

Test Report

Report No.: MTi231222004-01E1

Date of issue: 2024-01-09

Applicant: Truststone Group LLC

Product: 5 and a desktop wireless charging

Model(s): OE-KF9205, KF-9205B, PY-5CGS

FCC ID: 2BBPLPY5CGS

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 5 6
2	Sum	nmary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	luation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line 20dB Occupied Bandwidth Emissions in frequency bands (below 30MHz) Emissions in frequency bands (30MHz - 1GHz)	14 17
Ph	otogr	aphs of the test setup	23
Ph	otogr	aphs of the EUT	24

Test Result Certification Applicant: Truststone Group LLC Address: 1370 Broadway, 9th Floor | New York, NY 10018 | Manufacturer: Dongguan Kafulle Electronics Co.,Ltd Room 103, Building 1, No.2, Dongshan Industrial Street, Zhangluo Address: Community, Zhangmutou Town, Dongguan City, Guangdong Provice **Product description** Product name: 5 and a desktop wireless charging Trade mark: N/A Model name: OE-KF9205 Series Model(s): KF-9205B, PY-5CGS Standards: 47 CFR Part 15C Test Method: ANSI C63.10-2013 **Date of Test** Date of test: 2023-12-26 to 2024-01-04 Test result: **Pass**

Test Engineer	:	Yanice Xie
		(Yanice.Xie)
Reviewed By	:	leon chen
		(Leon Chen)
Approved By	:	Tom Xue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	5 and a desktop wireless charging
Model name:	OE-KF9205
Series Model(s):	KF-9205B, PY-5CGS
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	DC 9V/3A Wireless Output:10W USB-A Output:12W(5V/2.4A)
Accessories:	Cable:USB-A to Type-C 1.0m
Hardware version:	V10
Software version:	OXA7E54222
Test sample(s) number:	MTi231222004-01S1001
RF specification	
Operating frequency range:	115-205kHz
Modulation type:	ASK
Antenna(s) type:	Coil Antenna

1.2 Description of test modes

_	
No.	Emission test modes
Mode1 Wireless Output(5W)	
Mode2	Wireless Output(7.5W)
Mode3	Wireless Output(10W)
Mode4	Standby

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list							
Description	Model	Serial No.	Manufacturer				
wireless charging load	YBZ1.1	/	YBZ				
HUAWEI QUICK CHARGE(18W) HW-059200CHQ		B6828JLC215475	HUAWEI				
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment						
	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due	
Conducted Emission at AC power line							
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25	
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04	
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2023-06-03	2024-06-02	
		20dB Od	cupied Bandwid	th			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24	
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24	
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24	
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25	
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04	
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24	
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04	
		Emissions in frequ	ency bands (bel	low 30MHz)			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25	
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10	
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24	
		Emissions in freque	ency bands (30N	ИНz - 1GHz)			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10	
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24	
5	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03	
2 3 1 2 3 4	Active Loop Antenna Amplifier EMI Test Receiver TRILOG Broadband Antenna Active Loop Antenna Amplifier	Rohde&schwarz Schwarzbeck Hewlett-Packard Emissions in frequency Rohde&schwarz schwarabeck Schwarzbeck Hewlett-Packard	ESCI7 FMZB 1519 B 8447F ency bands (30N ESCI7 VULB 9163 FMZB 1519 B 8447F	101166 00066 3113A06184 MHz - 1GHz) 101166 9163-1338 00066 3113A06184	2023-06-11 2023-04-25 2023-04-26 2023-06-11 2023-04-25	2025-(2024-(2025-(2025-(2024-(

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

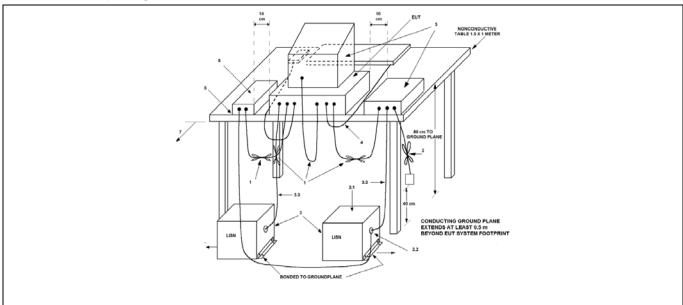
	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
	of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.

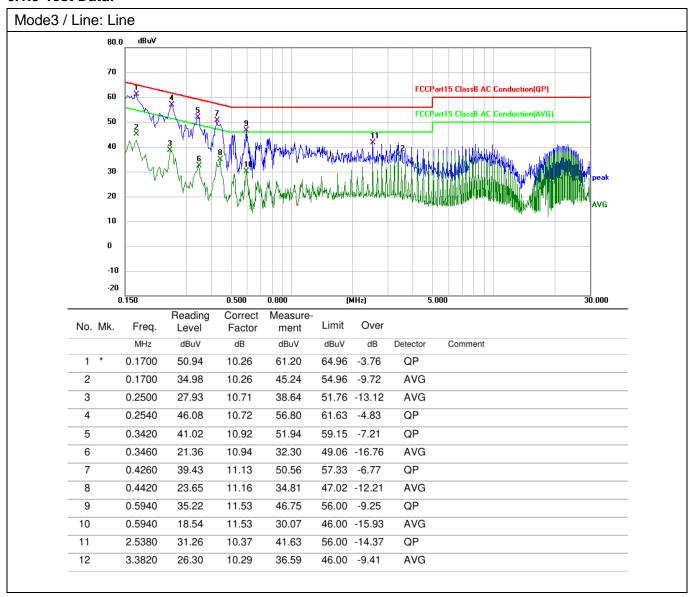
The EUT complies with the requirement of FCC PART 15.203.

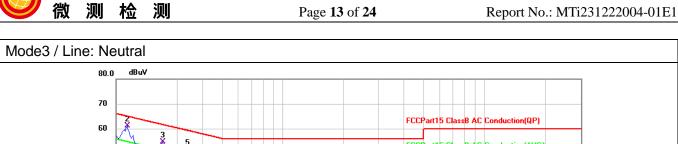
6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohm line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:


Operating Environment:									
Temperature: 24 °C Humidity: 49 % Atmospheric Pressure: 101 kPa									
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4								
Final test mode	e:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report						

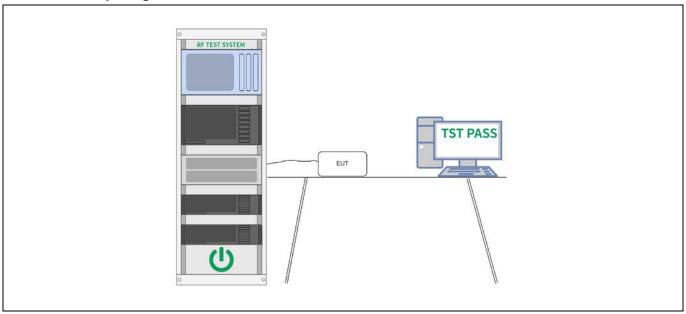

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

60	X,	3	5 X													Conduction(QP)		
50	$-\int_{\mathcal{M}}$	4	Ă	6 X		3		+				LLPar	tibt	lassi	AL	Conduction(AVG)		
40	N.	*	ν <u>\</u>		H		Λ	M _M	MMAMARALLI	المرابع الماريا		1 12			lada		Mhun.	
30	MAN	4	1	/ \	₩,	¥	¥ I	+	A II A A A A A A A A A A A A A A A A A	Alton Manager	Y I Y Y Y A A A A A	/Yellings	W		resident Dags		MARKA TA	
20	۷٠	Ψ٧	V Y	۲ ار	M	Ņ	A	A,A	ANTHANAPARA SALIM				بالاراداد		Щ			peak
10				*/	W	Y	י יד		, r			11 797	I I I			admenal (h.) [1]	"	AVG
) -																		
10 _																		
-20																		

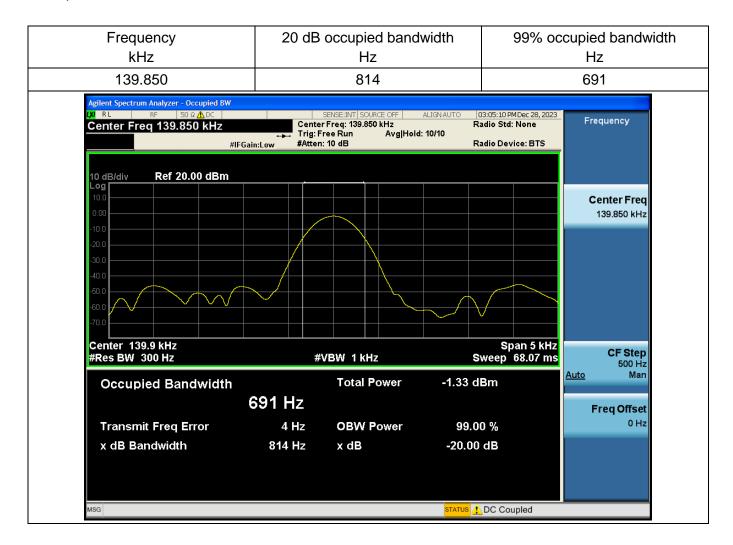
						•				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1620	32.78	10.28	43.06	55.36	-12.30	AVG		
2	*	0.1700	50.73	10.28	61.01	64.96	-3.95	QP		
3		0.2540	43.89	10.77	54.66	61.63	-6.97	QP		
4		0.2580	27.38	10.79	38.17	51.50	-13.33	AVG		
5		0.3379	40.77	10.96	51.73	59.25	-7.52	QP		
6		0.4260	36.98	11.17	48.15	57.33	-9.18	QP		
7		0.4340	21.85	11.17	33.02	47.18	-14.16	AVG		
8		0.5980	34.05	11.54	45.59	56.00	-10.41	QP		
9		1.6860	16.08	13.51	29.59	46.00	-16.41	AVG		
10		2.8100	31.44	10.22	41.66	56.00	-14.34	QP		
11		3.9340	26.41	10.27	36.68	46.00	-9.32	AVG		
12		5.0580	26.54	10.26	36.80	50.00	-13.20	AVG		

6.2 20dB Occupied Bandwidth


Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. ii) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). If a marker is below this "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" determined in step h). Reset the marker delta function and move th
	plot(s).

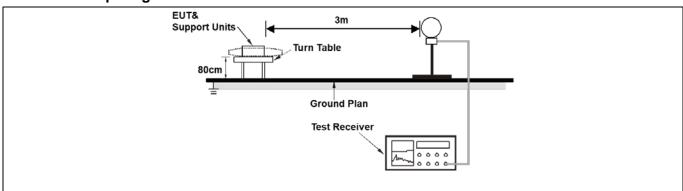
6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:									
Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 98 kPa										
Pre test mode: Mode1, Mode2, Mode3, Mode4										
Final test mode	e:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report							


6.2.2 Test Setup Diagram:

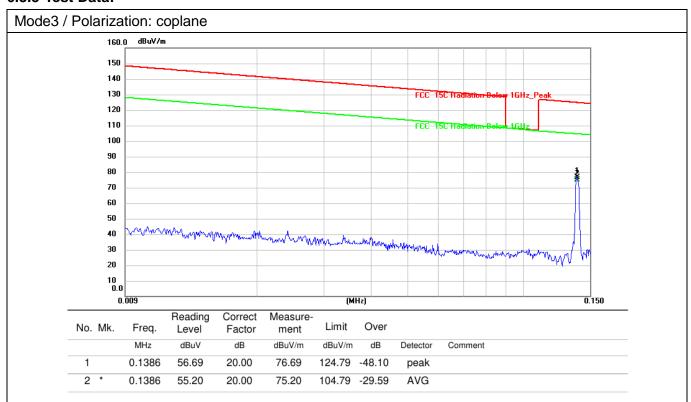
6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.


6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209						
Test Limit:	Frequency (MHz)	Field strength	Measuremen				
		(microvolts/meter)	t distance				
			(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e.g. In the emission table al The emission limits sho employing a CISPR qu kHz, 110–490 kHz and three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted av	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located i frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 M However, operation within these frequency bands is permitted under a sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurem employing a CISPR quasi-peak detector except for the frequency bankHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in three bands are based on measurements employing an average detector as shown in § 15.35(b), for frequencies above 1000 MHz, the field str limits in paragraphs (a)and (b)of this section are based on average limits in paragraphs (a)and (b) of this section are based on average limits in paragraphs (a)and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits and condition of modulation. For point-to-point operation under paragraphs (a) and condition of modulation.					
Test Method:		ANSI C63.10-2013 section 6.4					
Procedure:	ANSI C63.10-2013 sec	tion 6.4					

6.3.1 E.U.T. Operation:


Operating Environment:								
Temperature:	Temperature: 21.3 °C Humidity: 33.4 % Atmospheric Pressure: 100 kPa							
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4							
Final test mode			re-test mode w ded in the repo	ere tested, only the data	of the worst mode			

6.3.2 Test Setup Diagram:

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

6.3.3 Test Data:



10 0 -10

0.150

0.500

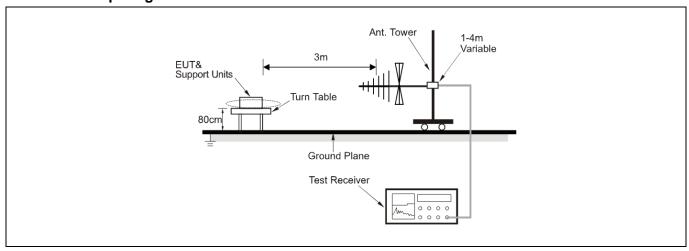
0.800

5.000

30.000

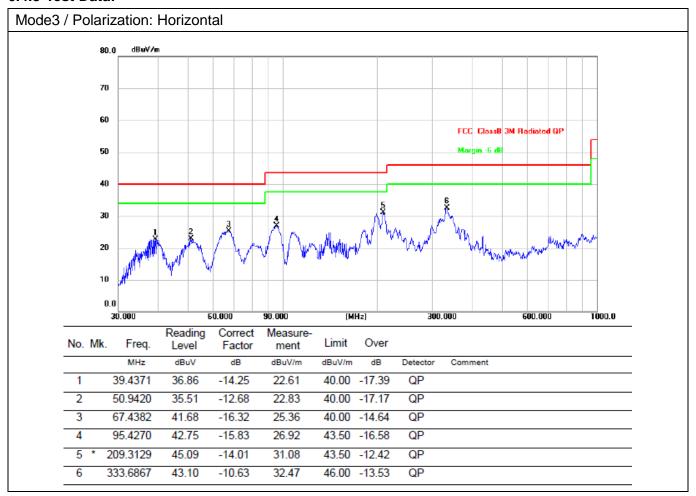
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.4148	38.19	19.87	58.06	115.25	-57.19	peak
2	0.4148	36.53	19.87	56.40	95.25	-38.85	AVG
3 *	0.6899	34.04	19.73	53.77	70.84	-17.07	QP
4	0.9684	27.30	19.68	46.98	67.90	-20.92	QP
5	1.2422	22.68	19.69	42.37	65.74	-23.37	QP
6	1.5193	19.44	19.71	39.15	64.00	-24.85	QP
7	1.8000	16.85	19.73	36.58	69.50	-32.92	QP

(MHz)


6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 However, operation within these frequency bands is permitted unde sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edg The emission limits shown in the above table are based on measure employing a CISPR quasi-peak detector except for the frequency backet, 110–490 kHz and above 1000 MHz. Radiated emission limits in three bands are based on measurements employing an average dead As shown in § 15.35(b), for frequencies above 1000 MHz, the field solimits in paragraphs (a) and (b) of this section are based on average limits in paragraphs (a) and (b) of this section are based on average limits and condition of modulation. For point-to-point operation under para (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.					
Test Method:	ANSI C63.10-2013 sec	tion 6.5				
Procedure:	ANSI C63.10-2013 sec	tion 6.5				

6.4.1 E.U.T. Operation:


Operating Environment:								
Temperature:	Temperature: 22.5 °C Humidity: 43 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4							
Final test mode		•	re-test mode w ded in the repo	ere tested, only the data or	of the worst mode			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

4

5

6

94.7601

106.0126

207.1226

52.35

45.54

44.09

-16.05

-13.40

-13.63

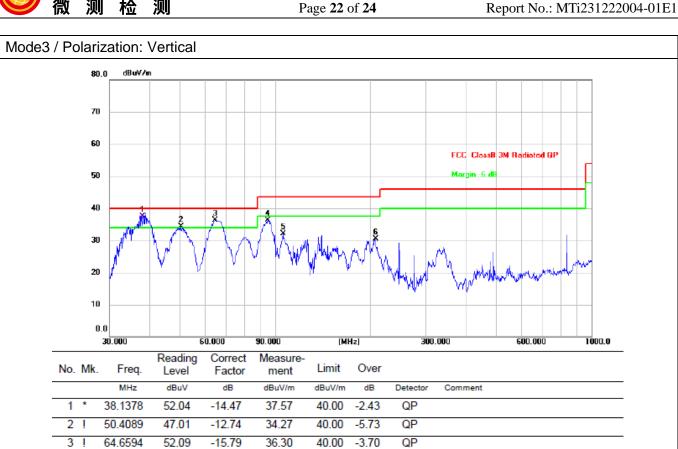
36.30

32.14

30.46

43.50

-7.20


43.50 -11.36

43.50 -13.04

QP

QP

QP

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----