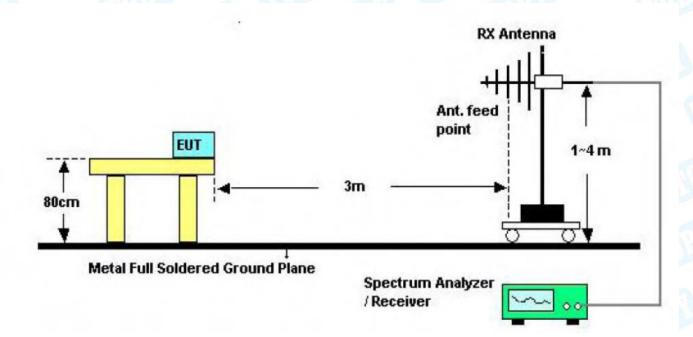
(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)

FCC Part 15 (15.249), Subpart C		
Limit	Frequency Range (MHz)	
Field strength of fundamental 50000 μV/m (94 dBμV/m) @ 3 m	902~908	
Field strength of fundamental	Below 902	
500 μV/m (94 dBμV/m) @ 3 m	Above 928	

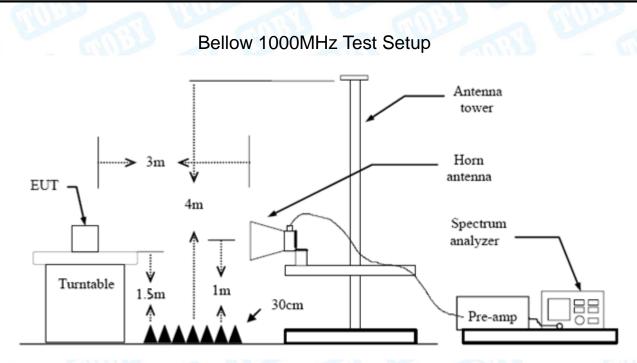

Restricted bands requirement for equipment operating in 2400MHz to 2483.5 MHz




(15.249)

Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)
902~928	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation

5.2 Test Setup



Report No.: TB-FCC186389 Page: 17 of 29

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

(8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

5.5 Test Data

Please refer to the Attachment B.

7. Bandwidth Test

6.1 Test Setup

Spectrum Analyzer

6.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=100 kHz, VBW=300kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- 6.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

6.4 Test Data

Please refer to the Attachment C.

8. Antenna Requirement

- 7.1 Standard Requirement
 - 7.1.1 Standard

FCC Part 15.203

7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.38dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

	Antenna Type	
Pro-	Permanent attached antenna	0
28	Unique connector antenna	1
20	Professional installation antenna	5

Attachment A-- Conducted Emission Test Data

26.3 ℃	Relative	e Humidity:	54.6%	ALC .
AC 120V/60Hz	1100		CCI M	
Line	NUL			al
Mode 1		UPP -		Sec.
Only worse case is r	eported.	11	10D	~
	WHA .	, , , , , , , , , , , , , , , , , , ,	QP: AVG:	- pe
	AC 120V/60Hz Line Mode 1	AC 120V/60Hz Line Mode 1 Only worse case is reported.	AC 120V/60Hz Line Mode 1	AC 120V/60Hz Line Mode 1 Only worse case is reported.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1737	36.55	11.06	47.61	64.78	-17.17	QP
2		0.1737	15.97	11.06	27.03	54.78	-27.75	AVG
3		0.1943	33.93	11.01	44.94	63.85	-18.91	QP
4		0.1943	17.48	11.01	28.49	53.85	-25.36	AVG
5	*	0.6660	28.17	10.89	39.06	56.00	-16.94	QP
6		0.6660	17.89	10.89	28.78	46.00	-17.22	AVG
7		1.4294	26.98	10.61	37.59	56.00	-18.41	QP
8		1.4294	18.35	10.61	28.96	46.00	-17.04	AVG
9		3.5939	20.41	10.13	30.54	56.00	-25.46	QP
10		3.5939	11.08	10.13	21.21	46.00	-24.79	AVG
11		16.6737	32.40	10.45	42.85	60.00	-17.15	QP
12		16.6737	16.21	10.45	26.66	50.00	-23.34	AVG

Remark:

TOBY

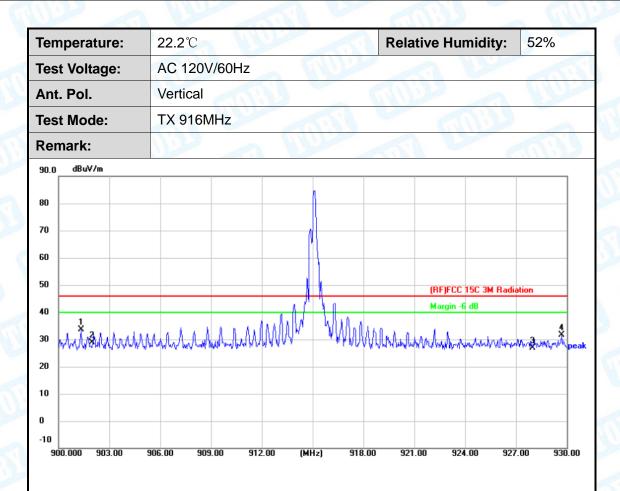
1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature	26.3°			Relative H	umiditv	: 54.6	5%
Test Voltage:		20V/60Hz					
Terminal:	Neutr	al		11.7	650		COD:
Test Mode:	Mode	1		a v	-	CU.	
Remark:	Only	worse case	is reported		2	3	-
80.0 dBuV							
						QI	P: — VG: —
* mx)	ς
Manarana	Martin Warman	an make here and the and	hosphannahan		×	ale and the second	he wild pe
30 MAML	Manual Andrew House	1 HANK ANT MAN WINN	Will Marken	rented light work had		and all a land	My Ling av
Prov Mar	Thyl		TI TITINA (Star and st	here with the second of the	JENYWWWWWW	hanh//reason	ward of the state of the second s
-20	0.5		(MHz)	5			30.000
	0.5	Reading					30.000
		Reading Level	(MHz) Correct Factor	5 Measure- ment	Limit	Over	30.000
0.150		-	Correct	Measure-	Limit	Over dB	30.000 Detector
0.150	Freq.	Level	Correct Factor	Measure- ment		dB	
0.150 No. Mk.	Freq. MHz	Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV 66.00	dB	Detector
0.150 No. Mk.	Freq. MHz 0.1499	Level dBuV 37.01	Correct Factor dB 11.11	Measure- ment dBuV 48.12	dBuV 66.00	dB -17.88 -26.51	Detector QP
0.150 No. Mk.	Freq. MHz 0.1499 0.1499	Level dBuV 37.01 18.38	Correct Factor dB 11.11 11.11	Measure- ment dBuV 48.12 29.49	dBuV 66.00 56.00 63.21	dB -17.88 -26.51	Detector QP AVG
0.150 No. Mk. 1 2 3	Freq. MHz 0.1499 0.1499 0.2099	Level dBuV 37.01 18.38 31.66	Correct Factor dB 11.11 11.11 10.99	Measure- ment dBuV 48.12 29.49 42.65	dBuV 66.00 56.00 63.21 53.21	dB -17.88 -26.51 -20.56	Detector QP AVG QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1499 0.1499 0.2099 0.2099	Level dBuV 37.01 18.38 31.66 13.83	Correct Factor dB 11.11 11.11 10.99 10.99	Measure- ment dBuV 48.12 29.49 42.65 24.82	dBuV 66.00 56.00 63.21 53.21 57.10	dB -17.88 -26.51 -20.56 -28.39	Detector QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1499 0.1499 0.2099 0.2099 0.2099 0.4380	Level dBuV 37.01 18.38 31.66 13.83 26.49	Correct Factor dB 11.11 11.11 10.99 10.99 10.91	Measure- ment dBuV 48.12 29.49 42.65 24.82 37.40	dBuV 66.00 56.00 63.21 53.21 57.10 47.10	dB -17.88 -26.51 -20.56 -28.39 -19.70	Detector QP AVG QP AVG QP
No. Mk.	Freq. MHz 0.1499 0.1499 0.2099 0.2099 0.2099 0.4380 0.4380	Level dBuV 37.01 18.38 31.66 13.83 26.49 22.25	Correct Factor dB 11.11 11.11 10.99 10.99 10.91 10.91	Measure- ment dBuV 48.12 29.49 42.65 24.82 37.40 33.16	dBuV 66.00 56.00 63.21 53.21 57.10 47.10 56.00	dB -17.88 -26.51 -20.56 -28.39 -19.70 -13.94	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 6 * 7	Freq. MHz 0.1499 0.1499 0.2099 0.2099 0.2099 0.4380 0.4380 1.4536	Level dBuV 37.01 18.38 31.66 13.83 26.49 22.25 25.55	Correct Factor dB 11.11 10.99 10.99 10.91 10.91 10.60	Measure- ment dBuV 48.12 29.49 42.65 24.82 37.40 33.16 36.15	dBuV 66.00 56.00 63.21 53.21 57.10 47.10 56.00 46.00	dB -17.88 -26.51 -20.56 -28.39 -19.70 -13.94 -19.85	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 2 3 4 5 6 * 7 8	Freq. MHz 0.1499 0.2099 0.2099 0.4380 0.4380 1.4536 1.4536	Level dBuV 37.01 18.38 31.66 13.83 26.49 22.25 25.55 17.26	Correct Factor dB 11.11 10.99 10.99 10.91 10.91 10.60 10.60	Measure- ment dBuV 48.12 29.49 42.65 24.82 37.40 33.16 36.15 27.86	dBuV 66.00 56.00 63.21 53.21 57.10 47.10 56.00 46.00 60.00	dB -17.88 -26.51 -20.56 -28.39 -19.70 -13.94 -19.85 -18.14	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 6 * 7 8 9	Freq. MHz 0.1499 0.2099 0.2099 0.2099 0.4380 0.4380 1.4536 1.4536 8.6219	Level dBuV 37.01 18.38 31.66 13.83 26.49 22.25 25.55 17.26 24.75	Correct Factor dB 11.11 10.99 10.99 10.91 10.91 10.60 10.60 10.09	Measure- ment dBuV 48.12 29.49 42.65 24.82 37.40 33.16 36.15 27.86 34.84	dBuV 66.00 56.00 63.21 53.21 57.10 47.10 56.00 46.00 60.00 50.00	dB -17.88 -26.51 -20.56 -28.39 -19.70 -13.94 -19.85 -18.14 -25.16	Detector QP AVG QP AVG QP AVG QP AVG QP

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)



TOBY

emperature:	22.2 °C	Relative Humidity: 52%
est Voltage:	AC 120V/60Hz	191 - COBD
nt. Pol.	Horizontal	
est Mode:	TX 916MHz	The state
emark:		
).0 dBuV/m		
		M.
)		M North Contraction of the second sec
)	h	(RF)FCC 15C 3M Radiation
		Margin - 6 dB
1 MARAAAAAA	an man an man and a	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
)		
,		
,		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	901.2600	42.88	-7.53	35.35	46.00	-10.65	peak
2	902.0000	40.95	-7.52	33.43	46.00	-12.57	peak
3	928.0000	35.68	-7.07	28.61	46.00	-17.39	peak
4	929.3100	38.89	-7.05	31.84	46.00	-14.16	peak

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	901.3200	41.08	-7.53	33.55	46.00	-12.45	peak
2	902.0000	36.40	-7.52	28.88	46.00	-17.12	peak
3	928.0000	34.06	-7.07	26.99	46.00	-19.01	peak
4	929.7000	38.56	-7.04	31.52	46.00	-14.48	peak

Radiated Spurious Emission (9 KHz~30 MHz)

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

Radiated Spurious Emission (Below 1 GHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	75.7114	46.17	-25.87	20.30	40.00	-19.70	peak
2	142.3243	46.43	-22.62	23.81	43.50	-19.69	peak
3	225.3080	59.80	-23.67	36.13	46.00	-9.87	peak
4 !	338.4001	60.10	-19.79	40.31	46.00	-5.69	peak
5 !	425.0280	57.73	-17.19	40.54	46.00	-5.46	peak
6 *	916.0687	71.92	-7.28	64.64	114.00	-49.36	peak

Temperature:	22.2℃	Rela	tive Humidity:	52%
Test Voltage:	AC 120V/60Hz	070	22	0105
Ant. Pol.	Vertical		ansy	
Test Mode:	TX 916MHz	01000		199
Remark:	Only worse case is re	eported		BU-
80.0 dBuV/m				
70 60 50 40 30 20		And the second s	(RF)FCC 15C 3M Radia Margin - 6 dB	
10				
0				
-10				
30.000	60.00	(MHz) 300.00		1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	46.8303	51.81	-22.64	29.17	40.00	-10.83	peak
2	66.0342	48.54	-24.11	24.43	40.00	-15.57	peak
3	107.1337	45.65	-25.01	20.64	43.50	-22.86	peak
4	147.9214	41.59	-22.49	19.10	43.50	-24.40	peak
5	431.0316	54.19	-17.05	37.14	46.00	-8.86	peak
6 *	916.0687	74.13	-7.28	66.85	114.00	-47.15	peak

Radiated Spurious Emission (Above 1 GHz)

Tem	perature:	22.2 ℃				Relativ	ve Humi	dity:	52%	
Test	t Voltage:	AC 120	//60Hz	S.		610	52		010	1
Ant.	. Pol.	Horizont	al		5	C.S.	6	187		
ſest	t Mode:	TX 916	ЛНz	NY N	y star	-			-	3
Rem	nark:	No repo	rt for the	emissio	n which	more th	an 10 di	3 below t	he	
		prescrib	ed limit.							
90.0	dBuV/m									
80										
80							(RF) FCC	: PART 15C (P	EAK)	
70										
60							(BE) ECC	PART 15C (A		
50							(11) (33			
40	Heren and a stranged		1	north marking reportedly	2 Martin	wanter	Muhamman Mu	man man	Marrison and the second	peak
		a shall your land	and make de charter		n n	WAN		ALL A		
30	. Marken water of the	Marchan								
20	Marine									
10										
0										
-10										
	000.000 3550.00	6100.00 86	50.00 11:	200.00 (MI	Hz) 16	300.00 188	350.00 214	400.00 239	50.00 265	00.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10817.500	44.77	-2.17	42.60	74.00	-31.40	peak	Ρ
2 *	14158.000	43.02	0.22	43.24	74.00	-30.76	peak	Р

Emission Level= Read Level+ Correct Factor

Note: The average measurement was not performed when the peak measured data under the limit of average detection.

Temperature:	22.2 ℃	F	Relative Humidity:	52%						
Test Voltage:	AC 120V/60Hz		1000	ALC: N						
Ant. Pol.	Vertical	Vertical								
Fest Mode:	TX 916MHz	ALC: N		- CBL						
Remark:	No report for the	emission which mo	ore than 10 dB below	the						
	prescribed limit.									
90.0 dBuV/m										
80										
			(RF) FCC PART 15C	(PEAK)						
70										
60			(RF) FCC PART 15C	(AVG)						
50		1 2 X 44	when when a start of the start							
40	and the second second	the way when the way	unterrest the second share	phone and the peak						
30 ////////////////////////////////////	margaret and a second and the									
20 mm										
10										
0										
-10										

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11302.000	44.58	-1.15	43.43	74.00	-30.57	peak	Ρ
2 *	14362.000	43.04	0.73	43.77	74.00	-30.23	peak	Ρ

Emission Level= Read Level+ Correct Factor

Note: The average measurement was not performed when the peak measured data under the limit of average detection.

Attachment C--Bandwidth Test Data

Channel Frequency (MHz)

20dB Bandwidth (kHz)

916

61.65

							11 C C
Spectrum							
Ref Level C).00 dBm		RBW 10 kHz				
Att	20 dB	SWT 188.9 μs 🖷 '	VBW 30 kHz Ma	ode Auto FFT			
●1Pk Max							
				M1 M1[1]		-8.67 dBm	
				V		916.010130 MHz	
-10 dBm			ndB			20.00 dB	
00.15				Bw		61.650	000000 kHz
-20 dBm				Q factor			14858.3
		T₽		¥	ŧ.		
-30 dBm							
				2	1		
-40 dBm							
-50 dBm				0			
-60 dBm		1 /		-			
					-	-	
-70 dBm	~						
-80 dBm							
-90 dBm							
CF 916.0 MHz 691 pts Span 200.0 kHz							
Marker							
Type Ref	Trc	X-value	Y-value	Function	Function Result		
M1	1	916.01013 MHz	-8.67 dBm	ndB down			61.65 kHz
T1	1	915.96903 MHz	-29.08 dBm	ndB			20.00 dB
T2	1	916.03068 MHz	-28.50 dBm	Q factor			14858
)[Measuring.		120	17.06.2023

Date: 17.JUN.2023 10:35:29

----END OF THE REPORT----