

FCC Test Report

Application No.:	DNT241190R1628-4075
Applicant:	Chuangyiyuan(Shenzhen)keji Co., Ltd.
Address of	Room312,Baoli Building, Jixiangnan Street, Longgang District,Shenzhen,
Applicant:	Guangdong, China
EUT Description:	Bluetooth Speaker
Model No.:	BTS06
FCC ID:	2BBQ8-BTS06
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter
Charging Voltage:	DC 5V
Trade Mark:	
	47 CFR FCC Part 2, Subpart J
Standards:	47 CFR Part 15, Subpart C
	ANSI C63.10: 2013
Date of Receipt:	2024/6/8
Date of Test:	2024/6/9 to 2024/6/14
Date of Issue:	2024/6/14
Test Result:	PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon (Testing Engineer) (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: June 14, 2024 Page: 2 / 68

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jun.14, 2024	Valid	Original Report

1

Report No.: DNT241190R1628-4075

Date: June 14, 2024

Page: 3/68

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: June 14, 2024

Page: 4/68

Contents

1 Test Summary	
2 General Information	5
2.1 Test Location	
2.2 General Description of EUT	
2.3 Channel List	7
2.4 5Test Environment and Mode	
2.5 Power Setting of Test Software	9
2.6 Description of Support Units	9
2.7 Test Facility	
2.8 Measurement Uncertainty (95% confidence levels, k=2)	
2.9 Equipment List	11
2.10 Assistant equipment used for test	
3 Test results and Measurement Data	
3.1 Antenna Requirement	
3.2 20dB Emission Bandwidth	
3.3 Conducted Output Power	
3.4 Carrier Frequencies Separationy	16
3.5 Dwell Time	
3.6 Hopping Channel Number	
3.7 Band-edge for RF Conducted Emissions	
3.8 RF Conducted Spurious Emissions	
3.9 Radiated Spurious Emissions	
3.10 Restricted bands around fundamental frequency	
3.11 AC Power Line Conducted Emissions	
4 Appendix	
Appendix A: 20dB Emission Bandwidth	
Appendix B: Maximum conducted output power	
Appendix C: Carrier frequency separation	
Appendix D: Dwell Time	46
Appendix F: Number of hopping channels	
Appendix F: Band edge measurements	
Appendix F: Conducted Spurious Emission	
5 Test Photos	

Date: June 14, 2024

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd		
Address: No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Town, Dongguan City, Guangdong P.R.China			
Test engineer:	Wayne Lin		

Date: June 14, 2024

Page: 6/68

2.2 General Description of EUT

Manufacturer:	Chuangyiyuan(Shenzhen)keji Co., Ltd.		
Address of Manufacturer:	Room312,Baoli Building, Jixiangnan Street, Longgang District,Shenzhen, Guangdong, China		
Test EUT Description:	Bluetooth Speaker		
Model No.:	BTS06		
Additional Model(s):			
Chip Type:	AB5617A		
Serial number:	PR241190R1628		
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter		
Charging Voltage:	DC 5V		
Trade Mark:			
Hardware Version:	V1.0		
Software Version:	V1.0		
Operation Frequency:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK		
Sample Type:	Portable Device, Module, Mobile Device		
Antenna Type:	□ External, ⊠ Integrated		
Antenna Ports:	🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3		
Antonno Cointi	⊠ Provided by applicant		
Antenna Gain*:	1.7dBi		
	Provided by applicant		
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);		

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: June 14, 2024

Page: 7 / 68

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	\mathcal{C}	\sim

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: June 14, 2024 Pag

Page: 8/68

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Date: June 14, 2024 Page: 9/68

2.5 Power Setting of Test Software

Tower Setting of Test Software				
\bigcirc \bigcirc	BT_Tool_v1.1.2	\bigcirc \bigcirc \bigcirc \bigcirc		
2402	2441	2480		
Default	Default	Default		
Default	Default	Default		
Default	Default	Default		
	2402 Default Default	BT_Tool_v1.1.2 2402 2441 Default Default Default Default		

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: June 14, 2024

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
\circ	O, O , O , O , O	± 4.8dB (Below 1GHz)
0	Dedicted Emission	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
	a a a a a	± 5.02dB (Above 18GHz)

2.9 Equipment List

	For Connect	ct EUT Anteni	na Terminal ⁻	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission				
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: June 14, 2024

Page: 12/68

Test E	quipment for F	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.7dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A

3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.5		
Test Setup:	Spectrum Analyzer E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 2.9 for details		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.		
Limit:	(20.97dBm) 125mW		
Test Results:	Pass		

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.2
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	2/3 of the 20dB bandwidth
	Remark: the transmission power is less than 0.125W.
Test Results:	Pass

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 Section 7.8.4			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	0, 0, 0,		
	Ground Reference Plane			
Instruments Used:	Refer to section 2.9 for details	\bigcirc		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.			
Limit:	0.4 Second	0.4 Second		
Test Results:	Pass			

The detailed test data see: Appendix D

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	my my m	On On On
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		~
Test Mode:	Hopping transmitting with all kind of modulation		
Limit:	At least 15 channels	~	
Test Results:	Pass	~	

The detailed test data see: Appendix E

3.7 Band-edge for RF Conducted Emissions

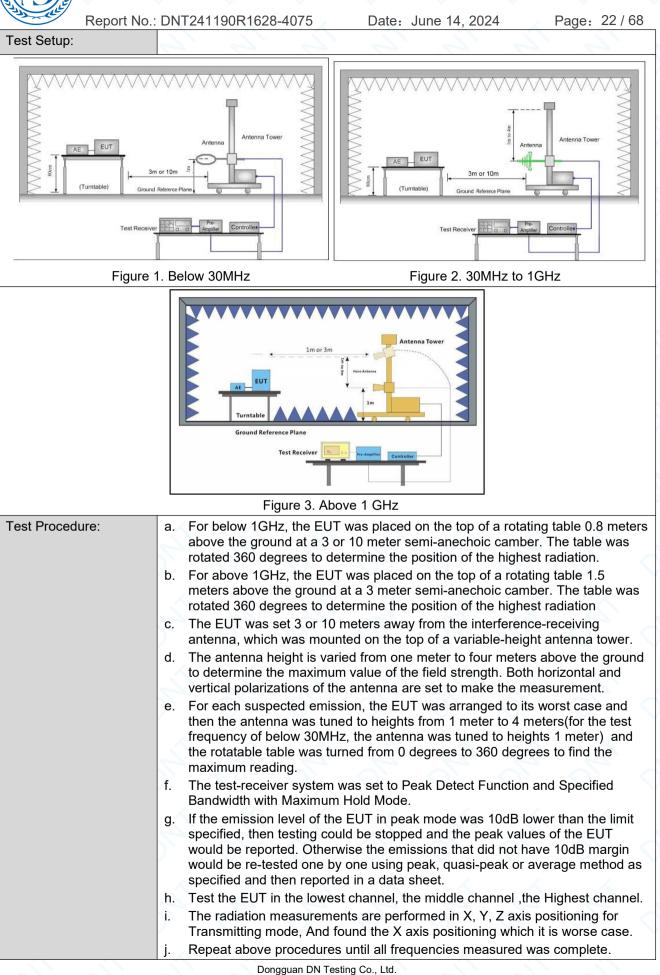
Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 Section 7.8.6		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Instruments Used:	Ground Reference Plane Refer to section 2.9 for details		
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Results:	Pass		

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 Section 11.11		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Results:	Pass		

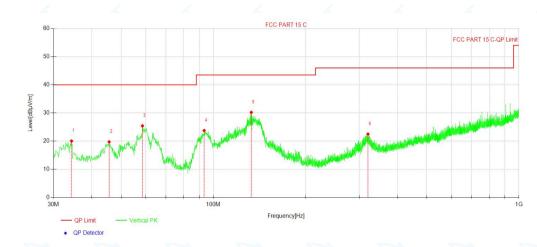
The detailed test data see: Appendix G


Date: June 14, 2024

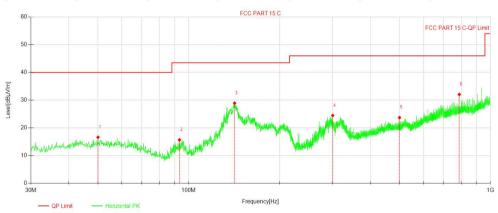
Page: 21/68

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20)5	× .	<u> </u>
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12	<u> </u>	<u> </u>	<u> </u>
Test Site:	Measurement Distance:	3m or 10m (Semi-A	Anechoic Ch	amber)	<u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average
	A &	5 5		≥1/T (DC<0.98)	4
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300
	0.490MHz-1.705MHz	24000/F(kHz)		<u>-</u> >`	30
	1.705MHz-30MHz	30	<u> </u>	\sim -	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3



Report No.	: DNT241190R1628-4075	Date: June 14, 2024	Page: 23 / 68
Test Configuration:	Measurements Below 1000MI • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 10 • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above • RBW = 1 MHz • VBW = 10 Hz, when duty cycle • VBW ≥ 1/T, when duty cycle transmission duration over whit maximum power control level for	D00 MHz e 1000MHz cle is no less than 98 percent. e is less than 98 percent where ich the transmitter is on and is	e T is the minimum transmitting at its
Exploratory Test Mode:	Transmitting with all kind of mo Charge+Transmitting mode.	odulations, data rates.	$\langle O \rangle$
Final Test Mode:	Pretest the EUT at Transmittin Through Pre-scan, find the 3D type.	•	se of All modulation
Instruments Used:	Refer to section 2.9 for details		
Test Results:	Pass		


Test data For 30-1000MHz

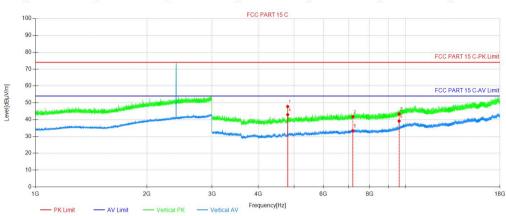
Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	34.36	29.40	-9.38	20.02	40.00	19.98	100	123	QP
	2	45.61	27.95	-8.22	19.73	40.00	20.27	100	33	QP
	3	58.61	34.03	-8.61	25.42	40.00	14.58	100	293	QP
	4	93.34	37.32	-13.57	23.75	43.50	19.75	100	89	QP
	5	133.12	39.37	-9.14	30.23	43.50	13.27	100	82	QP
[6	320.64	28.76	-6.28	22.48	46.00	23.52	200	332	QP

Horizontal :

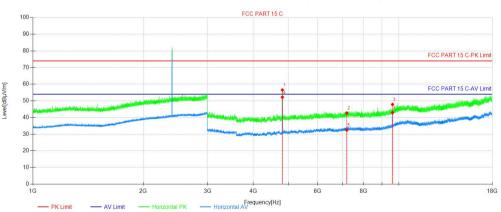
		QF	^o Detector							
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
2	1	50.08	24.68	-8.07	16.61	40.00	23.39	200	11	QP
	2	93.25	29.25	-13.58	15.67	43.50	27.83	200	312	QP
	3	142.04	37.26	-8.34	28.92	43.50	14.58	200	20	QP
	4	300.36	31.43	-6.97	24.46	46.00	21.54	100	360	QP
	5	500.01	25.67	-1.97	23.70	46.00	22.30	200	312	QP
	6	789.19	28.02	4.05	32.07	46.00	13.93	200	124	QP

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

For above 1GHz DH5 2402MHz


Vertical:

AV Detector

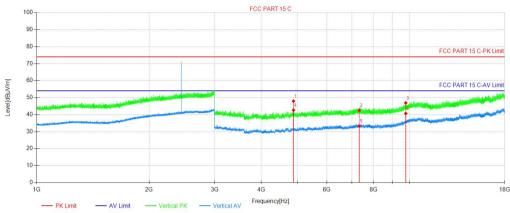
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark
	1	4803.84	52.35	-4.61	47.74	74.00	26.26	150	207	Peak
5	2	7206.21	43.41	-1.76	41.65	74.00	32.35	150	26	Peak
	3	9608.58	42.48	0.88	43.36	74.00	30.64	150	344	Peak
	4	4804.59	47.57	-4.61	42.96	54.00	11.04	150	193	AV
	5	7206.21	35.13	-1.76	33.37	54.00	20.63	150	129	AV
	6	9608.58	38.28	0.88	39.16	54.00	14.84	150	163	AV

Horizontal:

AV Detector

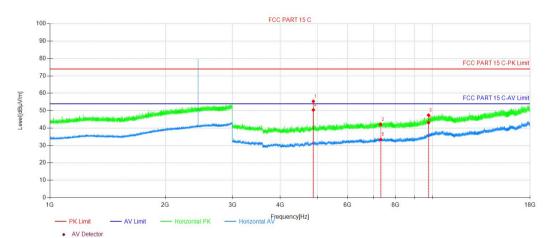
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	61.14	-4.61	56.53	74.00	17.47	150	234	Peak
2	7206.21	44.49	-1.76	42.73	74.00	31.27	150	261	Peak
3	9607.83	46.99	0.87	47.86	74.00	26.14	150	344	Peak
4	4804.59	56.80	-4.61	52.19	54.00	1.81	150	234	AV
5	7206.21	34.21	-1.76	32.45	54.00	21.55	150	247	AV
6	9608.58	42.10	0.88	42.98	54.00	11.02	150	17	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

DH5 2441MHz


Vertical:

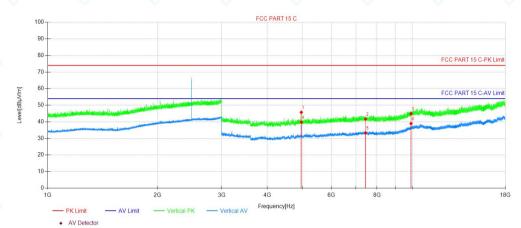
AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	52.63	-4.72	47.91	74.00	26.09	150	204	Peak
2	7323.21	44.01	-1.49	42.52	74.00	31.48	150	61	Peak
3	9763.83	45.22	1.64	46.86	74.00	27.14	150	162	Peak
4	4882.59	47.36	-4.72	42.64	54.00	11.36	150	217	AV
5	7323.21	34.77	-1.49	33.28	54.00	20.72	150	107	AV
6	9764.58	39.04	1.64	40.68	54.00	13.32	150	162	AV

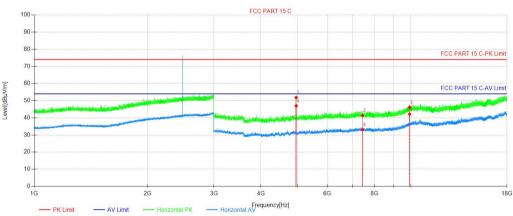
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	60.10	-4.72	55.38	74.00	18.62	150	330	Peak
2	7323.21	43.59	-1.49	42.10	74.00	31.90	150	101	Peak
3	9763.83	45.80	1.64	47.44	74.00	26.56	150	131	Peak
4	4882.59	55.18	-4.72	50.46	54.00	3.54	150	330	AV
5	7323.21	35.00	-1.49	33.51	54.00	20.49	150	0	AV
6	9764.58	41.52	1.64	43.16	54.00	10.84	150	15	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com


DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	50.59	-4.86	45.73	74.00	28.27	150	191	Peak
2	7440.22	42.98	-1.34	41.64	74.00	32.36	150	205	Peak
3	9920.59	42.66	2.27	44.93	74.00	29.07	150	134	Peak
4	4960.59	44.69	-4.86	39.83	54.00	14.17	150	191	AV
5	7440.22	34.59	-1.34	33.25	54.00	20.75	150	343	AV
6	9920.59	36.67	2.27	38.94	54.00	15.06	150	162	AV

Horizontal:

AV Detector

N	Э.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	1	4959.84	56.67	-4.86	51.81	74.00	22.19	150	288	Peak
2	2	7440.22	42.70	-1.34	41.36	74.00	32.64	150	316	Peak
3	3	9920.59	43.89	2.27	46.16	74.00	27.84	150	140	Peak
4	1	4960.59	51.82	-4.86	46.96	54.00	7.04	150	331	AV
5	5	7440.22	34.44	-1.34	33.10	54.00	20.90	150	232	AV
6	6	9920.59	39.89	2.27	42.16	54.00	11.84	150	192	AV

Note:

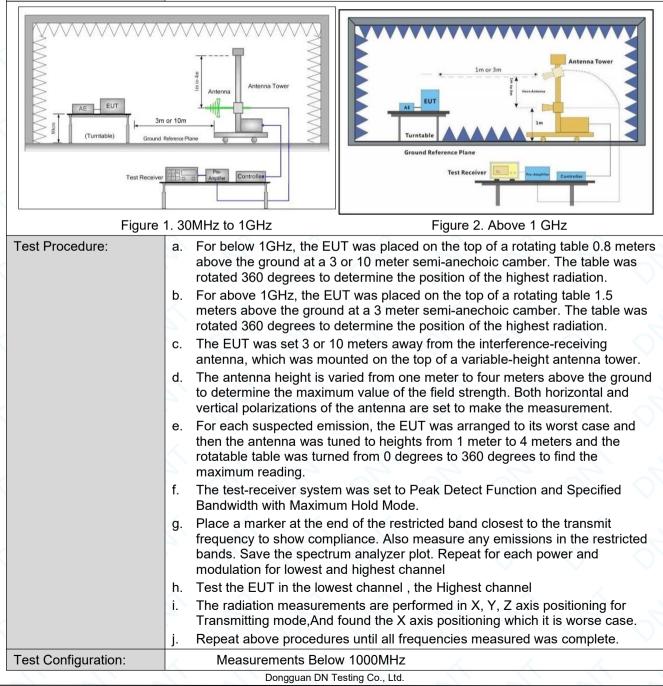
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test, only the worst case was reported.


Date: June 14, 2024 Page: 29 / 68

3.10 Restricted bands around fundamental frequency

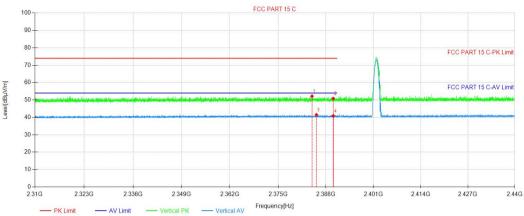
Report No.: DNT241190R1628-4075

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	$O, O, \langle \rangle$						
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,						
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						

Test Setup:

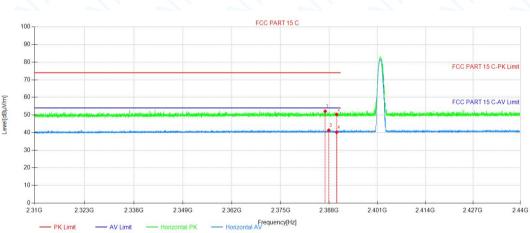
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com



and the	Report No.: D	NT241190R1628-4075	Date: June 14, 2024	Page: 30 / 68
		 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max h Peak Measurements A RBW = 1 MHz 		
		 VBW ≥ 3 MHz Detector = Peak Sweep time = auto 		
		 Trace mode = max h Average Measurement RBW = 1 MHz VBW = 10 Hz, when 		percent.
			uty cycle is less than 98 perc ich the transmitter is on and i	ent where T is the is transmitting at its
Explorator	ry Test Mode:	Transmitting with all kind of mo Transmitting mode.	odulations, data rates.	(\circ, \circ)
Final Test	Mode:	Pretest the EUT Transmitting Through Pre-scan, find the 3D type. Only the worst case is recorded	0H5 of data type is the worst	case of all modulation
Instrumen	ts Used:	Refer to section 2.9 for details		Δ Δ ,
Test Resu	ilts:	Pass	<u>A 7 7</u>	<u>2 2 5</u>

Test Date DH5 2402MHz

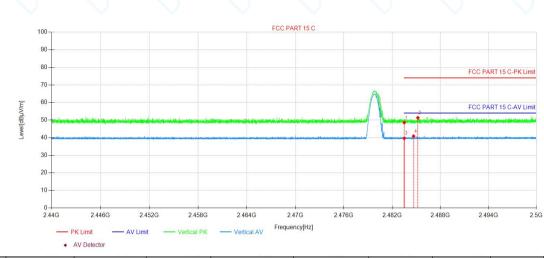

Vertical:

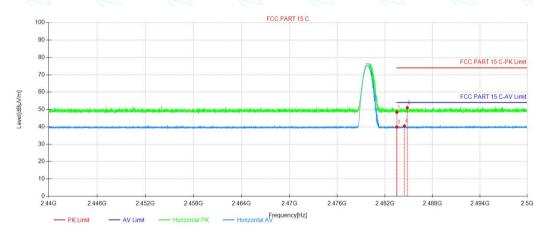
AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2384.22	53.00	-0.82	52.18	74.00	21.82	150	348	Peak
2	2390.01	51.63	-0.80	50.83	74.00	23.17	150	203	Peak
3	2385.43	42.28	-0.81	41.47	54.00	12.53	150	114	AV
4	2390.01	41.68	-0.80	40.88	54.00	13.12	150	0	AV

Horizontal:

AV Detector


NO.	Freq. [MHz]	Level Fact [dBµV] [dB/I		Correct Result Factor Level [dB/m] [dBµV/m]		Margin [dB]	Height [cm]	Angle [°]	Remark
1	2386.94	52.92	-0.81	52.11	74.00	21.89	150	196	Peak
2	2390.01	51.08	-0.80	50.28	74.00	23.72	150	184	Peak
3	2387.90	42.12	-0.80	41.32	54.00	12.68	150	3	AV
4	2390.01	41.01	-0.80	40.21	54.00	13.79	150	12	AV


DH5 2480MHz

Vertical:

Horizontal:

\langle	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2483.51	48.86	-0.29	48.57	74.00	25.43	150	281	Peak
	2	2485.20	51.60	-0.27	51.33	74.00	22.67	150	201	Peak
	3	2483.51	39.91	-0.29	39.62	54.00	14.38	150	66	AV
	4	2484.67	41.13	-0.27	40.86	54.00	13.14	150	43	AV

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	48.69	-0.29	48.40	74.00	25.60	150	260	Peak
2	2484.83	51.30	-0.27	51.03	74.00	22.97	150	65	Peak
3	2483.50	40.19	-0.29	39.90	54.00	14.10	150	45	AV
4	2484.45	40.78	-0.28	40.50	54.00	13.50	150	238	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.

2.All channels had been pre-test, only the worst case was reported.

Test Requirement:	47 CFR Part 15C Section 1	5.207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz							
Limit:		Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 60 50							
	* Decreases with the logari	* Decreases with the logarithm of the frequency.						
	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of 							
Toot Sotur:	In order to find the maximu equipment and all of the int ANSI C63.10 2013 on cond	m emission, the relative po erface cables must be cha	n from the LISN 2.					
Test Setup:	equipment and all of the int	AE	n from the LISN 2.					
Test Setup: Exploratory Test Mode:	equipment and all of the int ANSI C63.10 2013 on cond	memission, the relative per erface cables must be char ducted measurement.	n from the LISN 2. ositions of anged according to					

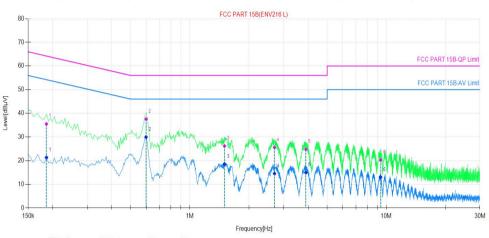
3.11 AC Power Line Conducted Emissions

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

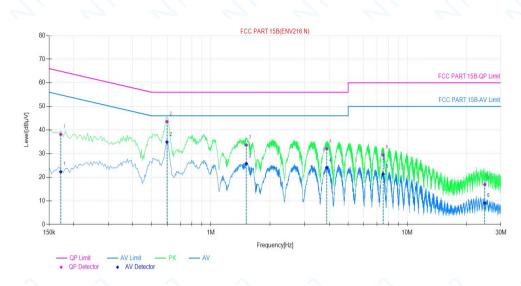


Report No.: DNT2	41190R1628-4075 Date: June 14, 2024 Page: 34 / 68						
Final Test Mode:	Through Pre-scan, find the the worst case.						
Instruments Used:	Refer to section 2.9 for details						
Test Results:	PASS						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.18	9.92	25.57	35.49	64.22	28.73	11.39	21.31	54.22	32.91
2	0.59	9.82	27.75	37.57	56.00	18.43	20.13	29.95	46.00	16.05
3	1.50	9.73	16.44	26.17	56.00	29.83	8.83	18.56	46.00	27.44
4	2.70	9.74	15.82	25.56	56.00	30.44	4.77	14.51	46.00	31.49
5	3.89	9.75	15.02	24.77	56.00	31.23	7.18	16.93	46.00	29.07
6	9.36	9.86	10.38	20.24	60.00	39.76	3.17	13.03	50.00	36.97

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.17	9.82	28.32	38.14	64.87	26.73	12.5	22.32	54.87	32.55
2	0.59	9.78	33.76	43.54	56.00	12.46	25.14	34.92	46.00	11.08
3	1.51	9.73	23.93	33.66	56.00	22.34	16.03	25.76	46.00	20.24
4	3.89	9.95	22.12	32.07	56.00	23.93	14.06	24.01	46.00	21.99
5	7.53	9.96	19.47	29.43	60.00	30.57	11.33	21.29	50.00	28.71
6	24.82	10.14	6.79	16.93	60.00	43.07	-1.01	9.13	50.00	40.87

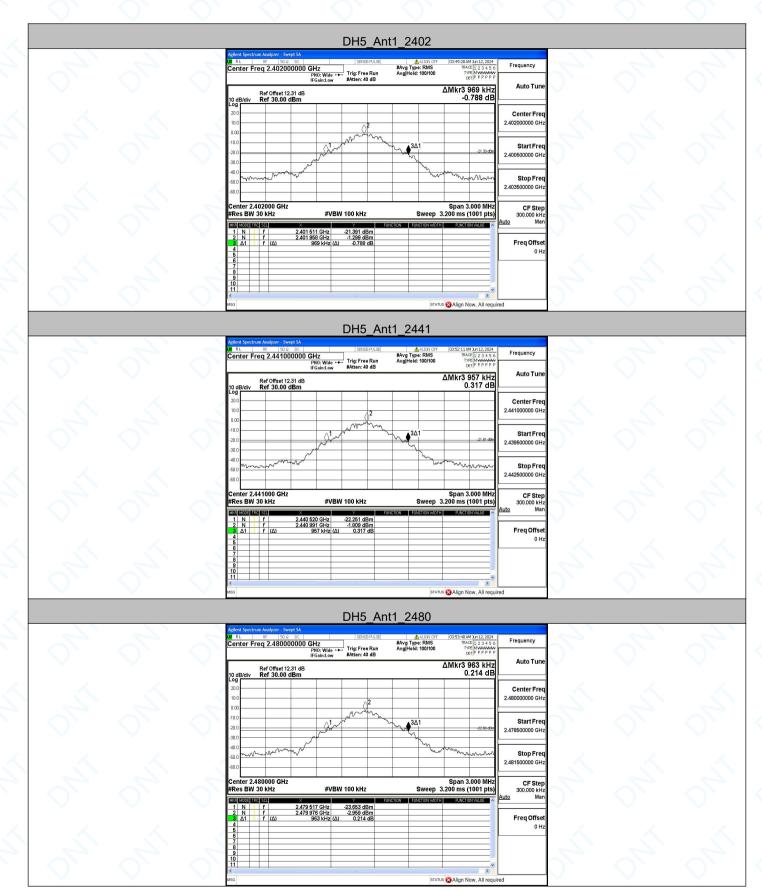
Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

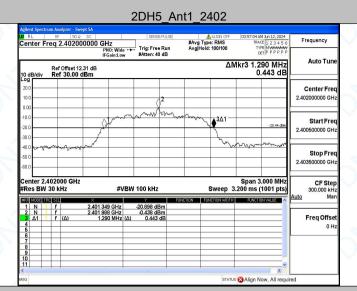

4 Appendix

Appendix A: 20dB Emission Bandwidth

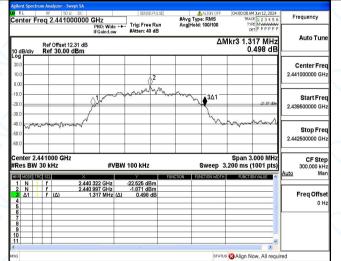
Test Result	\mathbf{O}	\bigcirc		\cap			
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	~	2402	0.969	2401.511	2402.480	🔨	<
DH5	Ant1	2441	0.957	2440.520	2441.477		
		2480	0.963	2479.517	2480.480		
	\sim	2402	1.290	2401.349	2402.639		
2DH5	Ant1	2441	1.317	2440.322	2441.639		
		2480	1.347	2479.313	2480.660	🔨	
- A	~	2402	1.299	2401.334	2402.633		
3DH5	Ant1	2441	1.317	2440.325	2441.642		
	\geq	2480	1.320	2479.316	2480.636		

Test Graphs

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

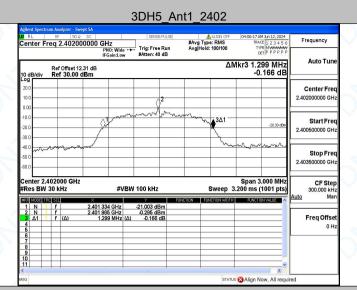
 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com



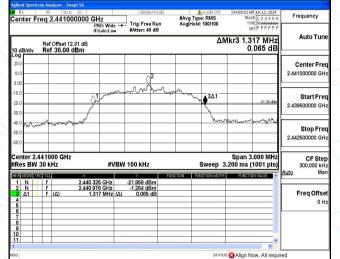
Date: June 14, 2024

Page: 38/68

2DH5_Ant1_2441


2DH5_Ant1_2480

	Agilent Spectrum Analyzer - Swept SA											
Center F	so ۵ req 2.4800	DC 00000 GH	z	SENSE		#Avg Typ Avg Hold:	ALIGN OFF e: RMS	TRAJ TV	M Jun 12, 2024 28 1 2 3 4 5 6 PE MWWWWW	Frequency		
10 dB/div	Ref Offset 12 Ref 30.00	IFG: 2.31 dB):Wide 🔸 ain:Low	#Atten: 40	dB	Arginous		₀ Akr3 1.3	47 MHz .149 dB	Auto Tune		
20.0										Center Freq 2.480000000 GHz		
-10.0 -20.0 -30.0		<u>}</u>	m	m	Marrow	mm	∮ ^{3∆1}		-23.47 cBm	Start Freq 2.478500000 GHz		
-40.0 -50.0 -60.0	un hann						- brw	ᡏᡃᢅᡨᡵᢣᢑᡊᢛ	~~~~~	Stop Freq 2.481500000 GHz		
#Res BW			#VBW	100 kHz			Sweep 3	.200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man		
MXR MODE 1 1 N 2 N 3 ∆1 4 5 6	1 f 1 f 1 f 1 f (Δ)	× 2.479 313 2.480 099 1.347		-24.015 dB -3.468 dB 0.149 d	m m			FURCI		Freq Offset		
7 8 9 10 11				1					×			
MSG												



Date: June 14, 2024

Page: 39/68

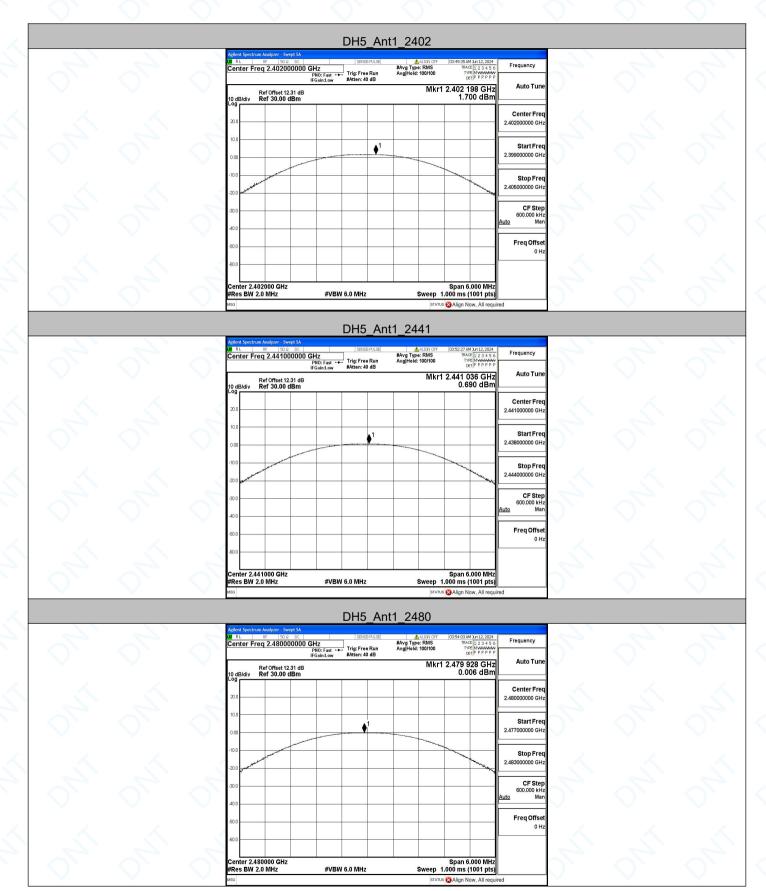
3DH5_Ant1_2441

3DH5_Ant1_2480

Agilent Spect										
Center F		50 2 DC	-lz 10:₩ide ↔		Run	#Avg Typ Avg Hold	e: RMS	TRAC	M Jun 12, 2024 28 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dB/div			Gain:Low	#Atten: 40	dB			⊿ /lkr3 1.3	20 MHz .357 dB	Auto Tune
20.0 10.0				C	2					Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0			~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Vn-V~r	mm	3 ∆1		22.22 oBn	Start Freq 2.478500000 GHz
-40.0 -50.0 -60.0	www	mm					prest	free and the second sec	ᠾᢦᠣᢛᠧᡗᡃᠬᡟᠷ	Stop Freq 2.481500000 GHz
Center 2. #Res BW	30 kHz		#VBW	/ 100 kHz			Sweep 3	1.200 ms (CF Step 300.000 kHz Auto Man
1 Ν 2 Ν 3 Δ1 4 5 6	HC SLL 1 f 1 f 1 f (Δ)	× 2.479 31 2.479 97 1.32		-22.775 dE -2.223 dE 0.357	8m 8m			FURCH		Freq Offset
7 8 9 10 11				3					v	
MSG							STATU	s 🔀 Align N	ow, All requi	red

Report No.: DNT241190R1628-4075 🧹

Date: June 14, 2024


Page: 40/68

Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Δ	2402	1.70	≤20.97	PASS
DH5	Ant1	2441	0.69	≤20.97	PASS
		2480	0.01	≤20.97	PASS
		2402	2.10	≤20.97	PASS
2DH5	Ant1	2441	1.05	≤20.97	PASS
		2480	1.03	≤20.97	PASS
		2402	3.06	≤20.97	PASS
3DH5 🔍	Ant1	2441	2.03	≤20.97	PASS
		2480	1.24	≤20.97	PASS

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date: June 14, 2024

Page: 42/68

Frequency	03:57:20 AM Jun 12, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P		#Avg Type Avg Hold:	ENSE:PULSE	ast +++ Trig: F	DC 00000 GHz PN0:	Analyzer - Si RF 50 2 2.4020		RI
Auto Tur	IFGaincl.ow #Atten: 40 dB terip P P P P Ref Offset 12.31 dB Mkr1 2.402 156 GHz GHz dB/div Ref 0.00 dBm 2.097 dBm								
Center Fre 2.402000000 GF									20.0
Start Fre 2.399000000 Gł		~		● ¹					10.0 0.00
Stop Fr 2.405000000 GI	and a second	~						and a grant and a grant and a grant a g	10.0
CF Ste 600.000 kl Auto M									10.0 10.0
Freq Offs									50.0
				_			-		60.0
	Span 6.000 MHz 00 ms (1001 pts)	en 1		H7	#VBW 6.0 M		2000 GHz	er 2.402 BW 2.0	

2DH5_Ant1_2441

XI RL	RF 50 Ω DC		SENSE:PULSE	ALIGN OFF	04:00:23 AM Jun 12, 2024	Frequency	
Center F	req 2.44100000	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MUMUUUU DET P P P P P P	Auto Tune	
10 dB/div	Ref Offset 12.31 dB Mkr1 2.441 090 GHz iv Ref 30.00 dBm 1.052 dBm						
20.0						Center Free 2.441000000 GH:	
0.00			\ 1		[Start Free 2.438000000 GH	
-10.0	warman and a second second				and a second	Stop Free 2.444000000 GH:	
-30.0						CF Step 600.000 kH Auto Ma	
-50.0					[Freq Offse 0 H	
-60.0	441000 GHz				Span 6.000 MHz		
#Res BW	2.0 MHz	#VBW	6.0 MHz	Sweep	1.000 ms (1001 pts)		
MSG				STATU	us 🔞 Align Now, All requir	ed	

2DH5_Ant1_2480

	rum Analyzer - Swep								
Center F	RF 50 Q			EPULSE	#Avg Type		TRAC	1 Jun 12, 2024 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 12.3 Ref 30.00 dE	PNO: F IFGain:I 1 dB	ast Trig: Fre ow #Atten: 4		Avg Hold:		2.480 0	112 GHz 30 dBm	Auto Tune
20.0									Center Freq 2.48000000 GHz
0.00				1					Start Freq 2.477000000 GHz
-10.0	and the second second						and a second	and the second sec	Stop Freq 2.483000000 GHz
-30.0									CF Step 600.000 kHz <u>Auto</u> Man
-50.0	_								Freq Offset 0 Hz
-60.0	480000 GHz						Snan 6	.000 MHz	
#Res BW		1	¥VBW 6.0 MHz		:	Sweep 1		1001 pts)	
MSG						STATUS	Align N	ow, All requi	red

Date: June 14, 2024

Page: 43/68

enter Freq 2.	50 Ω DC 402000000 GHz PN0	Fast +++ Trig: Fr	ree Run	#Avg Type: F Avg Hold: 10		TR/	AM Jun 12, 2024 ACE 1 2 3 4 5 6 YPE M WWWWW DET P P P P P P	Frequency
Ref Offset 12.31 dB Mkr1 2.402 060 GHz dB/div Ref 30.00 dBm 3.058 dBm								
20.0								Center Fre 2.402000000 GI
0.00			● ¹		***			Start Fr 2.399000000 G
10.0 20.0 Manuar						and a strange		Stop Fr 2.405000000 G
40.0								CF St 600.000 k <u>Auto</u> M
50.0			_					Freq Offs 0
60.0								
enter 2.40200		#VBW 6.0 MH	7	Sw	veep 1		6.000 MHz (1001 pts)	

3DH5_Ant1_2441

XI RL	RF 50 Ω DC	1	SENSE: PULSE	ALIGN OFF	04:09:10 AM Jun 12, 2024	-
Center Fr	eq 2.441000000	GHz PNO: Fast	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P	Frequency
10 dB/div	Ref Offset 12.31 dB Ref 30.00 dBm	ii Guin.cow		Mkr1	2.440 886 GHz 2.033 dBm	Auto Tune
20.0						Center Free 2.441000000 GH:
0.00		top and the second second	• ¹			Start Free 2.438000000 GH
-10.0	Warman and a start and a start				the second second second	Stop Free 2.444000000 GH
-30.0						CF Step 600.000 kH <u>Auto</u> Ma
-50.0						Freq Offse 0 H
	41000 GHz				Span 6.000 MHz	
#Res BW 2	2.0 MHz	#VBW	6.0 MHz	Sweep 1	1.000 ms (1001 pts)	
ASG				STATU	s 🔀 Align Now, All requir	ed

3DH5_Ant1_2480

	rum Analyzer - Swept SA							
Center F	RF 50 Ω DC req 2.48000000	D GHz PNO: Fast +++	SENSE: PULSE	#Avg Type: AvgHold:	RMS	TRAC	Dun 12, 2024 E 1 2 3 4 5 6 E M WWWW T P P P P P P	Frequency
10 dB/div	Ref Offset 12.31 dE Ref 30.00 dBm	IFGain:Low	#Atten: 40 dB			1 2.479 9		Auto Tune
20.0								Center Freq 2.480000000 GHz
10.0 0.00			↓ ¹					Start Freq 2.477000000 GHz
-10.0 -20.0 million	where the second s					and the second	N. Marriaga Marrie	Stop Freq 2.483000000 GHz
-30.0								CF Step 600.000 kHz <u>Auto</u> Man
-50.0								Freq Offset 0 Hz
-60.0								
Center 2. #Res BW	480000 GHz 2.0 MHz	#VBW	6.0 MHz	s	weep	Span 6. 1.000 ms (.000 MHz 1001 pts)	
MSG					STATU	us 🔞 Align No	ow, All requi	red