

FCC Test Report

Test Report
On Behalf of
TRUSTSTONE GROUP, LLC
For

SOUNDRISE WIRELESS SPEAKER ALARMICLOCK WIRELESS CHARGER

Model No.: HG-TB-RETS3-WOD, TB-RETS3-WOD

FCC ID: 2BBPLHGTBRETS3

Prepared For: TRUSTSTONE GROUP, LLC

1370 Broadway 9th floor, New York, NY 10018, United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Nov. 01, 2024 ~ Nov. 13, 2024

Date of Report: Nov. 13, 2024

Report Number: HK2411016461-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Result Certification

Applicant's Name:	TRUSTSTONE GROUP, LLC
-------------------	-----------------------

Address.....: 1370 Broadway 9th floor, New York, NY 10018, United States

Manufacturer's Name: TRUSTSTONE GROUP, LLC

Address.....: 1370 Broadway 9th floor, New York, NY 10018, United States

Product Description

Trade Mark THROWBACK

Product Name SOUNDRISE WIRELESS SPEAKER ALARMICLOCK

WIRELESS CHARGER

Model and/or Type Reference: HG-TB-RETS3-WOD, TB-RETS3-WOD

FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Test Result..... Pass

(Len Liao)

Technical Manager :

liver Wom

(Sliver Wan)

Authorized Signatory

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

		Table of Co	ntents		Page
1. Test S	Summary				5
1.1 Te	est Procedures ar	nd Results			5
1.2 ln	formation of the 1	est Laborato	ry HUMATE		HUAN 5
1.3 M	easurement Unce	ertainty			5
2. Gener	al Information				6
2.1 G	eneral Description	n of EUT			6
2.2 C	arrier Frequency	of Channels			7
2.3 O	peration of EUT o	luring Testing			7
2.4 D	escription of Test	Setup			8
2.5 D	escription of Supp	oort Units			9
2.6 M	easurement Instr	uments List			10
3. Condu	cted Emission Te	est TESTING			11
3.1 B	ock Diagram of T	est Setup			11
3.2 C	onducted Power I	_ine Emission	Limit		11
3.3 Te	est Procedure				11
3.4 Te	est Result				12
4. Radiat	ed Emissions				14
4.1 B	ock Diagram of T	est Setup			14
4.2 R	ules and Specific	ations			15
4.3 Te	est Procedure				16
4.4 Te	est Result				17
5. Antenr	na Requirement				20
6. Photog	graphs of Test				21
7 Photos	of the FLIT				23

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Revi	sion		Description		Issued Data		Remark	
Revision 1.0		Initial Test Report Release			Nov. 13, 2024		Jason Zhou	
ESTING		TING	TSTING		ESTING	STIN	3	STING
MAKI	HUAK		THIAK I	THUAK	100	HUAK	THURK !	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. Test Summary

1.1 Test Procedures and Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	15.207	COMPLIANT
RADIATED EMISSION TEST	15.209	COMPLIANT
ANTENNA REQUIREMENT	15.203	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3 Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. General Information

2.1 General Description of EUT

Equipment:	SOUNDRISE WIRELESS SPEAKER ALARMICLOCK WIRELESS CHARGER
Model Name:	HG-TB-RETS3-WOD
Series Models:	TB-RETS3-WOD
Model Difference:	All model's the function, software and electric circuit are the same, only with product model named different. Test sample model: HG-TB-RETS3-WOD.
Trade Mark:	THROWBACK
FCC ID:	2BBPLHGTBRETS3
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Operation Frequency:	112KHz~205KHz
Test Frequency:	115KHz
Number of Channels:	1 JAK TESTING
Modulation Type:	ASK
Power Source:	Input: DC5V/3A, 9V/3A Speaker Output Power: 5W Wireless Charging Output Power: 5W/7.5W/10W/15W (MAX) Battery: DC3.7V, 1200mAh
Power Rating:	Input: DC5V/3A, 9V/3A Speaker Output Power: 5W Wireless Charging Output Power: 5W/7.5W/10W/15W (MAX) Battery: DC3.7V, 1200mAh

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

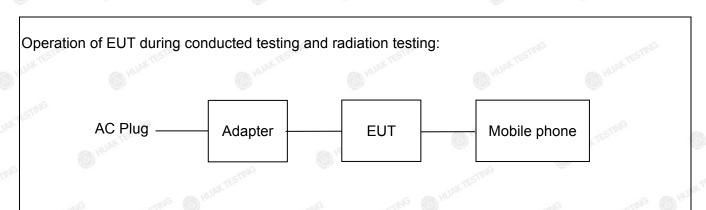
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.2 Carrier Frequency of Channels

Operation Fred	quency each of channel	TEST	- WAKTES
Channel	Frequency	(a) 110 miles	.
Middle CH	115KHz		

2.3 Operation of EUT during Testing

Test Item	Test	Description
Radiated & Conducted	Mode 1	AC/DC Adapter + EUT + Mobile Phone (Battery Status: <1%)
Test Cases	Mode 2	AC/DC Adapter + EUT + Mobile Phone (Battery Status: <50%)
	Mode 3	AC/DC Adapter + EUT + Mobile Phone (Battery Status: >95%)


Note:

- 1. All modes and configurations above have been tested, Only the result of the worst case was recorded in the report, the worst-case configuration is Mode 1.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The Mobile Phone provided by Lab.
- 4. According to the manufacturer's design principle, the wireless charging power will reach its maximum when the client device's battery level is between 1% and 10%.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.4 Description of Test Setup

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

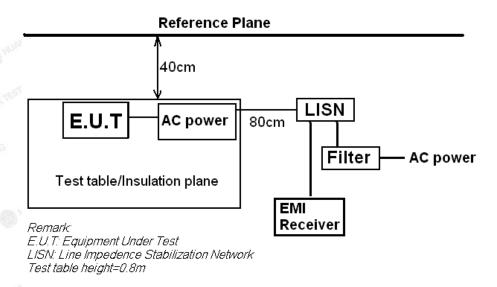
Item	Equipment	Trade Mark	Model/Type No.	Specification	Note
	SOUNDRISE WIRELESS	€ HUM	HIAKTESTI	MILAN TESTIN	0
1	SPEAKER ALARMICLOC	THROWBACK	HG-TB-RETS3-WOD	N/A	EUT
N TE	K WIRELESS CHARGER	IG NO.	NAKTESTING (I)	AN TESTING	SIMG WHO
2	USB Cable	N/A	N/A	Length: 100cm	Accessory
UAK TESTIN	Adapter	N/A HUMETEST	CD289	Input: AC100-240V, 50/60Hz, 2A Max USB-C1 Output: DC5V/3A, 9V3A, 12V/3A, 15V/3A, 20V/5A, 28V/5A 140W MAX USB-C2 Output: DC5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A 100W MAX USB-A Output: DC5V/4.5A,	Peripheral
	ans and	NG HUAN TESTING	us mis	4.5V/5A, 5V/3A, 9V/2A, 12V/1.5A 22.5W MAX Total Output: 140W Max	THE WHIAM
4×1	Mobile Phone	HUAWEI	Mate 40	N/A	Peripheral
9)					

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.6 Measurement Instruments List


U IVIE	asul elllelli illsti u	IIIEIIIO LISI				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	HKE-002	Feb. 20, 2024	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 20, 2024	1 Year
3.	EMI Test Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	1 Year
4.	Spectrum analyzer Agilent		N9020A	HKE-048	Feb. 20, 2024	1 Year
5.	Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	1 Year
6.	. Preamplifier EMCI		EMC051845 S	HKE-006	Feb. 20, 2024	1 Year
7.	Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	1 Year
8.	Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	1 Year
9.	6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	1 Year
10.	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	1 Year
11.	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	2 Year
12.	Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	2 Year
13.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	2 Year
14.	EMI Test Software	EMI Test Software Tonscend		HKE-081	I WIEST	6 /
15.	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	1 Hope	/
16.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. Conducted Emission Test

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

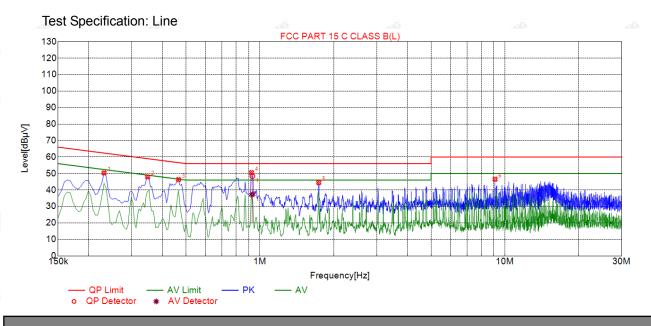
According to FCC Part 15.207(a)

* DZ.	100007	4.7%		Usany				
F	Maximum RF Line Voltage (dBμV)							
Frequency (MHz)	CLAS	SS A	CLASS B					
(111112)	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207 Line Conducted Emission Limit is same as above table.

3.3 Test Procedure


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.4 Test Result

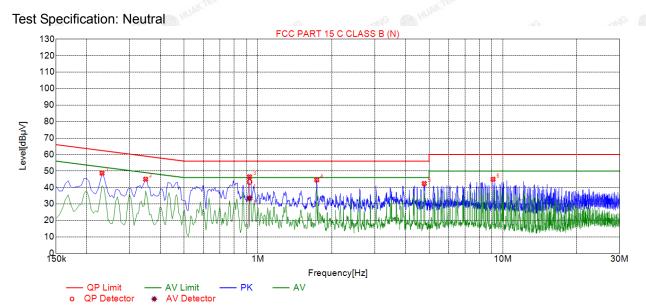
PASS
All the test modes completed for test. Only the worst result of Full Load was reported as below:

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре				
1	0.2310	50.37	19.83	62.41	12.04	30.54	PK	L				
2	0.3480	47.90	19.83	59.01	11.11	28.07	PK	L				
3	0.4650	46.32	19.84	56.60	10.28	26.48	PK	L				
4	0.9240	50.56	19.87	56.00	5.44	30.69	PK	L				
5	1.7385	44.50	19.95	56.00	11.50	24.55	PK	L				
6	9.1185	46.52	20.00	60.00	13.48	26.52	PK	L				

Fi	Final Data List											
NO	D.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBµV]	Туре
1		0.9314	19.87	48.38	56.00	7.62	28.51	37.33	46.00	8.67	17.46	L

Remark: Margin = Limit - Level

Correction factor = Cable lose + ISN insertion loss


Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

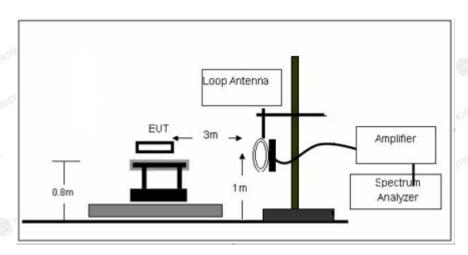
STING

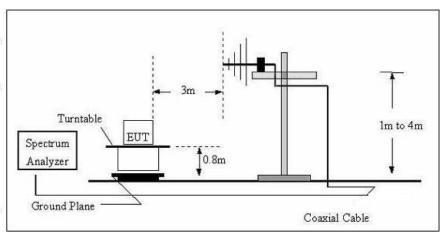
	Sus	Suspected List												
Y	NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре					
3	1	0.2310	48.66	19.73	62.41	13.75	28.93	PK	N					
	2	0.3480	45.02	19.72	59.01	13.99	25.30	PK	N					
3	3	0.9240	46.46	19.74	56.00	9.54	26.72	PK	N					
	4	1.7385	44.61	19.83	56.00	11.39	24.78	PK	N					
700000	5	4.7760	42.39	19.99	56.00	13.61	22.40	PK	N					
	6	9.1185	44.98	19.90	60.00	15.02	25.08	PK	N					

Final	Final Data List											
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBµV]	Туре	
1	0.9240	17.74	43.36	56.00	12.64	25.62	33.39	46.00	12.61	15.65	N	

Remark: Margin = Limit - Level

Correction factor = Cable lose + ISN insertion loss


Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4. Radiated Emissions

4.1 Block Diagram of Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2 Rules and Specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	_
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41				
	0.090-0.110 \1\ 0.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218 6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.366 8.37625-8.38675 8.41425-8.41475 12.29-12.293. 12.51975-12.52025 12.57675-12.57725	0.090-0.110	0.090-0.110 16.42-16.423 399.9-410 \(1\) 0.495-0.505 16.69475-16.69525 608-614 2.1735-2.1905 16.80425-16.80475 960-1240 4.125-4.128 25.5-25.67 1300-1427 4.17725-4.17775 37.5-38.25 1435-1626.5 4.20725-4.20775 73-74.6 1645.5-1646.5 6.215-6.218 74.8-75.2 1660-1710 6.26775-6.26825 108-121.94 1718.8-1722.2 6.31175-6.31225 123-138 2200-2300 8.291-8.294 149.9-150.05 2310-2390 8.362-8.366 156.52475-156.52525 2483.5-2500 8.37625-8.38675 156.7-156.9 2690-2900 8.41425-8.41475 162.0125-167.17 3260-3267 12.29-12.293 167.72-173.2 3332-3339 12.51975-12.52025 240-285 3345.8-3358 12.57675-12.57725 322-335.4 3600-4400	0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 \(1\)\(0.495-0.505\) 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722.2 13.25-13.4 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

	Transmitter Spurious Er	missions 9KHz-30MHz		
STING OF	9-150KHz	150-490KHz	490KHz-30MHz	
Resolution Bandwidth	200Hz	9KHz	9KHz	
Video Bandwidth	600Hz	30KHz	30KHz	
Detector	Peak	Peak	Peak	
Trace Mode	Max Hold	Max Hold	Max Hold	
Sweep Time	Auto	Auto	Auto	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Page 16 of 23 Report No.: HK2411016461-1E

4.3 Test Procedure

Measurement distance 3m

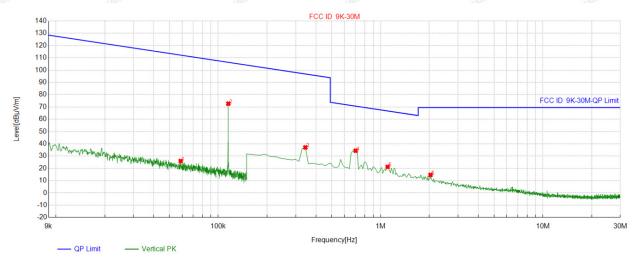
For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.4 Test Result

PASS

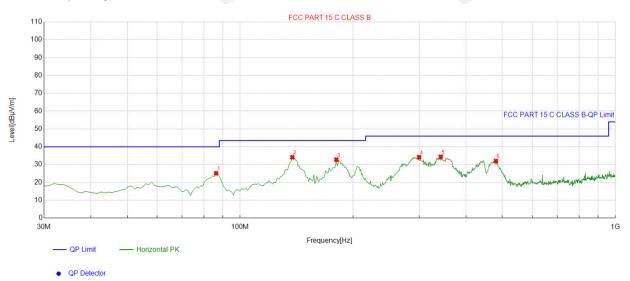
Note: All the test modes completed for test. Only the worst result Full Load was reported as below:

For 9KHz - 30MHz

QP Detecto

Suspe	cted	List
-------	------	------

NO	Freq.	Factor	Reading	Level	Limit	Margin	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	
1	0.058727	-10.56	36.53	25.97	112.22	86.25	
2	0.115367	-10.61	83.32	72.71	106.36	33.65	
3	0.344122	-11.29	48.32	37.03	96.87	59.84	
4	0.702501	-10.95	45.33	34.38	70.68	36.30	
5	1.105678	-10.52	31.72	21.20	66.75	45.55	
6	2.031491	-10.50	25.18	14.68	69.50	54.82	

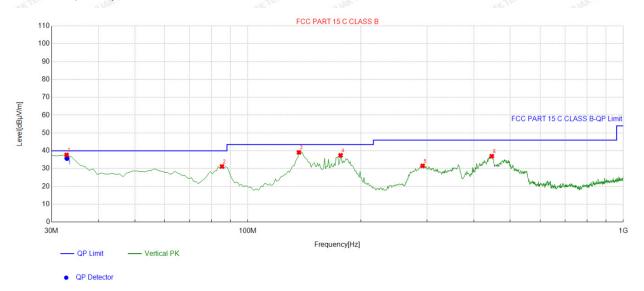

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

For 30MHz-1GHz

Antenna polarity: H

	200		7117		741.0	-711/3		2117		ALG.
ě	Suspe	cted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	D. I. ''
<	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	86.316316	-17.62	42.75	25.13	40.00	14.87	100	359	Horizontal
	2	137.77777	-17.87	52.00	34.13	43.50	9.37	100	119	Horizontal
L	3	180.50050	-16.33	49.10	32.77	43.50	10.73	100	53	Horizontal
	4	299.92993	-11.71	45.87	34.16	46.00	11.84	100	285	Horizontal
L	5	342.65265	-10.22	44.58	34.36	46.00	11.64	100	122	Horizontal
	6	480.53053	-8.25	40.31	32.06	46.00	13.94	100	172	Horizontal


Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Antenna polarity: V

Susp	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	D 1 11			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	32.912913	-15.12	52.82	37.70	40.00	2.30	100	125	Vertical			
2	85.345345	-17.82	49.03	31.21	40.00	8.79	100	236	Vertical			
3	136.80680	-17.67	56.77	39.10	43.50	4.40	100	53	Vertical			
4	176.61661	-16.66	54.11	37.45	43.50	6.05	100	352	Vertical			
5	292.16216	-11.99	43.51	31.52	46.00	14.48	100	103	Vertical			
6	446.54654	-8.69	45.62	36.93	46.00	9.07	100	230	Vertical			

Final	Data List								
NO	Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margin	Height	Angle	Delevite
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	32.9845	-15.12	50.89	35.77	40.00	4.23	100	125	Vertical

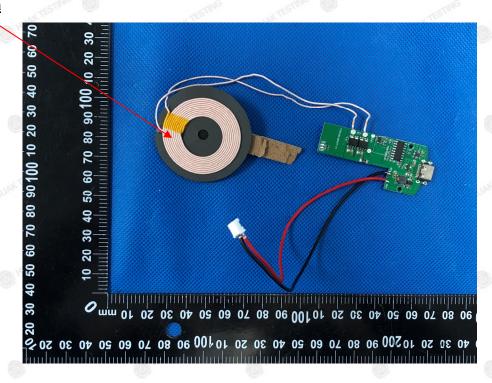
Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

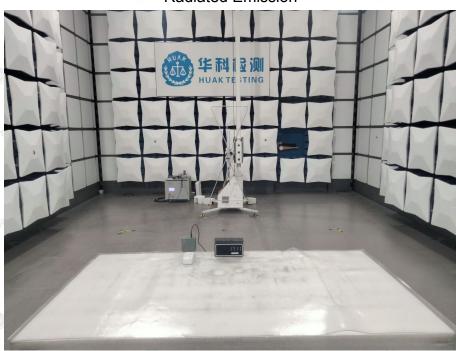

Refer to statement below for compliance.

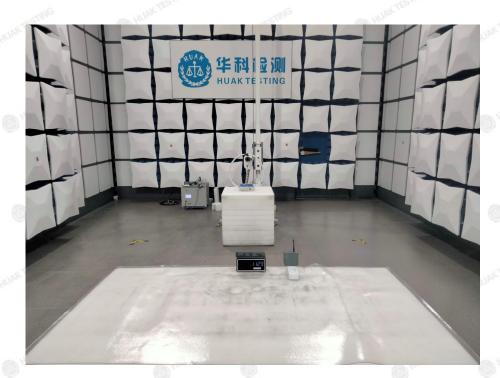
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

Antenna




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

6. Photographs of Test

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

7. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.