

FCC Test Report

Page: 1 / 58

Application No.:	DNT230875R1022-1505
Applicant:	Shenzhen Jooan Technology Co., Ltd
Address of Applicant:	Building 101-3,5 and 6, No.8 , Guixiang Community Square Road, Guanlan Street, Longhua District, Shenzhen, China
EUT Description:	Smart DoorBell
Model No.:	L2-U
FCC ID:	2BBQ4-L2U
Power Supply	DC 3.7V From Battery; DC 5V From Adapter Input AC 100-240V, 50/60Hz
Trade Mark:	Jooan 47 CFR FCC Part 2, Subpart J
Standards:	47 CFR Part 15, Subpart C ANSI C63.10: 2013
Date of Receipt:	2023/12/1
Date of Test:	2023/12/3 to 2023/12/18
Date of Issue:	2023/12/18
Test Result :	PASS *

Prepared By:	Wayne Jon (Testing Engineer)	
Reviewed By:	Pencils . chen (Project Engineer)	
Approved By:	Wick feng (Manager)	

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

 Report No.: DNT230875R1022-1505
 Date:Dec 18, 2023
 Page: 2 / 58

 Report Revise Record
 Page: 2 / 58

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Dec.11, 2023	Valid	Original Report

1

Report No.: DNT230875R1022-1505

Date:Dec 18, 2023

Page: 3 / 58

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	<u> </u>	Clause 3.1	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.2	PASS
Duty Cycle	()	<u> </u>	Clause 3.3	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2013	Clause 3.4	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2013	Clause 3.5	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2013	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.8	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.10	PASS

Report No.: DNT230875R1022-1505 Date:Dec 18, 2023

Contents

1	Test Summary	3
2	General Information	5
	2.1 Test Location	5
	2.2 General Description of EUT	6
	2.3 Channel List	7
	2.4 Test Environment and Mode	7
	2.5 Power Setting of Test Software	7
	2.6 Description of Support Units	7
	2.7 Test Facility	8
	2.8 Measurement Uncertainty (95% confidence levels, k=2)	8
	2.9 Equipment List	
	2.10 Assistant equipment used for test	10
3	Test results and Measurement Data	11
	3.1 Antenna Requirement	11
	3.2 Duty Cycle	12
	3.3 DTS (6 dB) Bandwidth	13
	3.4 Conducted Output Power	14
	3.5 Power Spectral Density	15
	3.6 Band-edge for RF Conducted Emissions	16
	3.7 RF Conducted Spurious Emissions	
	3.8 Radiated Spurious Emissions	18
	3.9 Restricted bands around fundamental frequency	26
	3.10 AC Power Line Conducted Emissions	31
4	Appendix	35
	Appendix A: Duty Cycle	35
	Appendix B: DTS Bandwidth	37
	Appendix C: Maximum conducted output power	41
	Appendix D: Maximum power spectral density	42
	Appendix E: Band edge measurements	46
	Appendix F: Conducted Spurious Emission	49

Date:Dec 18, 2023

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date:Dec 18, 2023

2.2 General Description of EUT

EUT Description:	Smart DoorBell	
Manufacturer:	Shenzhen Jooan Technology Co., Ltd	
Address of Manufacturer:	Building 101-3,5 and 6, No.8 , Guixiang Community Square Road, Guanlan Street, Longhua District, Shenzhen, China	
Model No.:	L2-U	
Additional Model(s):	L1-U,L2-U,L3-U,L4-U,L5-U,L6-U,L7-U,L8-U,L9-U,L10-U	
Power Supply:	DC 3.7V From Battery;DC 5V From Adapter Input AC 100-240V, 50/60Hz	
Chip Type:	ATBM6441	
Serial number:	SP2301211015	
Trade Mark:	Jooan	
Hardware Version:	V1.0	
Software Version:	V1.0	
IEEE 802.11 WLAN Mode Supported	 802.11b (20 MHz channel bandwidth), 802.11g (20 MHz channel bandwidth) 802.11n HT(20 MHz channel bandwidth), 	
Operation Frequency:	2400 MHz -2483.5MHz fc = 2407 MHz + N * 5 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 1 to 13 for the 20 MHz channel bandwidth, or 3 to 9 for the 40 MHz channel bandwidth.	
Type of Modulation:	IEEE for 802.11b: DSSS IEEE for 802.11g : OFDM IEEE for 802.11n(HT20) : OFDM/OFDMA	
Sample Type:	□ Portable Device, □ Module, ⊠ Mobile Device	
Antenna Type:	□ External, ⊠ Integrated	
Antenna Ports	⊠ Ant 1, □ Ant 2, □ Ant 3	
Smart System	 SISO (for 802.11b/g/n), MIMO (for 802.11 b/g/n): 2 Tx & 2 Rx, Diversity (for 802.11b/g): Tx & Rx 	
Antonno Cointi	Provided by applicant	
Antenna Gain*:	0.95dBi	
	Provided by applicant	
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);	

Remark:

*All models are just name differences, motherboard, PCB circuit board, chip, electronic components,

appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date:Dec 18, 2023

2.3 Channel List

	Operation Frequency of each channel (802.11b/g/n HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6 📈	2437MHz	9	2452MHz	<	~

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency for 802.11 b/g/n (HT20))
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

2.4 Power Setting of Test Software

Software Name	· · · · · ·	SecureCRTSecureFX		
Frequency(MHz)	2412	2437	2462	
802.11b Setting	40	40	40	
802.11g Setting	40	40	40	
802.11n20 Setting	40	40	40	

2.5 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.6 Description of Support Units

The EUT has been tested independent unit.

Date:Dec 18, 2023

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **Lab A:**

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	DTS Bandwidth	±0.0196%
2	Maximum Conducted Output Power	±0.686 dB
3	Maximum Power Spectral Density Level	±0.743 dB
4	Band-edge Compliance ±1.328 dB	
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
2		± 4.8dB (Below 1GHz)
	Dedicted Emission	± 4.8dB (1GHz to 6GHz)
	Radiated Emission	± 4.5dB (6GHz to 18GHz)
	(O, O, O, O, O, O)	± 5.02dB (Above 18GHz)

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Page: 9 / 58

2.9 Equipment List

Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA <	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

Test Equipment for Conducted Emission						
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23	
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23	
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2023-10-23	

Test Ed	quipment for I	Radiated Emis	ssion(Below	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23
Single ring magnetic field ring antenna	ETS-LINDGREN	6502	6502	2023-10-24	2024-10-23

Test E	quipment for	Radiated Emis	ssion(Above	1000MHz	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Adapter	Chenyang	ICSO1	JS-DN-RF-027

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The FPC antenna is externally connected to the motherboard, The best case gain of the antenna is 0.95dBi.

Date:Dec 18, 2023

3.2 Duty Cycle

Refer to section : Appendix A

Note:

- 1.If duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).

Date:Dec 18, 2023

Page: 13 / 58

3.3 DTS (6 dB) Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10: 2013 Section 11.8.1 Option 1
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);
Limit:	≥ 500 kHz
Test Results:	Pass

The detailed test data see: Appendix B

Date:Dec 18, 2023

3.4 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10: 2013 Section 11.9.1.3
Test Setup:	POWER METER E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);
Limit:	30dBm
Test Results:	Pass

The detailed test data see: Appendix C

Date:Dec 18, 2023

Page: 15 / 58

3.5 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10: 2013 Section 11.10.2
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);
Limit:	≤8.00dBm/3kHz
Test Results:	Pass

The detailed test data see: Appendix D

Date:Dec 18, 2023

Page: (16 / 58

3.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.13
Test Setup:	Spectrum Analyzer E-U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	 Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix E

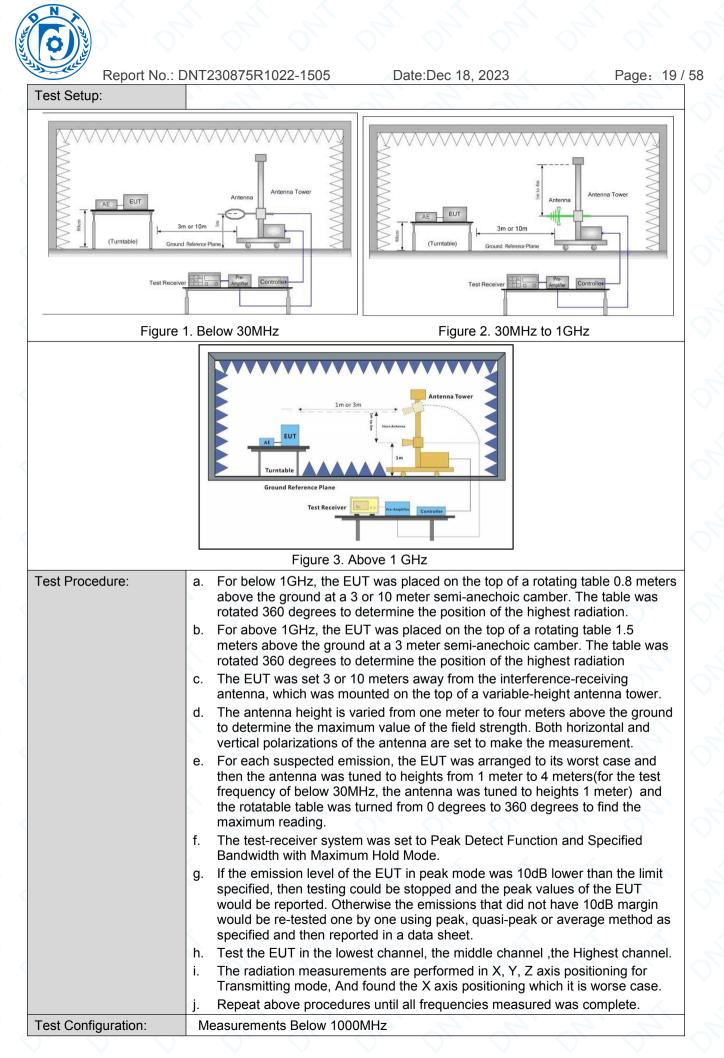
Date:Dec 18, 2023

Page: 17 / 58

3.7 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

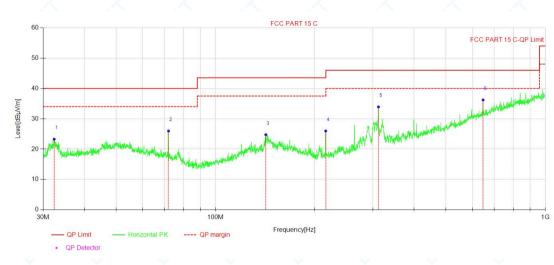


Date:Dec 18, 2023

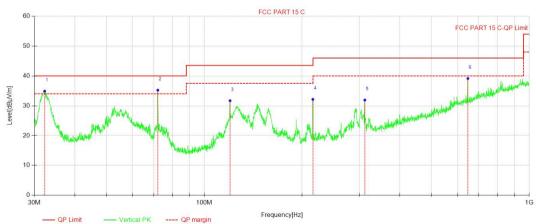
Page: 18 / 58

3.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 Sec	tion 11.12			\sim \sim		
Test Site:	Measurement Distance:	amber)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)		<u> </u>	300		
	0.490MHz-1.705MHz	24000/F(kHz)	~ /	2-5	30		
	1.705MHz-30MHz	30	<u> </u>		30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	s otherwise specifie the maximum per ent under test. This	ed, the limit of mitted avera	on peak radio fr ge emission lin	requency		


Report No.: [DNT230875R1022-1505	Date:Dec 18, 2023	Page: 20 / 5
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Ab RBW = 1 MHz VBW = 1 MHz VBW = 10 Hz, when dut VBW ≥ 1/T, when duty transmission duration over whether the state of the st	1000 MHz	T is the minimum
Exploratory Test Mode:	Transmitting with all kind of Charge + Transmitting mode		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst c 6Mbps of rate is the worst c 6.5Mbps of rate is the worst through Pre-scan, It is found	ase of 802.11g;	
Instruments Used:	Refer to section 2.9 for deta	ils <u> </u>	<u> </u>
Test Results:	Pass	2' 2' 2'	6. 6

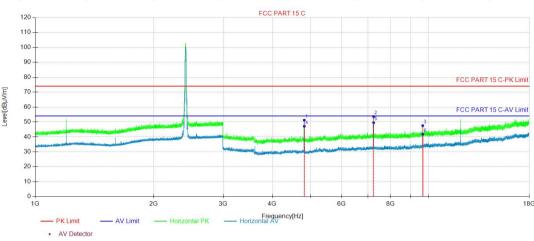
Date:Dec 18, 2023


Test data For 30-1000MHz

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
	1	32.40	32.95	-9.67	23.28	40.00	16.72	200	321	QP
	2	72.00	36.44	-10.46	25.98	40.00	14.02	100	0	QP
	3	141.99	33.18	-8.41	24.77	43.50	18.73	200	172	QP
	4	215.77	37.08	-11.09	25.99	43.50	17.51	200	211	QP
	5	311.81	40.54	-6.62	33.92	46.00	12.08	100	9	QP
[6	647.38	34.78	1.43	36.21	46.00	9.79	100	323	QP

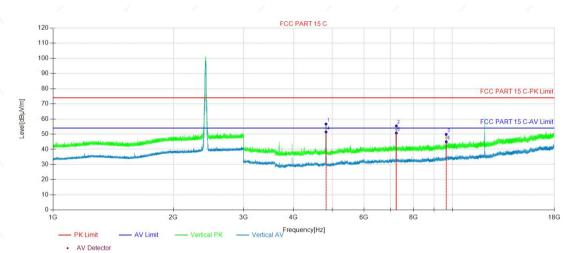
Vertical :

QP Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	32.25	44.58	-9.69	34.89	40.00	5.11	100	344	QP
2	71.91	45.68	-10.45	35.23	40.00	4.77	200	192	QP
3	119.99	42.00	-10.30	31.70	43.50	11.80	100	359	QP
4	215.77	43.23	-11.09	32.14	43.50	11.36	100	288	QP
5	311.81	38.54	-6.62	31.92	46.00	14.08	100	341	QP
6	647.38	37.70	1.43	39.13	46.00	6.87	100	209	QP

Dongguan DN Testing Co., Ltd.

Date:Dec 18, 2023


11B 2412MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4824.09	52.40	-1.18	51.22	74.00	22.78	150	196	Peak
2	7236.21	51.07	2.58	53.65	74.00	20.35	150	248	Peak
3	9647.58	42.22	5.32	47.54	74.00	26.46	150	100	Peak
4	4824.84	48.33	-1.19	47.14	54.00	6.86	150	205	AV
5	7237.71	46.97	2.58	49.55	54.00	4.45	150	248	AV
6	9648.33	36.50	5.34	41.84	54.00	12.16	150	111	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4824.09	57.88	-1.18	56.70	74.00	17.30	150	80	Peak
2	7236.21	52.87	2.58	55.45	74.00	18.55	150	60	Peak
3	9647.58	44.57	5.32	49.89	74.00	24.11	150	69	Peak
4	4824.84	52.61	-1.19	51.42	54.00	2.58	150	80	AV
5	7235.46	48.14	2.58	50.72	54.00	3.28	150	60	AV
6	9648.33	39.64	5.34	44.98	54.00	9.02	150	69	AV

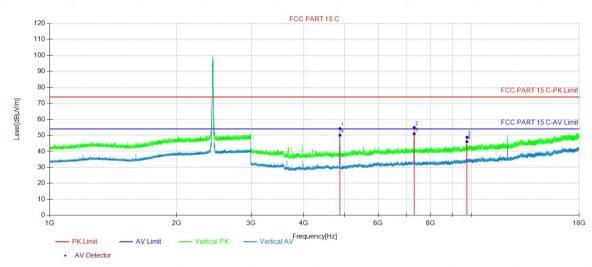
Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China


 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date:Dec 18, 2023

11B 2437MHz



AV Detector

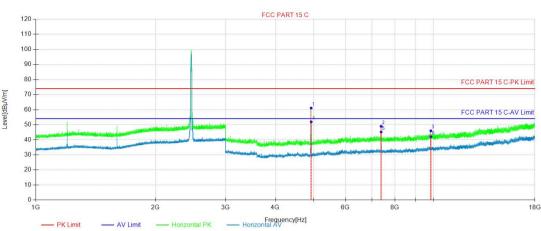
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4874.34	59.21	-1.72	57.49	74.00	16.51	150	193	Peak
2	7310.46	50.66	2.35	53.01	74.00	20.99	150	204	Peak
3	9748.08	41.08	6.35	47.43	74.00	26.57	150	260	Peak
4	4875.09	51.63	-1.73	49.90	54.00	4.10	150	204	AV
5	7308.96	46.18	2.34	48.52	54.00	5.48	150	218	AV
6	9748.83	36.94	6.34	43.28	54.00	10.72	150	260	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4874.34	55.93	-1.72	54.21	74.00	19.79	150	257	Peak
2	7310.46	52.61	2.35	54.96	74.00	19.04	150	225	Peak
3	9748.08	42.42	6.35	48.77	74.00	25.23	150	235	Peak
4	4874.34	51.86	-1.72	50.14	54.00	3.86	150	257	AV
5	7308.96	48.63	2.34	50.97	54.00	3.03	150	235	AV
6	9748.83	39.73	6.34	46.07	54.00	7.93	150	235	AV

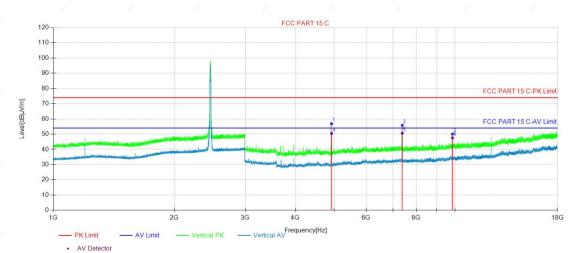
Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China


 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date:Dec 18, 2023

11B 2462MHz



AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4923.84	62.62	-1.56	61.06	74.00	12.94	150	209	Peak
2	7383.21	46.04	2.91	48.95	74.00	25.05	150	229	Peak
3	9847.84	39.94	6.04	45.98	74.00	28.02	150	360	Peak
4	4924.59	53.48	-1.57	51.91	54.00	2.09	150	209	AV
5	7383.96	42.26	2.92	45.18	54.00	8.82	150	229	AV
6	9848.59	36.02	6.04	42.06	54.00	11.94	150	229	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	4923.84	58.43	-1.56	56.87	74.00	17.13	150	268	Peak
2	7386.96	52.86	2.95	55.81	74.00	18.19	150	237	Peak
3	9847.84	44.04	6.04	50.08	74.00	23.92	150	214	Peak
4	4924.59	51.98	-1.57	50.41	54.00	3.59	150	268	AV
5	7383.96	47.66	2.92	50.58	54.00	3.42	150	226	AV
6	9848.59	41.54	6.04	47.58	54.00	6.42	150	226	AV

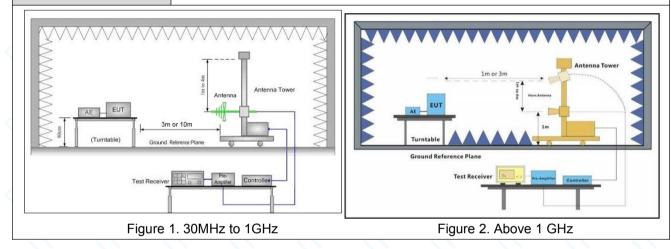
Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test, only the worst case was reported.


Date:Dec 18, 2023

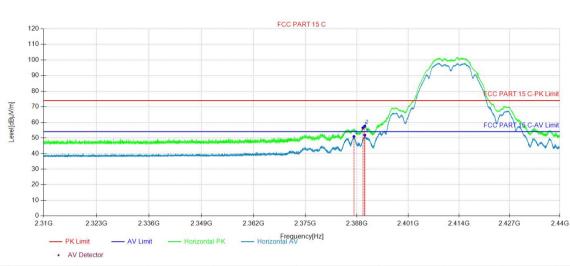
Page: 26 / 58

3.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	15.209 and 15.205	
Test Method:	ANSI C63.10: 2013 Section	n 11.12	
Test Site:	Measurement Distance: 3n	: Chamber)	
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Above 1GHz	54.0	Average Value
	ADOVE IGHZ	74.0	Peak Value
Tost Sotup:			

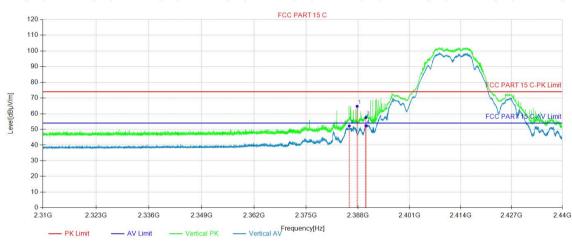
Test Setup:

Denard No. 1	
	DNT230875R1022-1505 Date:Dec 18, 2023 Page: 27
Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel , the Highest channeli. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW \ge 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz RBW = 1 MHz
	 VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW \ge 1/T, when duty cycle is less than 98 percent where T is the
	minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the
	1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g;
	6.5Mbps of rate is the worst case of 802.11n(HT20);
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



11B 2412MHz

Report No.: DNT230875R1022-1505


Date:Dec 18, 2023

Horizontal:

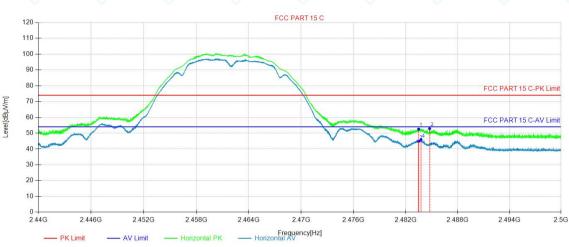
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2389.52	55.13	1.37	56.50	74.00	17.50	150	13	Peak
2	2390.01	56.27	1.37	57.64	74.00	16.36	150	13	Peak
3	2387.27	49.56	1.37	50.93	54.00	3.07	150	13	AV
4	2390.01	50.47	1.37	51.84	54.00	2.16	150	13	AV

Vertical:

AV Detector

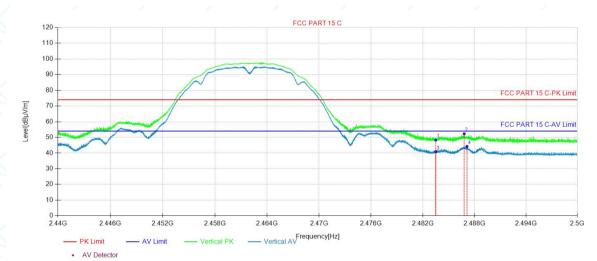
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2387.79	63.34	1.37	64.71	74.00	9.29	150	360	Peak
2	2390.01	56.19	1.37	57.56	74.00	16.44	150	88	Peak
3	2385.81	50.83	1.37	52.20	54.00	1.80	150	360	AV
4	2390.01	50.92	1.37	52.29	54.00	1.71	150	88	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date:Dec 18, 2023


Horizontal:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2483.50	50.71	1.86	52.57	74.00	21.43	150	357	Peak
2	2484.77	51.00	1.86	52.86	74.00	21.14	150	301	Peak
3	2483.50	42.99	1.86	44.85	54.00	9.15	150	301	AV
4	2483.77	44.04	1.86	45.90	54.00	8.10	150	301	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2483.50	46.45	1.86	48.31	74.00	25.69	150	216	Peak
2	2486.81	50.43	1.86	52.29	74.00	21.71	150	201	Peak
3	2483.50	39.02	1.86	40.88	54.00	13.12	150	121	AV
4	2487.13	42.40	1.86	44.26	54.00	9.74	150	128	AV

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date:Dec 18, 2023

Note:

1. The 802.11b(11B) is the worse case.

2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.)

Date:Dec 18, 2023

3.10AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 1	5.207	- V - V					
	Test Method:	ANSI C63.10: 2013	()						
<	Test Frequency Range:	150kHz to 30MHz	7 7 7	0 0 V					
	Limit:		Eroqueney renge (MHz)						
		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarit	hm of the frequency.	22					
	Test Procedure:	 The mains terminal disturoom. The EUT was connected Impedance Stabilization Ne impedance. The power cable a second LISN 2, which was plane in the same way as the sa	I to AC power source throug twork) which provides a 500 es of all other units of the E s bonded to the ground refe	gh a LISN 1 (Line Ω/50μH + 5Ω linear UT were connected to rence					
		multiple socket outlet strip w single LISN provided the rat 3) The tabletop EUT was p ground reference plane. And	ting of the LISN was not exc laced upon a non-metallic ta d for floor-standing arranger	ceeded. able 0.8m above the					
		 placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the 							
		mounted on top of the groun between the closest points of the EUT and associated equ In order to find the maximum	unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to						
N N	Test Setup:	Shielding Room							
		AC Mains							
			Ground Reference Plane						
<									
	Exploratory Test Mode:	Transmitting with all kind of	modulations, data rates at l	owest, middle and					

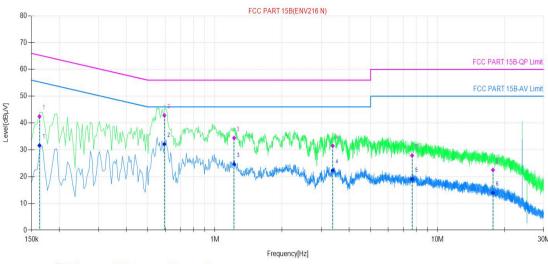
Report No.: DNT	230875R1022-1505	Date:Dec 18, 2023	Page: 32 / 58
	highest channel. Charge + Transmitting mode		
Final Test Mode:		6.5Mbps of rate of 802.11n(HT e.	⁻ 20) at lowest
Instruments Used:	Refer to section 2.9 for deta	ils	
Test Results:	Pass		

Date:Dec 18, 2023

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.16	9.90	33.62	43.52	65.10	21.58	20.25	30.15	55.10	24.95
2	0.58	9.83	27.41	37.24	56.00	18.76	18.56	28.39	46.00	17.61
3	1.04	9.72	22.47	32.19	56.00	23.81	10.83	20.55	46.00	25.45
4	2.51	9.73	16.69	26.42	56.00	29.58	6.87	16.60	46.00	29.40
5	5.81	9.83	13.4	23.23	60.00	36.77	3.98	13.81	50.00	36.19
6	11.56	9.90	12.06	21.96	60.00	38.04	2.55	12.45	50.00	37.55

Neutral Line:

Report No.: DNT230875R1022-1505

Date:Dec 18, 2023

QP Limit AV Limit PK AV QP Detector AV Detector

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.16	9.81	32.65	42.46	65.31	22.85	21.8	31.61	55.31	23.70
2	0.59	9.78	33.05	42.83	56.00	13.17	22.34	32.12	46.00	13.88
3	1.21	9.71	24.71	34.42	56.00	21.58	14.9	24.61	46.00	21.39
4	3.37	9.90	21.58	31.48	56.00	24.52	12.4	22.30	46.00	23.70
5	7.68	9.95	17.91	27.86	60.00	32.14	9.21	19.16	50.00	30.84
6	17.72	10.01	12.47	22.48	60.00	37.52	3.89	13.90	50.00	36.10

Remark:

1. The 802.11b is the worse case.

2. The following Quasi-Peak and Average measurements were performed on the EUT:

3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

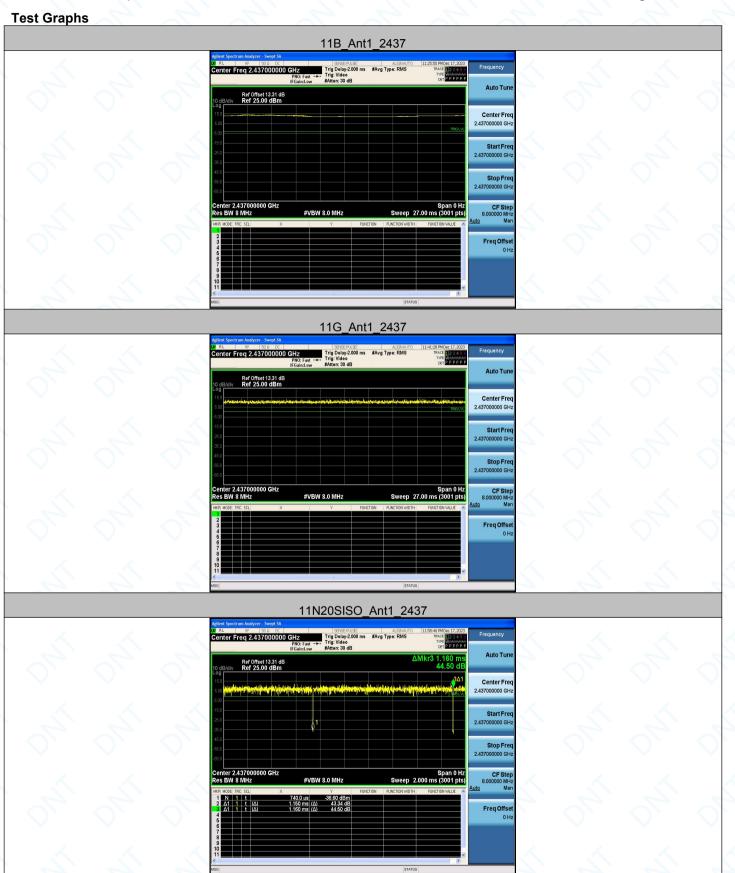
Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

Date:Dec 18, 2023

Page: 35 / 58

4 Appendix

Appendix A: Duty Cycle


Test Result

Test Mode	Antenna	Freq(MHz)	ON Time [ms]	Period [ms]	DC [%]
11B	Ant1	2437	27.00	27.00	100.00
11G	Ant1	2437	27.00	27.00	100.00
11N20SISO	Ant1	2437	1.15	1.16	99.14

Date:Dec 18, 2023

Page: 36 / 58

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date:Dec 18, 2023

Page: 37 / 58

Appendix B: DTS Bandwidth

Test Result

restresuit							
Test Mode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
~ ~ ~ ~	1	2412	9.720	2407.200	2416.920	0.5	PASS
(11B	Ant1	2437	9.800	2432.080	2441.880	0.5	PASS
		2462	9.840	2457.120	2466.960	0.5	PASS
		2412	16.080	2404.080	2420.160	0.5	PASS
11G	Ant1	2437	16.400	2428.800	2445.200	0.5	PASS
		2462	16.360	2453.840	2470.200	0.5	PASS
\mathbf{O}	$\hat{\mathbf{O}}$	2412	16.360	2404.120	2420.480	0.5	PASS
11N20SISO	Ant1	2437	16.960	2428.480	2445.440	0.5	PASS
		2462	16.680	2453.800	2470.480	0.5	PASS