

FCC Test Report

Test Report On Behalf of TRUSTSTONE GROUP, LLC For

3-IN-1 FOLDABLE MAGNETIC WIRELESS CHARGING
Model No.: PY-3IN1MCH, PY-3IN1MCH-BLK, PY-3IN1MCH-WHT,
PY-3IN1MCH-PNK, PY-3IN1MCH-MMT

FCC ID: 2BBPLPY3IN1MCH

Prepared For: TRUSTSTONE GROUP, LLC

1370 Broadway 9th floor New York, NY 10018 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jun. 18, 2024 ~ Jun. 25, 2024

Date of Report: Jun. 25, 2024

Report Number: HK2406183172-1E

Test Result Certification

Applicant's Name:	TRUSTSTONE GROUP, LLC
-------------------	-----------------------

Address.....: 1370 Broadway 9th floor New York, NY 10018 United States

Manufacturer's Name: TRUSTSTONE GROUP, LLC

Address.....: 1370 Broadway 9th floor New York, NY 10018 United States

Product Description

Trade Mark: XO POPPY

Model and/or Type Reference: PY-3IN1MCH, PY-3IN1MCH-BLK, PY-3IN1MCH-WHT,

PY-3IN1MCH-PNK, PY-3IN1MCH-MMT

Standards: FCC CFR 47 PART 18

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Test Result : Pass

Testing Engineer :

(Len Liao)

Technical Manager:

ver Man

(Sliver Wan)

Authorized

Signatory

Jason Whou

(Jason Zhou)

	Table of Contents	Page
1 . Test Summary		5
1.1 . Test Procedu	res and Results	5
1.2 . Information of	f the Test Laboratory	HUM 5
1.3 . Measurement	t Uncertainty	5
2. General Information	1 WAXTESTING	6
2.1. General Desci	ription of EUT	JAK TEST 6
2.2. Carrier Freque	ency of Channels	7
2.4. Description of	Test Setup	9
2.5. Description of	Support Units	10
2.6. Measurement	Instruments List	11
3. Conducted Emiss	ion Test	12
3.1. Block Diagram	of Test Setup	12
3.2. Conducted Po	wer Line Emission Limit	12
3.3. Test Procedur	e	12
4. Radiated Emission	ns HUNKTES	15
4.1. Block Diagram	of Test Setup	15
4.2. Rules and Spe	ecifications	16
4.3. Test Procedur	e This State	16
4.4. Test Result		16
5. Antenna Requireme	ent	22
6. Photographs of Tes	Din. Din.	23
7. Photos of the EUT		25

** Modified History **

		(833)	
Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jun. 25, 2024	Jason Zhou
ESTING	TING	ESTING	G ESTING
HUAKIL	THAK!	WAKE	HUAK

1. Test Summary

1.1. Test Procedures and Results

Description of Test	Section Number	Result
Conducted Emissions Test	18.307	COMPLIANT
Radiated Emission Test	18.305	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization: A2LA Accreditation Code is 4781.01. FCC Designation Number is CA100229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. General Information

2.1. General Description of EUT

Equipment:	3-IN-1 FOLDABLE MAGNETIC WIRELESS CHARGING	-ING
Model Name:	PY-3IN1MCH	JAK TEST
Series Models:	PY-3IN1MCH-BLK, PY-3IN1MCH-WHT, PY-3IN1MCH-PNK,	
Series Models.	PY-3IN1MCH-MMT	.0
	All model's the function, software and electric circuit are the same	e, only
Model Difference:	with product color and model named different. Test sample mode	el:
	PY-3IN1MCH.	
Trade Mark:	XO POPPY	TESTING (
FCC ID:	2BBPLPY3IN1MCH	
Antenna Type:	Coil Antenna	
Operation Frequency:	Mobile Phone + Earphones :112KHz~205KHz	TING
operation requestoy:	Watch: 314KHz	AK TES
Test Frequency:	Mobile Phone: 137KHz Earphones: 127KHz	
restricquency.	Watch: 314KHz	
Modulation Type:	ASK WAR ASK	Ing
	Input: DC9V/3A	
Power Source:	Mobile Phone Output: 5W/7.5W/10W/15W	
	Earphones Output: 3W Max Watch: 2W Max	-STING
	Input: DC9V/3A	
Power Rating:	Mobile Phone Output: 5W/7.5W/10W/15W	
3	Earphones Output: 3W Max Watch: 2W Max	

Note: 1.The transfer system includes three coils, 3 coils can work individually or can work at the same time. All the situation has been tested, only the worst situation was recorded in the report.

- 2. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.2. Carrier Frequency of Channels

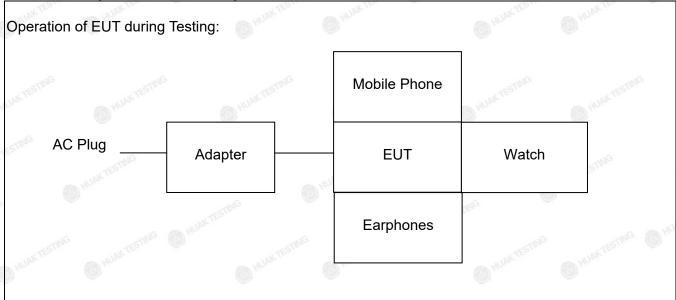
(0.00) A.	1.00	(200)	10002	(CHE) 1	1.5.6.2
9	Test Frequency			9	
01	137KHz				
02	127KHz	MY TESTING	AK TESTING	AKTESTING	OKTEST
03	314KHz				(a) HO

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.3. Test Mode


Test Item	Test Mode	Description
9 m	Mode 1	AC/DC Adapter + EUT + Mobile phone (Battery Status: <1%) + Earphones (Battery Status: <1%)
	Mode 2	AC/DC Adapter + EUT + Mobile phone (Battery Status: <50%) + Earphones (Battery Status: <1%)
	Mode 3	AC/DC Adapter + EUT + Mobile phone (Battery Status: >95%) + Earphones (Battery Status: <1%)
	Mode 4	AC/DC Adapter + EUT + Mobile phone (Battery Status: <1%) + Earphones (Battery Status: <50%)
	Mode 5	AC/DC Adapter + EUT + Mobile phone (Battery Status: <50%) + Earphones (Battery Status: <50%) + Watch (Battery Status: <50%)
	Mode 6	AC/DC Adapter + EUT + Mobile phone (Battery Status: >95%) + Earphones (Battery Status: <50%)
Radiated & Conducted	Mode 7	AC/DC Adapter + EUT + Mobile phone (Battery Status: <1%) + Earphones (Battery Status: >95%)
Test Cases	Mode 8	AC/DC Adapter + EUT + Mobile phone (Battery Status: <50%) + Earphones (Battery Status: >95%)
	Mode 9	AC/DC Adapter + EUT + Mobile phone (Battery Status: >95%) + Earphones (Battery Status: >95%) + Watch (Battery Status: >95%)
	Mode 10	AC/DC Adapter + EUT + Mobile phone (Battery Status: <1%)
	Mode 11	AC/DC Adapter + EUT + Mobile phone (Battery Status: <50%)
	Mode 12	AC/DC Adapter + EUT + Mobile phone (Battery Status: >95%)
	Mode 13	AC/DC Adapter + EUT + Earphones (Battery Status: <1%)
	Mode 14	AC/DC Adapter + EUT + Earphones (Battery Status: <50%)
	Mode 15	AC/DC Adapter + EUT + Earphones (Battery Status: >95%)
	Mode 16	AC/DC Adapter + EUT + Watch (Battery Status: <1%)
	Mode 17	AC/DC Adapter + EUT + Watch (Battery Status: <50%)
	Mode 18	AC/DC Adapter + EUT + Watch (Battery Status: >95%)
MG	Mode 19	AC/DC Adapter + EUT (Null Load)

- Note: 1. All modes and configurations above have been tested, Only the result of the worst case was recorded in the report.
 - 2.For Radiated Emission, 3axis were chosen for testing for each applicable mode, including the mobile phone in vertical and horizontal positions.
 - 3. The Mobile Phone, Earphones and Watch provided by Lab.
 - 4. According to the manufacturer's design principle, the wireless charging power will reach its maximum when the client device's battery level is between 1% and 10%.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Description of Test Setup

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NK TE	AK TEL	NX TES		OKIL	NK TEE	
Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark	
TESTING 1	3-IN-1 FOLDABLE MAGNETIC WIRELESS CHARGING	XO POPPY	PY-3IN1MCH	N/A	CTESTING EUT	
2	USB Cable	N/A	N/A	Length:1.02m	Accessory	
MAK TES	THE MAKESING	O HUAN	ESTING HUAK TESTIN	Input: AC100-240V, 50/60Hz, 2A Max USB-C1 Output: DC5V/3A, 9V3A, 12V/3A, 15V/3A, 20V/5A, 28V/5A 140W MAX	HUANTESTING	
3	Adapter	N/A	CD289	USB-C2 Output: DC5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A 100W MAX	Peripheral	
3	HUAKTESTING	WHATES!	HUAKTESTING	USB-A Output: DC5V/4.5A, 4.5V/5A, 5V/3A, 9V/2A, 12V/1.5A 22.5W MAX Total Output: 140W Max	TESTING	
4	Mobile Phone	APPLE	iPhone 13	N/A	Peripheral	
5 TES	Earphones	N/A	N/A	N/A	Peripheral	
6	Watch	N/A	Ultra 2	N/A	Peripheral	

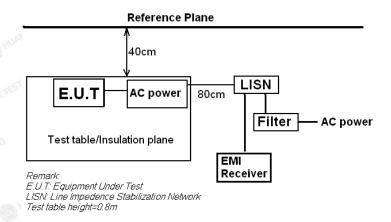
Note:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

^{1.} All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

^{2.} Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

2.6. Measurement Instruments List


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	HKE-002	Feb. 20, 2024	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 20, 2024	1 Year
3.	EMI Test Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	1 Year
4.	Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	1 Year
5.	Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	ୀ Year
6.	Preamplifier	EMCI	EMC051845 S	HKE-006	Feb. 20, 2024	1 Year
7.	Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	1 Year
8.	Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	1 Year
9.	6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	1 Year
10.	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	1 Year
11.	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	2 Year
12.	Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	2 Year
13.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	2 Year
14.	EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	1 TEST	6 /
15.	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N HUMA	1
16.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.2. Conducted Power Line Emission Limit

According to FCC Part 18.307(b)

0.00		(1229)	(1)	239	(339)		
		Maximum RF Line Voltage (dΒμV)					
Frequenc (MHz)	ey	CLASS A	4	CLASS B			
(11112)	Q.	P.	Ave.	Q.P.	Ave.		
0.15 - 0.5	50 7	' 9	66	66-56*	56-46*		
0.50 - 5.0	00 7	'3	60	56	46		
5.00 - 30	.0 7	'3	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

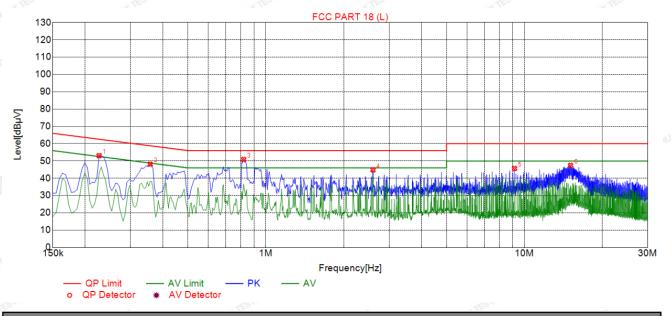
For intentional device, according to §18.307 Line Conducted Emission Limit is same as above table.

3.3. Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

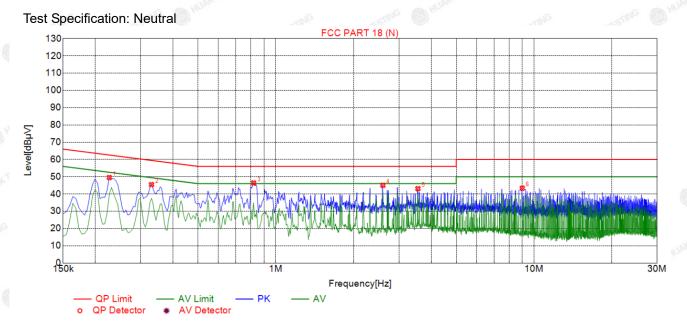


3.4. Test Result

PASS

All the test modes completed for test. Only the worst result was reported as below:

Test Specification: Line


Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµ√]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре			
1	0.2265	53.09	19.84	62.58	9.49	33.25	PK	L			
2	0.3570	48.16	19.83	58.80	10.64	28.33	PK	L			
3	0.8205	50.86	19.87	56.00	5.14	30.99	PK	L			
4	2.5980	44.86	20.03	56.00	11.14	24.83	PK	L			
5	9.1635	45.66	20.00	60.00	14.34	25.66	PK	L			
6	15.0945	47.47	19.81	60.00	12.53	27.66	PK	L			

Remark: Margin = Limit – Level

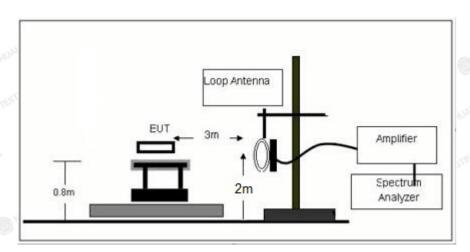
Correction factor = Cable lose + LISN insertion loss

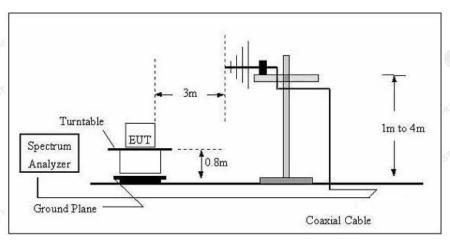
Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

ų.	Suspected List									
3	NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре	
	1	0.2265	49.54	19.73	62.58	13.04	29.81	PK	N	
3	2	0.3300	45.46	19.74	59.45	13.99	25.72	PK	N	
	3	0.8205	46.41	19.74	56.00	9.59	26.67	PK	N	
10000	4	2.5980	45.06	19.91	56.00	10.94	25.15	PK	N	
	5	3.5520	43.09	19.97	56.00	12.91	23.12	PK	N	
	6	9.0105	43.34	19.90	60.00	16.66	23.44	PK	N	

Remark: Margin = Limit - Level


Correction factor = Cable lose + LISN insertion loss


Level=Test receiver reading + correction factor

4. Radiated Emissions

4.1. Block Diagram of Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. Rules and Specifications

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following table:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
(miscellaneous)				
	Any non- ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 ¹ 300

Remark:

- (1) Emission level dBuV/m for 0.009~30MHz = 20log (15) + 40log (300/3) dBuV/m;
- (2) Calculated according FCC 18.305.
- (3) The smaller limit shall apply at the cross point between two frequency bands.
- (4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.3. Test Procedure

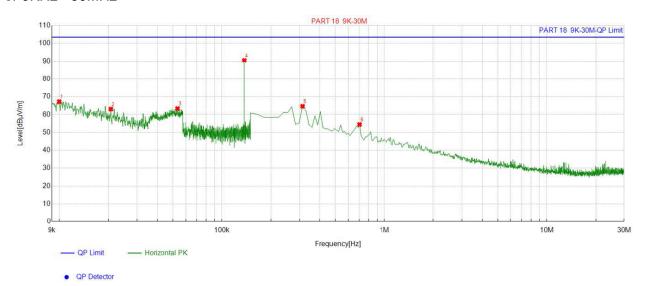
Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurements are extrapolated to 300m and 30m distance respectively, by 40dB/decade, Per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

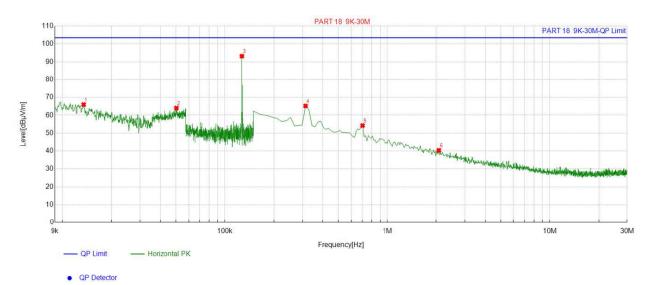

4.4. Test Result

PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Mobile phone:

For 9KHz - 30MHz


K	Suspe	pected List									
1	Freq.		Factor	Reading	Level	Limit	Margin [dB]				
NO.		[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]					
	1	0.009987	20.32	46.89	67.21	103.50	36.29				
99	2	0.020709	20.33	42.71	63.04	103.50	40.46				
100	3	0.053437	20.49	42.82	63.31	103.50	40.19				
	4	0.137233	20.41	70.50	90.91	103.50	12.59				
3	5	0.314257	20.04	44.57	64.61	103.50	38.89				
1	6	0.702501	20.25	34.18	54.43	103.50	49.07				

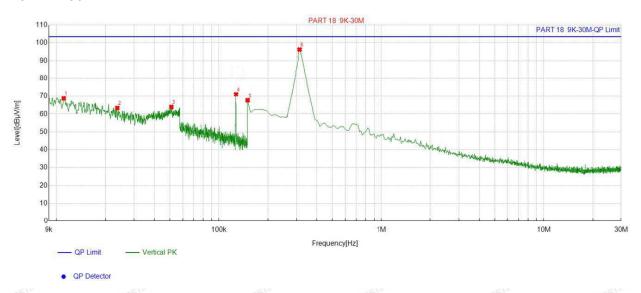
Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Earphones:

For 9KHz - 30MHz

. . 4


	Suspe	cted List						
7	-	Freq.	Factor	Reading	Level	Limit	Margin	
NO.		[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	
	1	0.013514	20.32	45.61	65.93	103.50	37.57	
6	2	0.050404	20.52	43.45	63.97	103.50	39.53	
	3	0.127076	20.40	73.25	93.65	103.50	9.85	
	4	0.314257	20.04	45.13	65.17	103.50	38.33	
Y	5	0.702501	20.25	33.96	54.21	103.50	49.29	
	6	2.076288	20.50	19.89	40.39	103.50	63.11	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

FICATION

Watch:

For 9KHz - 30MHz

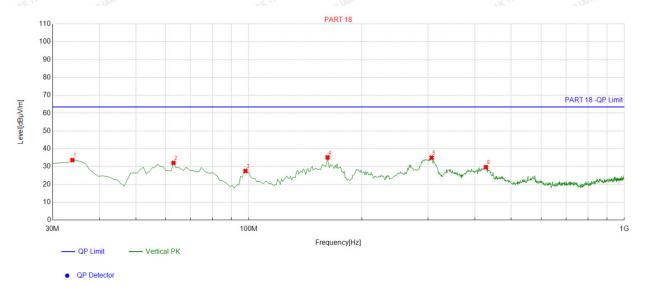


	or from 3	and the last of th		and from V	and the N	and the first to t	and here have				
Y	Suspe	pected List									
3	NO.	Freq.	Factor	Reading	Level	Limit	Margin				
NO.		[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]				
	1	0.011116	20.32	48.46	68.78	103.50	34.72				
É	2	0.023671	20.35	42.99	63.34	103.50	40.16				
N	3	0.05111	20.51	43.42	63.93	103.50	39.57				
	4	0.127288	20.40	50.87	71.27	103.50	32.23				
	5	0.15	20.42	47.37	67.79	103.50	35.71				
Y	6	0.314257	20.04	76.27	96.31	103.50	7.19				

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

For 30MHz-1GHz

Antenna polarity: H



QP Detector

Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	75.635636	-17.98	40.34	22.36	63.50	41.14	100	198	Horizontal
2	104.76476	-14.69	35.93	21.24	63.50	42.26	100	331	Horizontal
3	139.71972	-18.07	43.39	25.32	63.50	38.18	100	328	Horizontal
4	271.77177	-12.57	53.61	41.04	63.50	22.46	100	184	Horizontal
5	308.66866	-11.86	52.37	40.51	63.50	22.99	100	342	Horizontal
6	364.01401	-9.62	49.21	39.59	63.50	23.91	100	200	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Antenna polarity: V

Suspected List									
ş	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.883884	-15.16	48.80	33.64	63.50	29.86	100	352	Vertical
2	63.013013	-14.48	46.55	32.07	63.50	31.43	100	85	Vertical
3	97.967968	-15.12	42.65	27.53	63.50	35.97	100	99	Vertical
4	162.05205	-17.59	52.77	35.18	63.50	28.32	100	32	Vertical
5	306.72672	-11.89	46.92	35.03	63.50	28.47	100	110	Vertical
6	428.09809	-8.77	38.45	29.68	63.50	33.82	100	265	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

5. Antenna Requirement

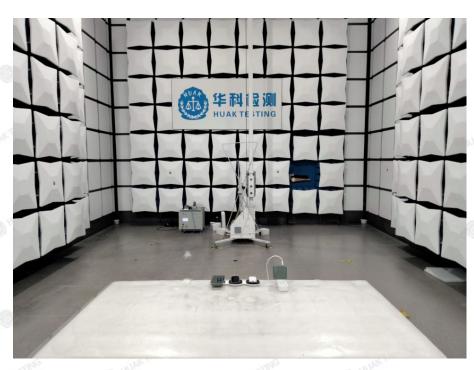
Refer to statement below for compliance.

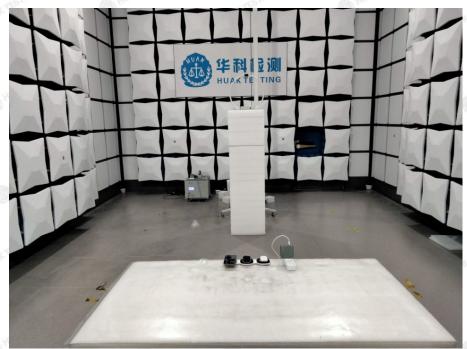
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is Coil Antenna, which permanently attached. It conforms to the standard requirements.

<u>Antenna</u>




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photographs of Test

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

7. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.